File size: 4,867 Bytes
4d35d05 857e937 170c5f1 bad46c5 dbb92e9 170c5f1 1ab421e bad46c5 c549aa3 eaf6f50 1ab421e 7ce0c46 1ab421e 170c5f1 bad46c5 3476a0f 170c5f1 1743f62 170c5f1 3476a0f bad46c5 7ce0c46 bad46c5 7ce0c46 170c5f1 eb971e4 170c5f1 3476a0f bad46c5 170c5f1 bad46c5 170c5f1 bad46c5 857e937 c549aa3 bad46c5 c549aa3 3476a0f c549aa3 bad46c5 c549aa3 3476a0f c549aa3 01c0141 31d4200 3476a0f 31d4200 c549aa3 65871c9 31d4200 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
from fastapi import FastAPI, HTTPException
from fastapi.responses import StreamingResponse, JSONResponse
from pydantic import BaseModel
import os
import requests
from transformers import GPT2LMHeadModel, GPT2Tokenizer, AutoTokenizer, pipeline
from io import StringIO
from fastapi.middleware.cors import CORSMiddleware
from huggingface_hub import HfFolder
import logging
import random
import csv
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # You can specify domains here
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Access the Hugging Face API token from environment variables
hf_token = os.getenv('HF_API_TOKEN')
if not hf_token:
raise ValueError("Hugging Face API token is not set. Please set the HF_API_TOKEN environment variable.")
# Load GPT-2 model and tokenizer
tokenizer_gpt2 = GPT2Tokenizer.from_pretrained('gpt2')
model_gpt2 = GPT2LMHeadModel.from_pretrained('gpt2')
# Create a pipeline for text generation using GPT-2
text_generator = pipeline("text-generation", model=model_gpt2, tokenizer=tokenizer_gpt2)
def preprocess_user_prompt(user_prompt):
# Generate a structured prompt based on the user input
generated_text = text_generator(user_prompt, max_length=50, num_return_sequences=1)[0]["generated_text"]
return generated_text
# Define prompt template
prompt_template = """\
You are an expert in generating synthetic data for machine learning models.
Your task is to generate a synthetic tabular dataset based on the description provided below.
Description: {description}
The dataset should include the following columns: {columns}
Please provide the data in CSV format.
Example Description:
Generate a dataset for predicting house prices with columns: 'Size', 'Location', 'Number of Bedrooms', 'Price'
Example Output:
Size,Location,Number of Bedrooms,Price
1200,Suburban,3,250000
900,Urban,2,200000
1500,Rural,4,300000
...
Description:
{description}
Columns:
{columns}
Output: """
tokenizer_mixtral = AutoTokenizer.from_pretrained("mistralai/Mixtral-8x7B-Instruct-v0.1", token=hf_token)
def format_prompt(description, columns):
processed_description = preprocess_user_prompt(description)
prompt = prompt_template.format(description=processed_description, columns=",".join(columns))
return prompt
API_URL = "https://api-inference.huggingface.co/models/mistralai/Mixtral-8x7B-Instruct-v0.1"
generation_params = {
"top_p": 0.90,
"temperature": 0.8,
"max_new_tokens": 512,
"return_full_text": False,
"use_cache": False
}
def generate_synthetic_data(description, columns):
formatted_prompt = format_prompt(description, columns)
payload = {"inputs": formatted_prompt, "parameters": generation_params}
try:
response = requests.post(API_URL, headers={"Authorization": f"Bearer {hf_token}"}, json=payload)
response.raise_for_status()
data = response.json()
if 'generated_text' in data[0]:
return data[0]['generated_text']
else:
raise ValueError("Invalid response format from Hugging Face API.")
except (requests.RequestException, ValueError) as e:
logging.error(f"Error during API request or response processing: {e}")
return "name,age,course,grade\nSampleName,20,Course,0"
def generate_large_synthetic_data(description, columns, num_rows=1000, rows_per_generation=100):
csv_buffer = StringIO()
writer = csv.writer(csv_buffer)
# Write header
writer.writerow(columns)
rows_generated = 0
while rows_generated < num_rows:
generated_data = generate_synthetic_data(description, columns)
cleaned_data = generated_data.replace('\r\n', '\n').replace('\r', '\n')
data = StringIO(cleaned_data)
# Append rows to CSV buffer
reader = csv.reader(data)
header_written = False
for row in reader:
if not header_written:
header_written = True
continue # Skip the header of the generated data
writer.writerow(row)
rows_generated += 1
if rows_generated >= num_rows:
break
csv_buffer.seek(0)
return csv_buffer
class DataGenerationRequest(BaseModel):
description: str
columns: list[str]
@app.post("/generate/")
def generate_data(request: DataGenerationRequest):
description = request.description.strip()
columns = [col.strip() for col in request.columns]
csv_buffer = generate_large_synthetic_data(description, columns, num_rows=10000)
# Return the CSV data as a downloadable file
return StreamingResponse(
csv_buffer,
media_type="text/csv",
headers={"Content-Disposition": "attachment; filename=generated_data.csv"}
)
@app.get("/")
def greet_json():
return {"Hello": "World!"}
|