Update app.py
Browse files
app.py
CHANGED
@@ -28,22 +28,14 @@ model_gpt2 = GPT2LMHeadModel.from_pretrained('gpt2')
|
|
28 |
text_generator = pipeline("text-generation", model=model_gpt2, tokenizer=tokenizer_gpt2)
|
29 |
|
30 |
# Load the Llama-3 model and tokenizer once during startup
|
31 |
-
tokenizer_llama = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-8B", token=hf_token)
|
32 |
-
|
33 |
-
|
34 |
-
os.makedirs(offload_dir, exist_ok=True) # Create the directory if it doesn't exist
|
35 |
-
|
36 |
-
# Load the Llama model with disk offloading
|
37 |
-
with init_empty_weights():
|
38 |
-
model_llama = AutoModelForCausalLM.from_pretrained(
|
39 |
-
"meta-llama/Meta-Llama-3-8B",
|
40 |
torch_dtype='auto',
|
41 |
device_map='auto',
|
42 |
token=hf_token
|
43 |
)
|
44 |
|
45 |
-
# Offload the model to the specified directory
|
46 |
-
disk_offload(model_llama, offload_dir) # Pass the offload directory
|
47 |
|
48 |
# Define your prompt template
|
49 |
prompt_template = """\
|
|
|
28 |
text_generator = pipeline("text-generation", model=model_gpt2, tokenizer=tokenizer_gpt2)
|
29 |
|
30 |
# Load the Llama-3 model and tokenizer once during startup
|
31 |
+
tokenizer_llama = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3.1-8B", token=hf_token)
|
32 |
+
model_llama = AutoModelForCausalLM.from_pretrained(
|
33 |
+
"meta-llama/Meta-Llama-3.1-8B",
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
torch_dtype='auto',
|
35 |
device_map='auto',
|
36 |
token=hf_token
|
37 |
)
|
38 |
|
|
|
|
|
39 |
|
40 |
# Define your prompt template
|
41 |
prompt_template = """\
|