Update app.py
Browse files
app.py
CHANGED
@@ -27,13 +27,17 @@ if not hf_token:
|
|
27 |
raise ValueError("Hugging Face API token is not set. Please set the HF_API_TOKEN environment variable.")
|
28 |
|
29 |
# Load GPT-2 model and tokenizer
|
30 |
-
tokenizer_gpt2 =
|
31 |
model_gpt2 = GPT2LMHeadModel.from_pretrained('gpt2')
|
32 |
|
33 |
-
|
34 |
# Create a pipeline for text generation using GPT-2
|
35 |
text_generator = pipeline("text-generation", model=model_gpt2, tokenizer=tokenizer_gpt2)
|
36 |
|
|
|
|
|
|
|
|
|
|
|
37 |
# Define prompt template
|
38 |
prompt_template = """\
|
39 |
You are an expert in generating synthetic data for machine learning models.
|
@@ -62,12 +66,14 @@ Columns:
|
|
62 |
{columns}
|
63 |
Output: """
|
64 |
|
65 |
-
# Set up the Mixtral model and tokenizer
|
66 |
-
token = os.getenv("HF_TOKEN")
|
67 |
-
HfFolder.save_token(token)
|
68 |
|
69 |
tokenizer_mixtral = AutoTokenizer.from_pretrained("mistralai/Mixtral-8x7B-Instruct-v0.1", token=token)
|
70 |
|
|
|
|
|
|
|
|
|
|
|
71 |
API_URL = "https://api-inference.huggingface.co/models/mistralai/Mixtral-8x7B-Instruct-v0.1"
|
72 |
|
73 |
generation_params = {
|
@@ -78,15 +84,6 @@ generation_params = {
|
|
78 |
"use_cache": False
|
79 |
}
|
80 |
|
81 |
-
def preprocess_user_prompt(user_prompt):
|
82 |
-
generated_text = text_generator(user_prompt, max_length=50, num_return_sequences=1)[0]["generated_text"]
|
83 |
-
return generated_text
|
84 |
-
|
85 |
-
def format_prompt(description, columns):
|
86 |
-
processed_description = preprocess_user_prompt(description)
|
87 |
-
prompt = prompt_template.format(description=processed_description, columns=",".join(columns))
|
88 |
-
return prompt
|
89 |
-
|
90 |
def generate_synthetic_data(description, columns):
|
91 |
formatted_prompt = format_prompt(description, columns)
|
92 |
payload = {"inputs": formatted_prompt, "parameters": generation_params}
|
@@ -95,12 +92,18 @@ def generate_synthetic_data(description, columns):
|
|
95 |
|
96 |
def process_generated_data(csv_data, expected_columns):
|
97 |
try:
|
|
|
98 |
cleaned_data = csv_data.replace('\r\n', '\n').replace('\r', '\n')
|
99 |
data = StringIO(cleaned_data)
|
|
|
|
|
100 |
df = pd.read_csv(data, delimiter=',')
|
|
|
|
|
101 |
if set(df.columns) != set(expected_columns):
|
102 |
print(f"Unexpected columns in the generated data: {df.columns}")
|
103 |
return None
|
|
|
104 |
return df
|
105 |
except pd.errors.ParserError as e:
|
106 |
print(f"Failed to parse CSV data: {e}")
|
@@ -108,19 +111,24 @@ def process_generated_data(csv_data, expected_columns):
|
|
108 |
|
109 |
def generate_large_synthetic_data(description, columns, num_rows=1000, rows_per_generation=100):
|
110 |
data_frames = []
|
|
|
111 |
for _ in tqdm(range(num_rows // rows_per_generation), desc="Generating Data"):
|
112 |
generated_data = generate_synthetic_data(description, columns)
|
113 |
df_synthetic = process_generated_data(generated_data, columns)
|
|
|
114 |
if df_synthetic is not None and not df_synthetic.empty:
|
115 |
data_frames.append(df_synthetic)
|
116 |
else:
|
117 |
print("Skipping invalid generation.")
|
|
|
118 |
if data_frames:
|
119 |
return pd.concat(data_frames, ignore_index=True)
|
120 |
else:
|
121 |
print("No valid data frames to concatenate.")
