ReLaX-VQA / model_regression.py
xinyiW915's picture
Upload 5 files
17f753b verified
raw
history blame contribute delete
34.1 kB
import logging
import time
import os
import pandas as pd
import numpy as np
import math
import scipy.io
import scipy.stats
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import StandardScaler, MinMaxScaler
from sklearn.metrics import mean_squared_error
from scipy.optimize import curve_fit
import joblib
import seaborn as sns
import matplotlib.pyplot as plt
import copy
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.optim.lr_scheduler import CosineAnnealingLR
from torch.optim.swa_utils import AveragedModel, SWALR
from torch.utils.data import DataLoader, TensorDataset
from sklearn.model_selection import KFold
from sklearn.model_selection import train_test_split
from data_processing import split_train_test
# ignore all warnings
import warnings
warnings.filterwarnings("ignore", category=DeprecationWarning)
class Mlp(nn.Module):
def __init__(self, input_features, hidden_features=256, out_features=1, drop_rate=0.2, act_layer=nn.GELU):
super().__init__()
self.fc1 = nn.Linear(input_features, hidden_features)
self.bn1 = nn.BatchNorm1d(hidden_features)
self.act1 = act_layer()
self.drop1 = nn.Dropout(drop_rate)
self.fc2 = nn.Linear(hidden_features, hidden_features // 2)
self.act2 = act_layer()
self.drop2 = nn.Dropout(drop_rate)
self.fc3 = nn.Linear(hidden_features // 2, out_features)
def forward(self, input_feature):
x = self.fc1(input_feature)
x = self.bn1(x)
x = self.act1(x)
x = self.drop1(x)
x = self.fc2(x)
x = self.act2(x)
x = self.drop2(x)
output = self.fc3(x)
return output
class MAEAndRankLoss(nn.Module):
def __init__(self, l1_w=1.0, rank_w=1.0, margin=0.0, use_margin=False):
super(MAEAndRankLoss, self).__init__()
self.l1_w = l1_w
self.rank_w = rank_w
self.margin = margin
self.use_margin = use_margin
def forward(self, y_pred, y_true):
# L1 loss/MAE loss
l_mae = F.l1_loss(y_pred, y_true, reduction='mean') * self.l1_w
# Rank loss
n = y_pred.size(0)
pred_diff = y_pred.unsqueeze(1) - y_pred.unsqueeze(0)
true_diff = y_true.unsqueeze(1) - y_true.unsqueeze(0)
# e(ytrue_i, ytrue_j)
masks = torch.sign(true_diff)
if self.use_margin and self.margin > 0:
true_diff = true_diff.abs() - self.margin
true_diff = F.relu(true_diff)
masks = true_diff.sign()
l_rank = F.relu(true_diff - masks * pred_diff)
l_rank = l_rank.sum() / (n * (n - 1))
loss = l_mae + l_rank * self.rank_w
return loss
def load_data(csv_file, mat_file, features, data_name, set_name):
try:
df = pd.read_csv(csv_file, skiprows=[], header=None)
except Exception as e:
logging.error(f'Read CSV file error: {e}')
raise
try:
if data_name == 'lsvq_train':
X_mat = features
else:
X_mat = scipy.io.loadmat(mat_file)
except Exception as e:
logging.error(f'Read MAT file error: {e}')
raise
y_data = df.values[1:, 2]
y = np.array(list(y_data), dtype=float)
if data_name == 'cross_dataset': # or data_name == 'lsvq_train':
y[y > 5] = 5
if set_name == 'test':
print(f"Modified y_true: {y}")
if data_name == 'lsvq_train':
X = np.asarray(X_mat, dtype=float)
else:
data_name = f'{data_name}_{set_name}_features'
X = np.asarray(X_mat[data_name], dtype=float)
return X, y
def preprocess_data(X, y):
X[np.isnan(X)] = 0
X[np.isinf(X)] = 0
imp = SimpleImputer(missing_values=np.nan, strategy='mean').fit(X)
X = imp.transform(X)
# scaler = StandardScaler()
scaler = MinMaxScaler().fit(X)
X = scaler.transform(X)
logging.info(f'Scaler: {scaler}')
y = y.reshape(-1, 1).squeeze()
return X, y, imp, scaler
# define 4-parameter logistic regression
def logistic_func(X, bayta1, bayta2, bayta3, bayta4):
logisticPart = 1 + np.exp(np.negative(np.divide(X - bayta3, np.abs(bayta4))))
yhat = bayta2 + np.divide(bayta1 - bayta2, logisticPart)
return yhat
def fit_logistic_regression(y_pred, y_true):
beta = [np.max(y_true), np.min(y_true), np.mean(y_pred), 0.5]
