Spaces:
Running
Running
File size: 5,358 Bytes
91b6f17 65793c2 91b6f17 f6e79d6 b6c092a 6934761 59d15e6 65793c2 91b6f17 65793c2 91b6f17 65793c2 91b6f17 65793c2 91b6f17 9e25bdd 65793c2 c6ded12 9e25bdd 65793c2 c6ded12 65793c2 c6ded12 9e25bdd 91b6f17 c6ded12 91b6f17 9e25bdd 91b6f17 9e25bdd 91b6f17 cf03ae0 91b6f17 a43a385 cf03ae0 91b6f17 44b5315 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
import gradio as gr
import pandas as pd
import requests
from transformers import GPT2LMHeadModel, GPT2Tokenizer, AutoTokenizer, pipeline, AutoModelForCausalLM
from huggingface_hub import HfFolder
from io import StringIO
import os
import torch
# Access the Hugging Face API token from environment variables
hf_token = os.getenv('HF_API_TOKEN')
if not hf_token:
raise ValueError("Hugging Face API token is not set. Please set the HF_API_TOKEN environment variable.")
HfFolder.save_token(hf_token)
# Set environment variable to avoid floating-point errors
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'
# Load the tokenizer and model
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
model_gpt2 = GPT2LMHeadModel.from_pretrained('gpt2')
# Create a pipeline for text generation using GPT-2
text_generator = pipeline("text-generation", model=model_gpt2, tokenizer=tokenizer)
# Lazy loading function for Llama-3 model
model_llama = None
tokenizer_llama = None
def load_llama_model():
global model_llama, tokenizer_llama
if model_llama is None:
model_name = "meta-llama/Meta-Llama-3.1-8B"
model_llama = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16, # Use FP16 for reduced memory
use_auth_token=hf_token
)
tokenizer_llama = AutoTokenizer.from_pretrained(model_name, token=hf_token)
# Define your prompt template
prompt_template = """\
You are an expert in generating synthetic data for machine learning models.
Your task is to generate a synthetic tabular dataset based on the description provided below.
Description: {description}
The dataset should include the following columns: {columns}
Please provide the data in CSV format with a minimum of 100 rows per generation.
Ensure that the data is realistic, does not contain any duplicate rows, and follows any specific conditions mentioned.
Example Description:
Generate a dataset for predicting house prices with columns: 'Size', 'Location', 'Number of Bedrooms', 'Price'
Example Output:
Size,Location,Number of Bedrooms,Price
1200,Suburban,3,250000
900,Urban,2,200000
1500,Rural,4,300000
...
Description:
{description}
Columns:
{columns}
Output: """
def preprocess_user_prompt(user_prompt):
generated_text = text_generator(user_prompt, max_length=60, num_return_sequences=1)[0]["generated_text"]
return generated_text
def format_prompt(description, columns):
processed_description = preprocess_user_prompt(description)
prompt = prompt_template.format(description=processed_description, columns=",".join(columns))
return prompt
generation_params = {
"top_p": 0.90,
"temperature": 0.8,
"max_new_tokens": 512,
"return_full_text": False,
"use_cache": False
}
def generate_synthetic_data(description, columns):
try:
# Load the Llama model only when generating data
load_llama_model()
# Prepare the input for the Llama model
formatted_prompt = format_prompt(description, columns)
# Tokenize the prompt
inputs = tokenizer_llama(formatted_prompt, return_tensors="pt").to(model_llama.device)
# Generate synthetic data
with torch.no_grad():
outputs = model_llama.generate(
**inputs,
max_length=512,
top_p=generation_params["top_p"],
temperature=generation_params["temperature"],
num_return_sequences=1
)
# Decode the generated output
generated_text = tokenizer_llama.decode(outputs[0], skip_special_tokens=True)
# Return the generated synthetic data
return generated_text
except Exception as e:
print(f"Error in generate_synthetic_data: {e}")
return f"Error: {e}"
def generate_large_synthetic_data(description, columns, num_rows=1000, rows_per_generation=100):
data_frames = []
num_iterations = num_rows // rows_per_generation
for _ in range(num_iterations):
generated_data = generate_synthetic_data(description, columns)
if "Error" in generated_data:
return generated_data
df_synthetic = process_generated_data(generated_data)
data_frames.append(df_synthetic)
return pd.concat(data_frames, ignore_index=True)
def process_generated_data(csv_data):
data = StringIO(csv_data)
df = pd.read_csv(data)
return df
def main(description, columns):
description = description.strip()
columns = [col.strip() for col in columns.split(',')]
df_synthetic = generate_large_synthetic_data(description, columns)
if isinstance(df_synthetic, str) and "Error" in df_synthetic:
return df_synthetic # Return the error message if any
return df_synthetic.to_csv(index=False)
iface = gr.Interface(
fn=main,
inputs=[
gr.Textbox(label="Description", placeholder="e.g., Generate a dataset for predicting students' grades"),
gr.Textbox(label="Columns (comma-separated)", placeholder="e.g., name, age, course, grade")
],
outputs="text",
title="Synthetic Data Generator",
description="Generate synthetic tabular datasets based on a description and specified columns."
)
iface.api_name = "generate"
# Run the Gradio app
iface.launch(server_name="0.0.0.0", server_port=7860)
|