Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) 2025 Ye Liu. Licensed under the BSD-3-Clause License. | |
from collections import OrderedDict | |
import nncore | |
from videomind.dataset.hybrid import DATASETS | |
from videomind.dataset.wrappers import GroundingDataset | |
from videomind.utils.parser import parse_query | |
class HiRESTGroundingDataset(GroundingDataset): | |
ANNO_PATH_TRAIN = 'data/hirest/all_data_train.json' | |
ANNO_PATH_VALID = 'data/hirest/all_data_val.json' | |
VIDEO_ROOT = 'data/hirest/videos_3fps_480_noaudio' | |
UNIT = 1.0 | |
def load_annos(self, split='train'): | |
if split == 'train': | |
raw_annos = nncore.load(self.ANNO_PATH_TRAIN, object_pairs_hook=OrderedDict) | |
else: | |
raw_annos = nncore.load(self.ANNO_PATH_VALID, object_pairs_hook=OrderedDict) | |
all_videos = nncore.ls(self.VIDEO_ROOT, ext='.mp4') | |
all_videos = set(v[:11] for v in all_videos) | |
annos = [] | |
for query, videos in raw_annos.items(): | |
for video_name, raw_anno in videos.items(): | |
if not raw_anno['relevant'] or not raw_anno['clip']: | |
continue | |
assert len(raw_anno['bounds']) == 2 | |
vid = video_name.split('.')[0] | |
if vid not in all_videos: | |
continue | |
anno = dict( | |
source='hirest_grounding', | |
data_type='grounding', | |
video_path=nncore.join(self.VIDEO_ROOT, video_name), | |
duration=raw_anno['v_duration'], | |
query=parse_query(query), | |
span=[raw_anno['bounds']]) | |
annos.append(anno) | |
return annos | |
class HiRESTStepDataset(HiRESTGroundingDataset): | |
def load_annos(self, split='train'): | |
if split == 'train': | |
raw_annos = nncore.load(self.ANNO_PATH_TRAIN, object_pairs_hook=OrderedDict) | |
else: | |
raw_annos = nncore.load(self.ANNO_PATH_VALID, object_pairs_hook=OrderedDict) | |
all_videos = nncore.ls(self.VIDEO_ROOT, ext='.mp4') | |
all_videos = set(v[:11] for v in all_videos) | |
annos = [] | |
for query, videos in raw_annos.items(): | |
for video_name, raw_anno in videos.items(): | |
if not raw_anno['relevant'] or not raw_anno['clip'] or len(raw_anno['steps']) == 0: | |
continue | |
vid = video_name.split('.')[0] | |
if vid not in all_videos: | |
continue | |
for step in raw_anno['steps']: | |
assert len(step['absolute_bounds']) == 2 | |
anno = dict( | |
source='hirest_step', | |
data_type='grounding', | |
video_path=nncore.join(self.VIDEO_ROOT, video_name), | |
duration=raw_anno['v_duration'], | |
query=parse_query(step['heading']), | |
span=[step['absolute_bounds']]) | |
annos.append(anno) | |
return annos | |
class HiRESTStepBiasDataset(HiRESTStepDataset): | |
def load_annos(self, split='train'): | |
if split == 'train': | |
raw_annos = nncore.load(self.ANNO_PATH_TRAIN, object_pairs_hook=OrderedDict) | |
else: | |
raw_annos = nncore.load(self.ANNO_PATH_VALID, object_pairs_hook=OrderedDict) | |
all_videos = nncore.ls(self.VIDEO_ROOT, ext='.mp4') | |
all_videos = set(v[:11] for v in all_videos) | |
annos = [] | |
for query, videos in raw_annos.items(): | |
for video_name, raw_anno in videos.items(): | |
if not raw_anno['relevant'] or not raw_anno['clip'] or len(raw_anno['steps']) == 0: | |
continue | |
vid = video_name.split('.')[0] | |
if vid not in all_videos: | |
continue | |
for i in range(len(raw_anno['steps']) - 1): | |
span_a = raw_anno['steps'][i]['absolute_bounds'] | |
span_b = raw_anno['steps'][i + 1]['absolute_bounds'] | |
assert len(span_a) == 2 and len(span_b) == 2 and span_a[1] == span_b[0] | |
query_a = parse_query(f"The moment before {raw_anno['steps'][i + 1]['heading']}") | |
query_b = parse_query(f"The moment after {raw_anno['steps'][i]['heading']}") | |
anno_a = dict( | |
source='hirest_step_bias', | |
data_type='grounding', | |
video_path=nncore.join(self.VIDEO_ROOT, video_name), | |
duration=raw_anno['v_duration'], | |
query=query_a, | |
span=[span_a]) | |
anno_b = dict( | |
source='hirest_step_bias', | |
data_type='grounding', | |
video_path=nncore.join(self.VIDEO_ROOT, video_name), | |
duration=raw_anno['v_duration'], | |
query=query_b, | |
span=[span_b]) | |
annos.append(anno_a) | |
annos.append(anno_b) | |
return annos | |