File size: 5,294 Bytes
6073e55
23fdbc0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
# Copyright (c) 2025 Ye Liu. Licensed under the BSD-3-Clause License.

from collections import OrderedDict

import nncore

from videomind.dataset.hybrid import DATASETS
from videomind.dataset.wrappers import GroundingDataset
from videomind.utils.parser import parse_query


@DATASETS.register(name='hirest_grounding')
class HiRESTGroundingDataset(GroundingDataset):

    ANNO_PATH_TRAIN = 'data/hirest/all_data_train.json'
    ANNO_PATH_VALID = 'data/hirest/all_data_val.json'

    VIDEO_ROOT = 'data/hirest/videos_3fps_480_noaudio'

    UNIT = 1.0

    @classmethod
    def load_annos(self, split='train'):
        if split == 'train':
            raw_annos = nncore.load(self.ANNO_PATH_TRAIN, object_pairs_hook=OrderedDict)
        else:
            raw_annos = nncore.load(self.ANNO_PATH_VALID, object_pairs_hook=OrderedDict)

        all_videos = nncore.ls(self.VIDEO_ROOT, ext='.mp4')
        all_videos = set(v[:11] for v in all_videos)

        annos = []
        for query, videos in raw_annos.items():
            for video_name, raw_anno in videos.items():
                if not raw_anno['relevant'] or not raw_anno['clip']:
                    continue

                assert len(raw_anno['bounds']) == 2

                vid = video_name.split('.')[0]

                if vid not in all_videos:
                    continue

                anno = dict(
                    source='hirest_grounding',
                    data_type='grounding',
                    video_path=nncore.join(self.VIDEO_ROOT, video_name),
                    duration=raw_anno['v_duration'],
                    query=parse_query(query),
                    span=[raw_anno['bounds']])

                annos.append(anno)

        return annos


@DATASETS.register(name='hirest_step')
class HiRESTStepDataset(HiRESTGroundingDataset):

    @classmethod
    def load_annos(self, split='train'):
        if split == 'train':
            raw_annos = nncore.load(self.ANNO_PATH_TRAIN, object_pairs_hook=OrderedDict)
        else:
            raw_annos = nncore.load(self.ANNO_PATH_VALID, object_pairs_hook=OrderedDict)

        all_videos = nncore.ls(self.VIDEO_ROOT, ext='.mp4')
        all_videos = set(v[:11] for v in all_videos)

        annos = []
        for query, videos in raw_annos.items():
            for video_name, raw_anno in videos.items():
                if not raw_anno['relevant'] or not raw_anno['clip'] or len(raw_anno['steps']) == 0:
                    continue

                vid = video_name.split('.')[0]

                if vid not in all_videos:
                    continue

                for step in raw_anno['steps']:
                    assert len(step['absolute_bounds']) == 2

                    anno = dict(
                        source='hirest_step',
                        data_type='grounding',
                        video_path=nncore.join(self.VIDEO_ROOT, video_name),
                        duration=raw_anno['v_duration'],
                        query=parse_query(step['heading']),
                        span=[step['absolute_bounds']])

                    annos.append(anno)

        return annos


@DATASETS.register(name='hirest_step_bias')
class HiRESTStepBiasDataset(HiRESTStepDataset):

    @classmethod
    def load_annos(self, split='train'):
        if split == 'train':
            raw_annos = nncore.load(self.ANNO_PATH_TRAIN, object_pairs_hook=OrderedDict)
        else:
            raw_annos = nncore.load(self.ANNO_PATH_VALID, object_pairs_hook=OrderedDict)

        all_videos = nncore.ls(self.VIDEO_ROOT, ext='.mp4')
        all_videos = set(v[:11] for v in all_videos)

        annos = []
        for query, videos in raw_annos.items():
            for video_name, raw_anno in videos.items():
                if not raw_anno['relevant'] or not raw_anno['clip'] or len(raw_anno['steps']) == 0:
                    continue

                vid = video_name.split('.')[0]

                if vid not in all_videos:
                    continue

                for i in range(len(raw_anno['steps']) - 1):
                    span_a = raw_anno['steps'][i]['absolute_bounds']
                    span_b = raw_anno['steps'][i + 1]['absolute_bounds']

                    assert len(span_a) == 2 and len(span_b) == 2 and span_a[1] == span_b[0]

                    query_a = parse_query(f"The moment before {raw_anno['steps'][i + 1]['heading']}")
                    query_b = parse_query(f"The moment after {raw_anno['steps'][i]['heading']}")

                    anno_a = dict(
                        source='hirest_step_bias',
                        data_type='grounding',
                        video_path=nncore.join(self.VIDEO_ROOT, video_name),
                        duration=raw_anno['v_duration'],
                        query=query_a,
                        span=[span_a])

                    anno_b = dict(
                        source='hirest_step_bias',
                        data_type='grounding',
                        video_path=nncore.join(self.VIDEO_ROOT, video_name),
                        duration=raw_anno['v_duration'],
                        query=query_b,
                        span=[span_b])

                    annos.append(anno_a)
                    annos.append(anno_b)

        return annos