Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,11 @@
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
3 |
-
|
|
|
|
|
4 |
from io import StringIO
|
5 |
import os
|
6 |
import torch
|
7 |
-
from huggingface_hub import HfFolder
|
8 |
|
9 |
# Access the Hugging Face API token from environment variables
|
10 |
hf_token = os.getenv('HF_API_TOKEN')
|
@@ -12,17 +13,31 @@ hf_token = os.getenv('HF_API_TOKEN')
|
|
12 |
if not hf_token:
|
13 |
raise ValueError("Hugging Face API token is not set. Please set the HF_API_TOKEN environment variable.")
|
14 |
HfFolder.save_token(hf_token)
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
|
|
17 |
model_gpt2 = GPT2LMHeadModel.from_pretrained('gpt2')
|
18 |
|
19 |
-
#
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
# Define your prompt template
|
28 |
prompt_template = """\
|
@@ -47,21 +62,42 @@ Columns:
|
|
47 |
Output: """
|
48 |
|
49 |
def preprocess_user_prompt(user_prompt):
|
50 |
-
generated_text =
|
51 |
-
return
|
52 |
|
53 |
def format_prompt(description, columns):
|
54 |
processed_description = preprocess_user_prompt(description)
|
55 |
prompt = prompt_template.format(description=processed_description, columns=",".join(columns))
|
56 |
return prompt
|
57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
def generate_synthetic_data(description, columns):
|
59 |
try:
|
|
|
|
|
|
|
60 |
formatted_prompt = format_prompt(description, columns)
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
except Exception as e:
|
66 |
print(f"Error in generate_synthetic_data: {e}")
|
67 |
return f"Error: {e}"
|
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
3 |
+
import requests
|
4 |
+
from transformers import GPT2LMHeadModel, GPT2Tokenizer, AutoTokenizer, pipeline, AutoModelForCausalLM
|
5 |
+
from huggingface_hub import HfFolder
|
6 |
from io import StringIO
|
7 |
import os
|
8 |
import torch
|
|
|
9 |
|
10 |
# Access the Hugging Face API token from environment variables
|
11 |
hf_token = os.getenv('HF_API_TOKEN')
|
|
|
13 |
if not hf_token:
|
14 |
raise ValueError("Hugging Face API token is not set. Please set the HF_API_TOKEN environment variable.")
|
15 |
HfFolder.save_token(hf_token)
|
16 |
+
|
17 |
+
# Set environment variable to avoid floating-point errors
|
18 |
+
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'
|
19 |
+
|
20 |
+
# Load the tokenizer and model
|
21 |
+
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
|
22 |
model_gpt2 = GPT2LMHeadModel.from_pretrained('gpt2')
|
23 |
|
24 |
+
# Create a pipeline for text generation using GPT-2
|
25 |
+
text_generator = pipeline("text-generation", model=model_gpt2, tokenizer=tokenizer)
|
26 |
+
|
27 |
+
# Lazy loading function for Llama-3 model
|
28 |
+
model_llama = None
|
29 |
+
tokenizer_llama = None
|
30 |
+
|
31 |
+
def load_llama_model():
|
32 |
+
global model_llama, tokenizer_llama
|
33 |
+
if model_llama is None:
|
34 |
+
model_name = "meta-llama/Meta-Llama-3.1-8B"
|
35 |
+
model_llama = AutoModelForCausalLM.from_pretrained(
|
36 |
+
model_name,
|
37 |
+
torch_dtype=torch.float16, # Use FP16 for reduced memory
|
38 |
+
use_auth_token=hf_token
|
39 |
+
)
|
40 |
+
tokenizer_llama = AutoTokenizer.from_pretrained(model_name, token=hf_token)
|
41 |
|
42 |
# Define your prompt template
|
43 |
prompt_template = """\
|
|
|
62 |
Output: """
|
63 |
|
64 |
def preprocess_user_prompt(user_prompt):
|
65 |
+
generated_text = text_generator(user_prompt, max_length=60, num_return_sequences=1)[0]["generated_text"]
|
66 |
+
return generated_text
|
67 |
|
68 |
def format_prompt(description, columns):
|
69 |
processed_description = preprocess_user_prompt(description)
|
70 |
prompt = prompt_template.format(description=processed_description, columns=",".join(columns))
|
71 |
return prompt
|
72 |
|
73 |
+
generation_params = {
|
74 |
+
"top_p": 0.90,
|
75 |
+
"temperature": 0.8,
|
76 |
+
"max_new_tokens": 512,
|
77 |
+
"return_full_text": False,
|
78 |
+
"use_cache": False
|
79 |
+
}
|
80 |
+
|
81 |
def generate_synthetic_data(description, columns):
|
82 |
try:
|
83 |
+
# Load the Llama model only when generating data
|
84 |
+
load_llama_model()
|
85 |
+
|
86 |
formatted_prompt = format_prompt(description, columns)
|
87 |
+
payload = {"inputs": formatted_prompt, "parameters": generation_params}
|
88 |
+
headers = {"Authorization": f"Bearer {hf_token}"}
|
89 |
+
|
90 |
+
response = requests.post(API_URL, headers=headers, json=payload)
|
91 |
+
|
92 |
+
if response.status_code == 200:
|
93 |
+
response_json = response.json()
|
94 |
+
if isinstance(response_json, list) and len(response_json) > 0 and "generated_text" in response_json[0]:
|
95 |
+
return response_json[0]["generated_text"]
|
96 |
+
else:
|
97 |
+
raise ValueError("Unexpected response format or missing 'generated_text' key")
|
98 |
+
else:
|
99 |
+
print(f"Error details: {response.text}")
|
100 |
+
raise ValueError(f"API request failed with status code {response.status_code}: {response.text}")
|
101 |
except Exception as e:
|
102 |
print(f"Error in generate_synthetic_data: {e}")
|
103 |
return f"Error: {e}"
|