# Copyright (c) 2025 Ye Liu. Licensed under the BSD-3-Clause License. import csv import nncore from videomind.dataset.hybrid import DATASETS from videomind.dataset.wrappers import AnsweringCropDataset, AnsweringDataset, GroundingDataset from videomind.utils.parser import parse_query, parse_question @DATASETS.register(name='nextgqa') class NExTGQADataset(AnsweringDataset): ANNO_PATH_VALID = 'data/nextgqa/val.csv' ANNO_PATH_TEST = 'data/nextgqa/test.csv' SPAN_PATH_VALID = 'data/nextgqa/gsub_val.json' SPAN_PATH_TEST = 'data/nextgqa/gsub_test.json' VIDEO_ID_MAP = 'data/nextgqa/map_vid_vidorID.json' VIDEO_ROOT = 'data/nextqa/videos' SOURCE = 'nextgqa' DATA_TYPE = 'multimodal' UNIT = 0.1 @classmethod def load_annos(self, split='valid'): assert split in ('valid', 'test') if split == 'valid': anno_path = self.ANNO_PATH_VALID raw_spans = nncore.load(self.SPAN_PATH_VALID) else: anno_path = self.ANNO_PATH_TEST raw_spans = nncore.load(self.SPAN_PATH_TEST) with open(anno_path, mode='r') as f: reader = csv.DictReader(f) raw_annos = [d for d in reader] video_id_map = nncore.load(self.VIDEO_ID_MAP) annos = [] for raw_anno in raw_annos: vid = raw_anno['video_id'] qid = raw_anno['qid'] video_id = video_id_map[vid] query = parse_query(raw_anno['question'].capitalize() + '?') question = parse_question(raw_anno['question'].capitalize() + '?') options = [raw_anno[k].capitalize() for k in ('a0', 'a1', 'a2', 'a3', 'a4')] answer = raw_anno['answer'].capitalize() ans = chr(ord('A') + options.index(answer)) anno = dict( source=self.SOURCE, data_type=self.DATA_TYPE, video_path=nncore.join(self.VIDEO_ROOT, video_id + '.mp4'), duration=raw_spans[vid]['duration'], query=query, question=question, options=options, answer=answer, ans=ans, span=raw_spans[vid]['location'][qid], task=raw_anno['type']) annos.append(anno) return annos @DATASETS.register(name='nextgqa_crop') class NExTGQACropDataset(AnsweringCropDataset, NExTGQADataset): SOURCE = 'nextgqa_crop' @DATASETS.register(name='nextgqa_grounding') class NExTGQAGroundingDataset(GroundingDataset, NExTGQADataset): SOURCE = 'nextgqa_grounding' DATA_TYPE = 'grounding'