popt, _ = curve_fit(logistic_func, y_pred, y_true, p0=beta, maxfev=100000000)
y_pred_logistic = logistic_func(y_pred, *popt)
return y_pred_logistic, beta, popt
def compute_correlation_metrics(y_true, y_pred):
y_pred_logistic, beta, popt = fit_logistic_regression(y_pred, y_true)
plcc = scipy.stats.pearsonr(y_true, y_pred_logistic)[0]
rmse = np.sqrt(mean_squared_error(y_true, y_pred_logistic))
srcc = scipy.stats.spearmanr(y_true, y_pred)[0]
try:
krcc = scipy.stats.kendalltau(y_true, y_pred)[0]
except Exception as e:
logging.error(f'krcc calculation: {e}')
krcc = scipy.stats.kendalltau(y_true, y_pred, method='asymptotic')[0]
return y_pred_logistic, plcc, rmse, srcc, krcc
def plot_results(y_test, y_test_pred_logistic, df_pred_score, model_name, data_name, network_name, select_criteria):
# nonlinear logistic fitted curve / logistic regression
mos1 = y_test
y1 = y_test_pred_logistic
try:
beta = [np.max(mos1), np.min(mos1), np.mean(y1), 0.5]
popt, pcov = curve_fit(logistic_func, y1, mos1, p0=beta, maxfev=100000000)
sigma = np.sqrt(np.diag(pcov))
except:
raise Exception('Fitting logistic function time-out!!')
x_values1 = np.linspace(np.min(y1), np.max(y1), len(y1))
plt.plot(x_values1, logistic_func(x_values1, *popt), '-', color='#c72e29', label='Fitted f(x)')
fig1 = sns.scatterplot(x="y_test_pred_logistic", y="MOS", data=df_pred_score, markers='o', color='steelblue', label=network_name)
plt.legend(loc='upper left')
if data_name == 'live_vqc' or data_name == 'live_qualcomm' or data_name == 'cvd_2014' or data_name == 'lsvq_train':
plt.ylim(0, 100)
plt.xlim(0, 100)
else:
plt.ylim(1, 5)
plt.xlim(1, 5)
plt.title(f"Algorithm {network_name} with {model_name} on dataset {data_name}", fontsize=10)
plt.xlabel('Predicted Score')
plt.ylabel('MOS')
reg_fig1 = fig1.get_figure()
fig_path = f'../figs/{data_name}/'
os.makedirs(fig_path, exist_ok=True)
reg_fig1.savefig(fig_path + f"{network_name}_{model_name}_{data_name}_by{select_criteria}_kfold.png", dpi=300)
plt.clf()
plt.close()
def plot_and_save_losses(avg_train_losses, avg_val_losses, model_name, data_name, network_name, test_vids, i):
plt.figure(figsize=(10, 6))
plt.plot(avg_train_losses, label='Average Training Loss')
plt.plot(avg_val_losses, label='Average Validation Loss')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.title(f'Average Training and Validation Loss Across Folds - {network_name} with {model_name} (test_vids: {test_vids})', fontsize=10)
plt.legend()
fig_par_path = f'../log/result/{data_name}/'
os.makedirs(fig_par_path, exist_ok=True)
plt.savefig(f'{fig_par_path}/{network_name}_Average_Training_Loss_test{i}.png', dpi=50)
plt.clf()
plt.close()
def configure_logging(log_path, model_name, data_name, network_name, select_criteria):
log_file_name = os.path.join(log_path, f"{data_name}_{network_name}_{model_name}_corr_{select_criteria}_kfold.log")
logging.basicConfig(filename=log_file_name, filemode='w', level=logging.DEBUG, format='%(levelname)s - %(message)s')
logging.getLogger('matplotlib').setLevel(logging.WARNING)
logging.info(f"Evaluating algorithm {network_name} with {model_name} on dataset {data_name}")
logging.info(f"torch cuda: {torch.cuda.is_available()}")
def load_and_preprocess_data(metadata_path, feature_path, data_name, network_name, train_features, test_features):
if data_name == 'cross_dataset':
data_name1 = 'youtube_ugc_all'
data_name2 = 'cvd_2014_all'
csv_train_file = os.path.join(metadata_path, f'mos_files/{data_name1}_MOS_train.csv')
csv_test_file = os.path.join(metadata_path, f'mos_files/{data_name2}_MOS_test.csv')
mat_train_file = os.path.join(f'{feature_path}split_train_test/', f'{data_name1}_{network_name}_train_features.mat')
mat_test_file = os.path.join(f'{feature_path}split_train_test/', f'{data_name2}_{network_name}_test_features.mat')
X_train, y_train = load_data(csv_train_file, mat_train_file, None, data_name1, 'train')
