File size: 2,795 Bytes
8f8907e
ac60056
c752dca
 
ac60056
 
 
 
8f8907e
ac60056
8f8907e
ac60056
 
8f8907e
ac60056
8f8907e
c752dca
ac60056
c752dca
ac60056
8f8907e
 
 
 
 
 
ac60056
 
 
 
 
 
8f8907e
ac60056
 
 
 
8f8907e
ac60056
 
 
8f8907e
ac60056
 
8f8907e
ac60056
 
 
 
 
8f8907e
ac60056
 
e4444ee
 
ac60056
8725c97
 
ac60056
f48bfcf
8725c97
8f8907e
c752dca
8f8907e
ac60056
8f8907e
ac60056
 
 
8f8907e
ac60056
 
c752dca
 
ac60056
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import gradio as gr
from PIL import Image, ImageFilter
import numpy as np
import torch
from transformers import (
    SegformerFeatureExtractor, SegformerForSemanticSegmentation,
    DPTFeatureExtractor, DPTForDepthEstimation
)
import cv2
import os, json

# β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”
# load segmentation model
seg_model_name = "nvidia/segformer-b1-finetuned-ade-512-512"
seg_fe = SegformerFeatureExtractor.from_pretrained(seg_model_name)
seg_model = SegformerForSemanticSegmentation.from_pretrained(seg_model_name)

# load depth model
depth_model_name = "Intel/dpt-hybrid-midas"
depth_fe = DPTFeatureExtractor.from_pretrained(depth_model_name)
depth_model = DPTForDepthEstimation.from_pretrained(depth_model_name)

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
seg_model.to(device)
depth_model.to(device)

def process_image(image: Image.Image):
    # 1) prep
    image = image.convert("RGB").resize((512,512))
    
    # 2) segmentation β†’ binary mask
    seg_inputs = seg_fe(images=image, return_tensors="pt").to(device)
    with torch.no_grad():
        seg_logits = seg_model(**seg_inputs).logits
    seg_map = torch.argmax(seg_logits, dim=1)[0].cpu().numpy()
    mask = (seg_map > 0).astype(np.uint8) * 255
    mask = Image.fromarray(mask).resize((512,512))

    # 3) gaussian-blur background
    bg_blur = image.filter(ImageFilter.GaussianBlur(15))
    output_blur = Image.composite(image, bg_blur, mask)

    # 4) depth estimation
    depth_inputs = depth_fe(images=image, return_tensors="pt").to(device)
    with torch.no_grad():
        depth_pred = depth_model(**depth_inputs).predicted_depth.squeeze().cpu().numpy()
    # normalize & resize
    dmin, dmax = depth_pred.min(), depth_pred.max()
    depth_norm = (depth_pred - dmin) / (dmax - dmin + 1e-8)
    depth_norm = cv2.resize(depth_norm, (512,512))

    # 5) vectorized depth-based blur
    img_np = np.array(image).astype(np.float32)
    # two extremes: no blur for near, heavy blur for far
    near_blur = img_np                          
    far_blur  = cv2.GaussianBlur(img_np, (81,81), 20)
    alpha = depth_norm[...,None]
    combined = near_blur * (1.0 - alpha) + far_blur * alpha
    lens_blur = Image.fromarray(np.clip(combined,0,255).astype(np.uint8))

    return image, output_blur, lens_blur

iface = gr.Interface(
    fn=process_image,
    inputs=gr.Image(type="pil", label="Upload Image"),
    outputs=[
      gr.Image(type="pil", label="Original"),
      gr.Image(type="pil", label="Gaussian Blur"),
      gr.Image(type="pil", label="Depth-Based Lens Blur"),
    ],
    title="Image Blurring with CLAHE + Depth-Based Blur",
    description="Upload a selfie to see background blur and depth-based lens blur."
)

if __name__ == "__main__":
    iface.launch(share=True)