Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) 2025 Ye Liu. Licensed under the BSD-3-Clause License. | |
import random | |
import nncore | |
import numpy as np | |
from videomind.dataset.hybrid import DATASETS | |
from videomind.dataset.wrappers import GroundingDataset | |
from videomind.utils.parser import parse_query | |
class DiDeMoDataset(GroundingDataset): | |
ANNO_PATH_TRAIN = 'data/didemo/train_data.json' | |
ANNO_PATH_VALID = 'data/didemo/val_data.json' | |
ANNO_PATH_TEST = 'data/didemo/test_data.json' | |
VIDEO_ROOT = 'data/didemo/videos_3fps_480_noaudio' | |
DURATIONS = 'data/didemo/durations.json' | |
UNIT = 1.0 | |
def load_annos(self, split='train'): | |
if split == 'train': | |
raw_annos = nncore.load(self.ANNO_PATH_TRAIN) | |
elif split == 'valid': | |
raw_annos = nncore.load(self.ANNO_PATH_VALID) | |
else: | |
raw_annos = nncore.load(self.ANNO_PATH_TEST) | |
durations = nncore.load(self.DURATIONS) | |
annos = [] | |
for raw_anno in raw_annos: | |
vid = raw_anno['video'].split('.')[0] | |
# apply mean on multiple spans | |
span = np.array(raw_anno['times']).mean(axis=0).tolist() | |
span = [round(span[0] * 5), round((span[1] + 1) * 5)] | |
# augment spans during training | |
if split == 'train': | |
offset = random.randint(-2, 2) | |
span = [span[0] + offset, span[1] + offset] | |
anno = dict( | |
source='didemo', | |
data_type='grounding', | |
video_path=nncore.join(self.VIDEO_ROOT, vid + '.mp4'), | |
duration=durations[vid], | |
query=parse_query(raw_anno['description']), | |
span=[span]) | |
annos.append(anno) | |
return annos | |