X_test, y_test = load_data(csv_test_file, mat_test_file, None, data_name2, 'test')
elif data_name == 'lsvq_train':
csv_train_file = os.path.join(metadata_path, f'mos_files/{data_name}_MOS_train.csv')
csv_test_file = os.path.join(metadata_path, f'mos_files/{data_name}_MOS_test.csv')
X_train, y_train = load_data(csv_train_file, None, train_features, data_name, 'train')
X_test, y_test = load_data(csv_test_file, None, test_features, data_name, 'test')
else:
csv_train_file = os.path.join(metadata_path, f'mos_files/{data_name}_MOS_train.csv')
csv_test_file = os.path.join(metadata_path, f'mos_files/{data_name}_MOS_test.csv')
mat_train_file = os.path.join(f'{feature_path}split_train_test/', f'{data_name}_{network_name}_train_features.mat')
mat_test_file = os.path.join(f'{feature_path}split_train_test/', f'{data_name}_{network_name}_test_features.mat')
X_train, y_train = load_data(csv_train_file, mat_train_file, None, data_name, 'train')
X_test, y_test = load_data(csv_test_file, mat_test_file, None, data_name, 'test')
# standard min-max normalization of traning features
X_train, y_train, _, _ = preprocess_data(X_train, y_train)
X_test, y_test, _, _ = preprocess_data(X_test, y_test)
return X_train, y_train, X_test, y_test
def train_one_epoch(model, train_loader, criterion, optimizer, device):
"""Train the model for one epoch"""
model.train()
train_loss = 0.0
for inputs, targets in train_loader:
inputs, targets = inputs.to(device), targets.to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, targets.view(-1, 1))
loss.backward()
optimizer.step()
train_loss += loss.item() * inputs.size(0)
train_loss /= len(train_loader.dataset)
return train_loss
def evaluate(model, val_loader, criterion, device):
"""Evaluate model performance on validation sets"""
model.eval()
val_loss = 0.0
y_val_pred = []
with torch.no_grad():
for inputs, targets in val_loader:
inputs, targets = inputs.to(device), targets.to(device)
outputs = model(inputs)
y_val_pred.extend(outputs.view(-1).tolist())
loss = criterion(outputs, targets.view(-1, 1))
val_loss += loss.item() * inputs.size(0)
val_loss /= len(val_loader.dataset)
return val_loss, np.array(y_val_pred)
def update_best_model(select_criteria, best_metric, current_val, model):
is_better = False
if select_criteria == 'byrmse' and current_val < best_metric:
is_better = True
elif select_criteria == 'bykrcc' and current_val > best_metric:
is_better = True
if is_better:
return current_val, copy.deepcopy(model), is_better
return best_metric, model, is_better
def train_and_evaluate(X_train, y_train, config):
# parameters
n_repeats = config['n_repeats']
n_splits = config['n_splits']
batch_size = config['batch_size']
epochs = config['epochs']
hidden_features = config['hidden_features']
drop_rate = config['drop_rate']
loss_type = config['loss_type']
optimizer_type = config['optimizer_type']
select_criteria = config['select_criteria']
initial_lr = config['initial_lr']
weight_decay = config['weight_decay']
patience = config['patience']
l1_w = config['l1_w']
rank_w = config['rank_w']
use_swa = config.get('use_swa', False)
logging.info(f'Parameters - Number of repeats for 80-20 hold out test: {n_repeats}, Number of splits for kfold: {n_splits}, Batch size: {batch_size}, Number of epochs: {epochs}')
logging.info(f'Network Parameters - hidden_features: {hidden_features}, drop_rate: {drop_rate}, patience: {patience}')
logging.info(f'Optimizer Parameters - loss_type: {loss_type}, optimizer_type: {optimizer_type}, initial_lr: {initial_lr}, weight_decay: {weight_decay}, use_swa: {use_swa}')
logging.info(f'MAEAndRankLoss - l1_w: {l1_w}, rank_w: {rank_w}')
kf = KFold(n_splits=n_splits, shuffle=True, random_state=42)
best_model = None
best_metric = float('inf') if select_criteria == 'byrmse' else float('-inf')
# loss for every fold
all_train_losses = []
all_val_losses = []
for fold, (train_idx, val_idx) in enumerate(kf.split(X_train)):
