Update app.py
Browse files
app.py
CHANGED
@@ -29,14 +29,21 @@ text_generator = pipeline("text-generation", model=model_gpt2, tokenizer=tokeniz
|
|
29 |
|
30 |
# Load the Llama-3 model and tokenizer once during startup
|
31 |
tokenizer_llama = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-8B", token=hf_token)
|
|
|
|
|
|
|
|
|
|
|
32 |
with init_empty_weights():
|
33 |
model_llama = AutoModelForCausalLM.from_pretrained(
|
34 |
"meta-llama/Meta-Llama-3-8B",
|
35 |
torch_dtype='auto',
|
36 |
-
device_map='auto',
|
37 |
token=hf_token
|
38 |
)
|
39 |
-
|
|
|
|
|
40 |
|
41 |
# Define your prompt template
|
42 |
prompt_template = """\
|
|
|
29 |
|
30 |
# Load the Llama-3 model and tokenizer once during startup
|
31 |
tokenizer_llama = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-8B", token=hf_token)
|
32 |
+
# Define the offload directory
|
33 |
+
offload_dir = "./offload"
|
34 |
+
os.makedirs(offload_dir, exist_ok=True) # Create the directory if it doesn't exist
|
35 |
+
|
36 |
+
# Load the Llama model with disk offloading
|
37 |
with init_empty_weights():
|
38 |
model_llama = AutoModelForCausalLM.from_pretrained(
|
39 |
"meta-llama/Meta-Llama-3-8B",
|
40 |
torch_dtype='auto',
|
41 |
+
device_map='auto',
|
42 |
token=hf_token
|
43 |
)
|
44 |
+
|
45 |
+
# Offload the model to the specified directory
|
46 |
+
disk_offload(model_llama, offload_dir) # Pass the offload directory
|
47 |
|
48 |
# Define your prompt template
|
49 |
prompt_template = """\
|