# Copyright (c) 2025 Ye Liu. Licensed under the BSD-3-Clause License. import random import nncore import numpy as np from videomind.dataset.hybrid import DATASETS from videomind.dataset.wrappers import GroundingDataset from videomind.utils.parser import parse_query @DATASETS.register(name='didemo') class DiDeMoDataset(GroundingDataset): ANNO_PATH_TRAIN = 'data/didemo/train_data.json' ANNO_PATH_VALID = 'data/didemo/val_data.json' ANNO_PATH_TEST = 'data/didemo/test_data.json' VIDEO_ROOT = 'data/didemo/videos_3fps_480_noaudio' DURATIONS = 'data/didemo/durations.json' UNIT = 1.0 @classmethod def load_annos(self, split='train'): if split == 'train': raw_annos = nncore.load(self.ANNO_PATH_TRAIN) elif split == 'valid': raw_annos = nncore.load(self.ANNO_PATH_VALID) else: raw_annos = nncore.load(self.ANNO_PATH_TEST) durations = nncore.load(self.DURATIONS) annos = [] for raw_anno in raw_annos: vid = raw_anno['video'].split('.')[0] # apply mean on multiple spans span = np.array(raw_anno['times']).mean(axis=0).tolist() span = [round(span[0] * 5), round((span[1] + 1) * 5)] # augment spans during training if split == 'train': offset = random.randint(-2, 2) span = [span[0] + offset, span[1] + offset] anno = dict( source='didemo', data_type='grounding', video_path=nncore.join(self.VIDEO_ROOT, vid + '.mp4'), duration=durations[vid], query=parse_query(raw_anno['description']), span=[span]) annos.append(anno) return annos