File size: 4,867 Bytes
4d35d05
857e937
170c5f1
 
bad46c5
dbb92e9
170c5f1
1ab421e
bad46c5
c549aa3
 
 
eaf6f50
 
 
1ab421e
 
7ce0c46
1ab421e
 
 
 
170c5f1
 
 
 
 
 
 
bad46c5
3476a0f
170c5f1
1743f62
170c5f1
 
 
3476a0f
 
 
 
 
bad46c5
7ce0c46
 
 
 
 
bad46c5
7ce0c46
 
 
 
 
 
 
 
 
 
 
 
 
170c5f1
eb971e4
170c5f1
3476a0f
 
 
 
 
bad46c5
 
170c5f1
 
 
 
bad46c5
 
170c5f1
 
 
bad46c5
 
857e937
 
 
 
 
 
 
 
 
c549aa3
 
bad46c5
 
c549aa3
 
 
 
 
3476a0f
c549aa3
 
bad46c5
c549aa3
 
 
 
 
 
 
 
 
 
 
 
 
 
3476a0f
c549aa3
 
01c0141
31d4200
 
 
3476a0f
31d4200
 
 
 
c549aa3
65871c9
31d4200
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
from fastapi import FastAPI, HTTPException
from fastapi.responses import StreamingResponse, JSONResponse
from pydantic import BaseModel
import os
import requests
from transformers import GPT2LMHeadModel, GPT2Tokenizer, AutoTokenizer, pipeline
from io import StringIO
from fastapi.middleware.cors import CORSMiddleware
from huggingface_hub import HfFolder
import logging
import random
import csv

app = FastAPI()

app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],  # You can specify domains here
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# Access the Hugging Face API token from environment variables
hf_token = os.getenv('HF_API_TOKEN')

if not hf_token:
    raise ValueError("Hugging Face API token is not set. Please set the HF_API_TOKEN environment variable.")

# Load GPT-2 model and tokenizer
tokenizer_gpt2 = GPT2Tokenizer.from_pretrained('gpt2')
model_gpt2 = GPT2LMHeadModel.from_pretrained('gpt2')

# Create a pipeline for text generation using GPT-2
text_generator = pipeline("text-generation", model=model_gpt2, tokenizer=tokenizer_gpt2)

def preprocess_user_prompt(user_prompt):
    # Generate a structured prompt based on the user input
    generated_text = text_generator(user_prompt, max_length=50, num_return_sequences=1)[0]["generated_text"]
    return generated_text

# Define prompt template
prompt_template = """\
You are an expert in generating synthetic data for machine learning models.
Your task is to generate a synthetic tabular dataset based on the description provided below.
Description: {description}
The dataset should include the following columns: {columns}
Please provide the data in CSV format.
Example Description:
Generate a dataset for predicting house prices with columns: 'Size', 'Location', 'Number of Bedrooms', 'Price'
Example Output:
Size,Location,Number of Bedrooms,Price
1200,Suburban,3,250000
900,Urban,2,200000
1500,Rural,4,300000
...
Description:
{description}
Columns:
{columns}
Output: """

tokenizer_mixtral = AutoTokenizer.from_pretrained("mistralai/Mixtral-8x7B-Instruct-v0.1", token=hf_token)

def format_prompt(description, columns):
    processed_description = preprocess_user_prompt(description)
    prompt = prompt_template.format(description=processed_description, columns=",".join(columns))
    return prompt

API_URL = "https://api-inference.huggingface.co/models/mistralai/Mixtral-8x7B-Instruct-v0.1"

generation_params = {
    "top_p": 0.90,
    "temperature": 0.8,
    "max_new_tokens": 512,
    "return_full_text": False,
    "use_cache": False
}

def generate_synthetic_data(description, columns):
    formatted_prompt = format_prompt(description, columns)
    payload = {"inputs": formatted_prompt, "parameters": generation_params}
    try:
        response = requests.post(API_URL, headers={"Authorization": f"Bearer {hf_token}"}, json=payload)
        response.raise_for_status()
        data = response.json()
        if 'generated_text' in data[0]:
            return data[0]['generated_text']
        else:
            raise ValueError("Invalid response format from Hugging Face API.")
    except (requests.RequestException, ValueError) as e:
        logging.error(f"Error during API request or response processing: {e}")
        return "name,age,course,grade\nSampleName,20,Course,0"

def generate_large_synthetic_data(description, columns, num_rows=1000, rows_per_generation=100):
    csv_buffer = StringIO()
    writer = csv.writer(csv_buffer)
    
    # Write header
    writer.writerow(columns)
    
    rows_generated = 0
    while rows_generated < num_rows:
        generated_data = generate_synthetic_data(description, columns)
        cleaned_data = generated_data.replace('\r\n', '\n').replace('\r', '\n')
        data = StringIO(cleaned_data)
        
        # Append rows to CSV buffer
        reader = csv.reader(data)
        header_written = False
        for row in reader:
            if not header_written:
                header_written = True
                continue  # Skip the header of the generated data
            writer.writerow(row)
            rows_generated += 1
            if rows_generated >= num_rows:
                break

    csv_buffer.seek(0)
    return csv_buffer

class DataGenerationRequest(BaseModel):
    description: str
    columns: list[str]

@app.post("/generate/")
def generate_data(request: DataGenerationRequest):
    description = request.description.strip()
    columns = [col.strip() for col in request.columns]
    csv_buffer = generate_large_synthetic_data(description, columns, num_rows=10000)
    
    # Return the CSV data as a downloadable file
    return StreamingResponse(
        csv_buffer,
        media_type="text/csv",
        headers={"Content-Disposition": "attachment; filename=generated_data.csv"}
    )

@app.get("/")
def greet_json():
    return {"Hello": "World!"}