File size: 4,974 Bytes
4d35d05
a93106f
170c5f1
 
 
bad46c5
dbb92e9
170c5f1
1ab421e
bad46c5
 
eaf6f50
 
 
1ab421e
 
7ce0c46
1ab421e
 
 
 
170c5f1
 
 
 
 
 
 
bad46c5
01c0141
170c5f1
1743f62
170c5f1
 
 
 
bad46c5
7ce0c46
 
01c0141
7ce0c46
01c0141
7ce0c46
01c0141
7ce0c46
01c0141
bad46c5
01c0141
7ce0c46
 
01c0141
7ce0c46
 
 
 
 
 
01c0141
7ce0c46
 
 
 
 
170c5f1
bad46c5
01c0141
bad46c5
 
 
170c5f1
bad46c5
 
170c5f1
 
 
 
bad46c5
 
170c5f1
 
01c0141
 
 
 
 
 
 
 
 
170c5f1
bad46c5
 
01c0141
 
bad46c5
 
170c5f1
20981ee
 
bad46c5
 
01c0141
 
bad46c5
 
01c0141
 
bad46c5
 
01c0141
20981ee
bad46c5
 
01c0141
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65871c9
01c0141
 
 
 
 
 
bad46c5
01c0141
170c5f1
01c0141
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
from fastapi import FastAPI, HTTPException
from fastapi.responses import StreamingResponse, JSONResponse
from pydantic import BaseModel
import pandas as pd
import os
import requests
from transformers import GPT2LMHeadModel, GPT2Tokenizer, AutoTokenizer, pipeline
from io import StringIO
from fastapi.middleware.cors import CORSMiddleware
from huggingface_hub import HfFolder
from tqdm import tqdm

app = FastAPI()

app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],  # You can specify domains here
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# Access the Hugging Face API token from environment variables
hf_token = os.getenv('HF_API_TOKEN')

if not hf_token:
    raise ValueError("Hugging Face API token is not set. Please set the HF_API_TOKEN environment variable.")

# Load GPT-2 model and tokenizer
tokenizer_gpt2 = GPT2LMHeadModel.from_pretrained('gpt2')
model_gpt2 = GPT2LMHeadModel.from_pretrained('gpt2')


# Create a pipeline for text generation using GPT-2
text_generator = pipeline("text-generation", model=model_gpt2, tokenizer=tokenizer_gpt2)

# Define prompt template
prompt_template = """\
You are an expert in generating synthetic data for machine learning models.

Your task is to generate a synthetic tabular dataset based on the description provided below.

Description: {description}

The dataset should include the following columns: {columns}

Please provide the data in CSV format.

Example Description:
Generate a dataset for predicting house prices with columns: 'Size', 'Location', 'Number of Bedrooms', 'Price'

Example Output:
Size,Location,Number of Bedrooms,Price
1200,Suburban,3,250000
900,Urban,2,200000
1500,Rural,4,300000
...

Description:
{description}
Columns:
{columns}
Output: """

# Set up the Mixtral model and tokenizer
token = os.getenv("HF_TOKEN")
HfFolder.save_token(token)

tokenizer_mixtral = AutoTokenizer.from_pretrained("mistralai/Mixtral-8x7B-Instruct-v0.1", token=token)

API_URL = "https://api-inference.huggingface.co/models/mistralai/Mixtral-8x7B-Instruct-v0.1"

generation_params = {
    "top_p": 0.90,
    "temperature": 0.8,
    "max_new_tokens": 512,
    "return_full_text": False,
    "use_cache": False
}

def preprocess_user_prompt(user_prompt):
    generated_text = text_generator(user_prompt, max_length=50, num_return_sequences=1)[0]["generated_text"]
    return generated_text

def format_prompt(description, columns):
    processed_description = preprocess_user_prompt(description)
    prompt = prompt_template.format(description=processed_description, columns=",".join(columns))
    return prompt

def generate_synthetic_data(description, columns):
    formatted_prompt = format_prompt(description, columns)
    payload = {"inputs": formatted_prompt, "parameters": generation_params}
    response = requests.post(API_URL, headers={"Authorization": f"Bearer {token}"}, json=payload)
    return response.json()[0]["generated_text"]

def process_generated_data(csv_data, expected_columns):
    try:
        cleaned_data = csv_data.replace('\r\n', '\n').replace('\r', '\n')
        data = StringIO(cleaned_data)
        df = pd.read_csv(data, delimiter=',')
        if set(df.columns) != set(expected_columns):
            print(f"Unexpected columns in the generated data: {df.columns}")
            return None
        return df
    except pd.errors.ParserError as e:
        print(f"Failed to parse CSV data: {e}")
        return None

def generate_large_synthetic_data(description, columns, num_rows=1000, rows_per_generation=100):
    data_frames = []
    for _ in tqdm(range(num_rows // rows_per_generation), desc="Generating Data"):
        generated_data = generate_synthetic_data(description, columns)
        df_synthetic = process_generated_data(generated_data, columns)
        if df_synthetic is not None and not df_synthetic.empty:
            data_frames.append(df_synthetic)
        else:
            print("Skipping invalid generation.")
    if data_frames:
        return pd.concat(data_frames, ignore_index=True)
    else:
        print("No valid data frames to concatenate.")
        return pd.DataFrame(columns=columns)

@app.route('/generate', methods=['POST'])
def generate():
    data = request.json
    description = data.get('description')
    columns = data.get('columns')
    num_rows = data.get('num_rows', 1000)
    
    if not description or not columns:
        return jsonify({"error": "Please provide 'description' and 'columns' in the request."}), 400
    
    df_synthetic = generate_large_synthetic_data(description, columns, num_rows=num_rows)
    
    if df_synthetic is not None and not df_synthetic.empty:
        file_path = 'synthetic_data.csv'
        df_synthetic.to_csv(file_path, index=False)
        return send_file(file_path, as_attachment=True)
    else:
        return jsonify({"error": "Failed to generate a valid synthetic dataset."}), 500

if __name__ == "__main__":
    app.run(host='0.0.0.0', port=8000)