Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,10 @@
|
|
1 |
from fastapi import FastAPI
|
2 |
-
from fastapi.responses import JSONResponse
|
3 |
from pydantic import BaseModel
|
4 |
import pandas as pd
|
5 |
import os
|
6 |
import requests
|
7 |
-
from transformers import GPT2LMHeadModel, GPT2Tokenizer, AutoTokenizer
|
8 |
from io import StringIO
|
9 |
from fastapi.middleware.cors import CORSMiddleware
|
10 |
from huggingface_hub import HfFolder
|
@@ -41,25 +41,18 @@ def preprocess_user_prompt(user_prompt):
|
|
41 |
# Define prompt template
|
42 |
prompt_template = """\
|
43 |
You are an expert in generating synthetic data for machine learning models.
|
44 |
-
|
45 |
Your task is to generate a synthetic tabular dataset based on the description provided below.
|
46 |
-
|
47 |
Description: {description}
|
48 |
-
|
49 |
The dataset should include the following columns: {columns}
|
50 |
-
|
51 |
Please provide the data in CSV format.
|
52 |
-
|
53 |
Example Description:
|
54 |
Generate a dataset for predicting house prices with columns: 'Size', 'Location', 'Number of Bedrooms', 'Price'
|
55 |
-
|
56 |
Example Output:
|
57 |
Size,Location,Number of Bedrooms,Price
|
58 |
1200,Suburban,3,250000
|
59 |
900,Urban,2,200000
|
60 |
1500,Rural,4,300000
|
61 |
...
|
62 |
-
|
63 |
Description:
|
64 |
{description}
|
65 |
Columns:
|
@@ -120,7 +113,7 @@ def process_generated_data(csv_data, expected_columns):
|
|
120 |
return f"Failed to parse CSV data: {e}"
|
121 |
|
122 |
def generate_large_synthetic_data(description, columns, num_rows=1000, rows_per_generation=100):
|
123 |
-
|
124 |
|
125 |
for _ in tqdm(range(num_rows // rows_per_generation), desc="Generating Data"):
|
126 |
generated_data = generate_synthetic_data(description, columns)
|
@@ -129,12 +122,12 @@ def generate_large_synthetic_data(description, columns, num_rows=1000, rows_per_
|
|
129 |
|
130 |
df_synthetic = process_generated_data(generated_data, columns)
|
131 |
if isinstance(df_synthetic, pd.DataFrame) and not df_synthetic.empty:
|
132 |
-
|
133 |
else:
|
134 |
print("Skipping invalid generation.")
|
135 |
|
136 |
-
if
|
137 |
-
return
|
138 |
else:
|
139 |
return "No valid data frames to concatenate."
|
140 |
|
@@ -147,12 +140,13 @@ def generate_data(request: DataGenerationRequest):
|
|
147 |
if isinstance(generated_data, str) and "Error" in generated_data:
|
148 |
return JSONResponse(content={"error": generated_data}, status_code=500)
|
149 |
|
150 |
-
#
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
|
|
156 |
|
157 |
@app.get("/")
|
158 |
def greet_json():
|
|
|
1 |
from fastapi import FastAPI
|
2 |
+
from fastapi.responses import StreamingResponse, JSONResponse
|
3 |
from pydantic import BaseModel
|
4 |
import pandas as pd
|
5 |
import os
|
6 |
import requests
|
7 |
+
from transformers import GPT2LMHeadModel, GPT2Tokenizer, AutoTokenizer
|
8 |
from io import StringIO
|
9 |
from fastapi.middleware.cors import CORSMiddleware
|
10 |
from huggingface_hub import HfFolder
|
|
|
41 |
# Define prompt template
|
42 |
prompt_template = """\
|
43 |
You are an expert in generating synthetic data for machine learning models.
|
|
|
44 |
Your task is to generate a synthetic tabular dataset based on the description provided below.
|
|
|
45 |
Description: {description}
|
|
|
46 |
The dataset should include the following columns: {columns}
|
|
|
47 |
Please provide the data in CSV format.
|
|
|
48 |
Example Description:
|
49 |
Generate a dataset for predicting house prices with columns: 'Size', 'Location', 'Number of Bedrooms', 'Price'
|
|
|
50 |
Example Output:
|
51 |
Size,Location,Number of Bedrooms,Price
|
52 |
1200,Suburban,3,250000
|
53 |
900,Urban,2,200000
|
54 |
1500,Rural,4,300000
|
55 |
...
|
|
|
56 |
Description:
|
57 |
{description}
|
58 |
Columns:
|
|
|
113 |
return f"Failed to parse CSV data: {e}"
|
114 |
|
115 |
def generate_large_synthetic_data(description, columns, num_rows=1000, rows_per_generation=100):
|
116 |
+
csv_data_all = ""
|
117 |
|
118 |
for _ in tqdm(range(num_rows // rows_per_generation), desc="Generating Data"):
|
119 |
generated_data = generate_synthetic_data(description, columns)
|
|
|
122 |
|
123 |
df_synthetic = process_generated_data(generated_data, columns)
|
124 |
if isinstance(df_synthetic, pd.DataFrame) and not df_synthetic.empty:
|
125 |
+
csv_data_all += df_synthetic.to_csv(index=False, header=False)
|
126 |
else:
|
127 |
print("Skipping invalid generation.")
|
128 |
|
129 |
+
if csv_data_all:
|
130 |
+
return csv_data_all
|
131 |
else:
|
132 |
return "No valid data frames to concatenate."
|
133 |
|
|
|
140 |
if isinstance(generated_data, str) and "Error" in generated_data:
|
141 |
return JSONResponse(content={"error": generated_data}, status_code=500)
|
142 |
|
143 |
+
# Create a streaming response to return the CSV data
|
144 |
+
csv_buffer = StringIO(generated_data)
|
145 |
+
return StreamingResponse(
|
146 |
+
csv_buffer,
|
147 |
+
media_type="text/csv",
|
148 |
+
headers={"Content-Disposition": "attachment; filename=generated_data.csv"}
|
149 |
+
)
|
150 |
|
151 |
@app.get("/")
|
152 |
def greet_json():
|