File size: 5,426 Bytes
4d35d05 a93106f 170c5f1 bad46c5 dbb92e9 170c5f1 1ab421e bad46c5 eaf6f50 1ab421e 7ce0c46 1ab421e 170c5f1 bad46c5 170c5f1 bad46c5 170c5f1 bad46c5 7ce0c46 bad46c5 7ce0c46 170c5f1 bad46c5 170c5f1 bad46c5 170c5f1 bad46c5 170c5f1 bad46c5 65871c9 bad46c5 65871c9 bad46c5 170c5f1 20981ee bad46c5 170c5f1 bad46c5 65871c9 bad46c5 65871c9 bad46c5 65871c9 021bce4 20981ee bad46c5 65871c9 bad46c5 65871c9 a93106f bad46c5 65871c9 170c5f1 65871c9 170c5f1 65871c9 a93106f 65871c9 a93106f 170c5f1 13454c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
from fastapi import FastAPI, HTTPException
from fastapi.responses import StreamingResponse, JSONResponse
from pydantic import BaseModel
import pandas as pd
import os
import requests
from transformers import GPT2LMHeadModel, GPT2Tokenizer, AutoTokenizer, pipeline
from io import StringIO
from fastapi.middleware.cors import CORSMiddleware
from huggingface_hub import HfFolder
from tqdm import tqdm
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # You can specify domains here
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Access the Hugging Face API token from environment variables
hf_token = os.getenv('HF_API_TOKEN')
if not hf_token:
raise ValueError("Hugging Face API token is not set. Please set the HF_API_TOKEN environment variable.")
# Load GPT-2 model and tokenizer
tokenizer_gpt2 = GPT2Tokenizer.from_pretrained('gpt2')
model_gpt2 = GPT2LMHeadModel.from_pretrained('gpt2')
# Create a pipeline for text generation using GPT-2
text_generator = pipeline("text-generation", model=model_gpt2, tokenizer=tokenizer_gpt2)
def preprocess_user_prompt(user_prompt):
# Generate a structured prompt based on the user input
generated_text = text_generator(user_prompt, max_length=50, num_return_sequences=1)[0]["generated_text"]
return generated_text
# Define prompt template
prompt_template = """\
You are an expert in generating synthetic data for machine learning models.
Your task is to generate a synthetic tabular dataset based on the description provided below.
Description: {description}
The dataset should include the following columns: {columns}
Please provide the data in CSV format.
Example Description:
Generate a dataset for predicting house prices with columns: 'Size', 'Location', 'Number of Bedrooms', 'Price'
Example Output:
Size,Location,Number of Bedrooms,Price
1200,Suburban,3,250000
900,Urban,2,200000
1500,Rural,4,300000
...
Description:
{description}
Columns:
{columns}
Output: """
class DataGenerationRequest(BaseModel):
description: str
columns: list
# Set up the Mixtral model and tokenizer
token = hf_token # Use environment variable for the token
HfFolder.save_token(token)
tokenizer_mixtral = AutoTokenizer.from_pretrained("mistralai/Mixtral-8x7B-Instruct-v0.1", token=token)
def format_prompt(description, columns):
processed_description = preprocess_user_prompt(description)
prompt = prompt_template.format(description=processed_description, columns=",".join(columns))
return prompt
API_URL = "https://api-inference.huggingface.co/models/mistralai/Mixtral-8x7B-Instruct-v0.1"
generation_params = {
"top_p": 0.90,
"temperature": 0.8,
"max_new_tokens": 512,
"return_full_text": False,
"use_cache": False
}
def generate_synthetic_data(description, columns):
formatted_prompt = format_prompt(description, columns)
payload = {"inputs": formatted_prompt, "parameters": generation_params}
response = requests.post(API_URL, headers={"Authorization": f"Bearer {hf_token}"}, json=payload)
try:
response_data = response.json()
except ValueError:
raise HTTPException(status_code=500, detail="Failed to parse response from the API.")
if 'error' in response_data:
raise HTTPException(status_code=500, detail=f"API Error: {response_data['error']}")
if 'generated_text' not in response_data[0]:
raise HTTPException(status_code=500, detail="Unexpected API response format.")
return response_data[0]["generated_text"]
def process_generated_data(csv_data, expected_columns):
try:
cleaned_data = csv_data.replace('\r\n', '\n').replace('\r', '\n')
data = StringIO(cleaned_data)
df = pd.read_csv(data, delimiter=',')
if set(df.columns) != set(expected_columns):
raise ValueError("Unexpected columns in the generated data.")
return df
except pd.errors.ParserError as e:
raise HTTPException(status_code=500, detail=f"Failed to parse CSV data: {e}")
def generate_large_synthetic_data(description, columns, num_rows=1000, rows_per_generation=100):
csv_data_all = StringIO()
for _ in tqdm(range(num_rows // rows_per_generation), desc="Generating Data"):
generated_data = generate_synthetic_data(description, columns)
df_synthetic = process_generated_data(generated_data, columns)
if isinstance(df_synthetic, pd.DataFrame) and not df_synthetic.empty:
df_synthetic.to_csv(csv_data_all, index=False, header=False)
if csv_data_all.tell() > 0: # Check if there's any data in the buffer
csv_data_all.seek(0) # Rewind the buffer to the beginning
return csv_data_all
else:
raise HTTPException(status_code=500, detail="No valid data frames generated.")
@app.post("/generate/")
def generate_data(request: DataGenerationRequest):
description = request.description.strip()
columns = [col.strip() for col in request.columns]
csv_data = generate_large_synthetic_data(description, columns, num_rows=1000, rows_per_generation=100)
# Return the CSV data as a downloadable file
return StreamingResponse(
csv_data,
media_type="text/csv",
headers={"Content-Disposition": "attachment; filename=generated_data.csv"}
)
@app.get("/")
def greet_json():
return {"Hello": "World!"}
|