|
122 |
return pd.DataFrame(columns=columns)
|
123 |
|
|
|
|
|
124 |
@app.route('/generate', methods=['POST'])
|
125 |
def generate():
|
126 |
data = request.json
|
|
|
27 |
raise ValueError("Hugging Face API token is not set. Please set the HF_API_TOKEN environment variable.")
|
28 |
|
29 |
# Load GPT-2 model and tokenizer
|
30 |
+
tokenizer_gpt2 = GPT2Tokenizer.from_pretrained('gpt2')
|
31 |
model_gpt2 = GPT2LMHeadModel.from_pretrained('gpt2')
|
32 |
|
|
|
33 |
# Create a pipeline for text generation using GPT-2
|
34 |
text_generator = pipeline("text-generation", model=model_gpt2, tokenizer=tokenizer_gpt2)
|
35 |
|
36 |
+
def preprocess_user_prompt(user_prompt):
|
37 |
+
# Generate a structured prompt based on the user input
|
38 |
+
generated_text = text_generator(user_prompt, max_length=50, num_return_sequences=1)[0]["generated_text"]
|
39 |
+
return generated_text
|
40 |
+
|
41 |
# Define prompt template
|
42 |
prompt_template = """\
|
43 |
You are an expert in generating synthetic data for machine learning models.
|
|
|
66 |
{columns}
|
67 |
Output: """
|
68 |
|
|
|
|
|
|
|
69 |
|
70 |
tokenizer_mixtral = AutoTokenizer.from_pretrained("mistralai/Mixtral-8x7B-Instruct-v0.1", token=token)
|
71 |
|
72 |
+
def format_prompt(description, columns):
|
73 |
+
processed_description = preprocess_user_prompt(description)
|
74 |
+
prompt = prompt_template.format(description=processed_description, columns=",".join(columns))
|
75 |
+
return prompt
|
76 |
+
|
77 |
API_URL = "https://api-inference.huggingface.co/models/mistralai/Mixtral-8x7B-Instruct-v0.1"
|
78 |
|
79 |
generation_params = {
|
|
|
84 |
"use_cache": False
|
85 |
}
|
86 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
def generate_synthetic_data(description, columns):
|
88 |
formatted_prompt = format_prompt(description, columns)
|
89 |
payload = {"inputs": formatted_prompt, "parameters": generation_params}
|
|
|
92 |
|
93 |
def process_generated_data(csv_data, expected_columns):
|
94 |
try:
|
95 |
+
# Ensure the data is cleaned and correctly formatted
|
96 |
cleaned_data = csv_data.replace('\r\n', '\n').replace('\r', '\n')
|
97 |
data = StringIO(cleaned_data)
|
98 |
+
|
99 |
+
# Read the CSV data
|
100 |
df = pd.read_csv(data, delimiter=',')
|
101 |
+
|
102 |
+
# Check if the DataFrame has the expected columns
|
103 |
if set(df.columns) != set(expected_columns):
|
104 |
print(f"Unexpected columns in the generated data: {df.columns}")
|
105 |
return None
|
106 |
+
|
107 |
return df
|
108 |
except pd.errors.ParserError as e:
|
109 |
print(f"Failed to parse CSV data: {e}")
|
|
|
111 |
|
112 |
def generate_large_synthetic_data(description, columns, num_rows=1000, rows_per_generation=100):
|
113 |
data_frames = []
|
114 |
+
|
115 |
for _ in tqdm(range(num_rows // rows_per_generation), desc="Generating Data"):
|
116 |
generated_data = generate_synthetic_data(description, columns)
|
117 |
df_synthetic = process_generated_data(generated_data, columns)
|
118 |
+
|
119 |
if df_synthetic is not None and not df_synthetic.empty:
|
120 |
data_frames.append(df_synthetic)
|
121 |
else:
|
122 |
print("Skipping invalid generation.")
|
123 |
+
|
124 |
if data_frames:
|
125 |
return pd.concat(data_frames, ignore_index=True)
|
126 |
else:
|
127 |
print("No valid data frames to concatenate.")
|
128 |
return pd.DataFrame(columns=columns)
|
129 |
|
130 |
+
|
131 |
+
|
132 |
@app.route('/generate', methods=['POST'])
|
133 |
def generate():
|
134 |
data = request.json
|