Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) 2025 Ye Liu. Licensed under the BSD-3-Clause License. | |
import csv | |
import nncore | |
from videomind.dataset.hybrid import DATASETS | |
from videomind.dataset.wrappers import AnsweringCropDataset, AnsweringDataset, GroundingDataset | |
from videomind.utils.parser import parse_query, parse_question | |
class NExTGQADataset(AnsweringDataset): | |
ANNO_PATH_VALID = 'data/nextgqa/val.csv' | |
ANNO_PATH_TEST = 'data/nextgqa/test.csv' | |
SPAN_PATH_VALID = 'data/nextgqa/gsub_val.json' | |
SPAN_PATH_TEST = 'data/nextgqa/gsub_test.json' | |
VIDEO_ID_MAP = 'data/nextgqa/map_vid_vidorID.json' | |
VIDEO_ROOT = 'data/nextqa/videos' | |
SOURCE = 'nextgqa' | |
DATA_TYPE = 'multimodal' | |
UNIT = 0.1 | |
def load_annos(self, split='valid'): | |
assert split in ('valid', 'test') | |
if split == 'valid': | |
anno_path = self.ANNO_PATH_VALID | |
raw_spans = nncore.load(self.SPAN_PATH_VALID) | |
else: | |
anno_path = self.ANNO_PATH_TEST | |
raw_spans = nncore.load(self.SPAN_PATH_TEST) | |
with open(anno_path, mode='r') as f: | |
reader = csv.DictReader(f) | |
raw_annos = [d for d in reader] | |
video_id_map = nncore.load(self.VIDEO_ID_MAP) | |
annos = [] | |
for raw_anno in raw_annos: | |
vid = raw_anno['video_id'] | |
qid = raw_anno['qid'] | |
video_id = video_id_map[vid] | |
query = parse_query(raw_anno['question'].capitalize() + '?') | |
question = parse_question(raw_anno['question'].capitalize() + '?') | |
options = [raw_anno[k].capitalize() for k in ('a0', 'a1', 'a2', 'a3', 'a4')] | |
answer = raw_anno['answer'].capitalize() | |
ans = chr(ord('A') + options.index(answer)) | |
anno = dict( | |
source=self.SOURCE, | |
data_type=self.DATA_TYPE, | |
video_path=nncore.join(self.VIDEO_ROOT, video_id + '.mp4'), | |
duration=raw_spans[vid]['duration'], | |
query=query, | |
question=question, | |
options=options, | |
answer=answer, | |
ans=ans, | |
span=raw_spans[vid]['location'][qid], | |
task=raw_anno['type']) | |
annos.append(anno) | |
return annos | |
class NExTGQACropDataset(AnsweringCropDataset, NExTGQADataset): | |
SOURCE = 'nextgqa_crop' | |
class NExTGQAGroundingDataset(GroundingDataset, NExTGQADataset): | |
SOURCE = 'nextgqa_grounding' | |
DATA_TYPE = 'grounding' | |