print(f"Fold {fold + 1}/{n_splits}")
X_train_fold, X_val_fold = X_train[train_idx], X_train[val_idx]
y_train_fold, y_val_fold = y_train[train_idx], y_train[val_idx]
# initialisation of model, loss function, optimiser
model = Mlp(input_features=X_train_fold.shape[1], hidden_features=hidden_features, drop_rate=drop_rate)
model = model.to(device) # to gpu
if loss_type == 'MAERankLoss':
criterion = MAEAndRankLoss()
criterion.l1_w = l1_w
criterion.rank_w = rank_w
else:
nn.MSELoss()
if optimizer_type == 'sgd':
optimizer = optim.SGD(model.parameters(), lr=initial_lr, momentum=0.9, weight_decay=weight_decay)
scheduler = CosineAnnealingLR(optimizer, T_max=epochs, eta_min=1e-5)# initial eta_nim=1e-5
else:
optimizer = optim.Adam(model.parameters(), lr=initial_lr, weight_decay=weight_decay) # L2 Regularisation initial: 0.01, 1e-5
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=2, gamma=0.95) # step_size=10, gamma=0.1: every 10 epochs lr*0.1
if use_swa:
swa_model = AveragedModel(model).to(device)
swa_scheduler = SWALR(optimizer, swa_lr=initial_lr, anneal_strategy='cos')
# dataset loader
train_dataset = TensorDataset(torch.FloatTensor(X_train_fold), torch.FloatTensor(y_train_fold))
val_dataset = TensorDataset(torch.FloatTensor(X_val_fold), torch.FloatTensor(y_val_fold))
train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
val_loader = DataLoader(dataset=val_dataset, batch_size=batch_size, shuffle=False)
train_losses, val_losses = [], []
# early stopping parameters
best_val_loss = float('inf')
epochs_no_improve = 0
early_stop_active = False
swa_start = int(epochs * 0.7) if use_swa else epochs # SWA starts after 70% of total epochs, only set SWA start if SWA is used
for epoch in range(epochs):
train_loss = train_one_epoch(model, train_loader, criterion, optimizer, device)
train_losses.append(train_loss)
scheduler.step() # update learning rate
if use_swa and epoch >= swa_start:
swa_model.update_parameters(model)
swa_scheduler.step()
early_stop_active = True
print(f"Current learning rate with SWA: {swa_scheduler.get_last_lr()}")
lr = optimizer.param_groups[0]['lr']
print('Epoch %d: Learning rate: %f' % (epoch + 1, lr))
# decide which model to evaluate: SWA model or regular model
current_model = swa_model if use_swa and epoch >= swa_start else model
current_model.eval()
val_loss, y_val_pred = evaluate(current_model, val_loader, criterion, device)
val_losses.append(val_loss)
print(f"Epoch {epoch + 1}, Fold {fold + 1}, Training Loss: {train_loss}, Validation Loss: {val_loss}")
y_val_pred = np.array(list(y_val_pred), dtype=float)
_, _, rmse_val, _, krcc_val = compute_correlation_metrics(y_val_fold, y_val_pred)
current_metric = rmse_val if select_criteria == 'byrmse' else krcc_val
best_metric, best_model, is_better = update_best_model(select_criteria, best_metric, current_metric, current_model)
if is_better:
logging.info(f"Epoch {epoch + 1}, Fold {fold + 1}:")
y_val_pred_logistic_tmp, plcc_valid_tmp, rmse_valid_tmp, srcc_valid_tmp, krcc_valid_tmp = compute_correlation_metrics(y_val_fold, y_val_pred)
logging.info(f'Validation set - Evaluation Results - SRCC: {srcc_valid_tmp}, KRCC: {krcc_valid_tmp}, PLCC: {plcc_valid_tmp}, RMSE: {rmse_valid_tmp}')
X_train_fold_tensor = torch.FloatTensor(X_train_fold).to(device)
y_tra_pred_tmp = best_model(X_train_fold_tensor).detach().cpu().numpy().squeeze()
y_tra_pred_tmp = np.array(list(y_tra_pred_tmp), dtype=float)
y_tra_pred_logistic_tmp, plcc_train_tmp, rmse_train_tmp, srcc_train_tmp, krcc_train_tmp = compute_correlation_metrics(y_train_fold, y_tra_pred_tmp)
logging.info(f'Train set - Evaluation Results - SRCC: {srcc_train_tmp}, KRCC: {krcc_train_tmp}, PLCC: {plcc_train_tmp}, RMSE: {rmse_train_tmp}')
# check for loss improvement
if early_stop_active:
if val_loss < best_val_loss:
best_val_loss = val_loss
# save the best model if validation loss improves
best_model = copy.deepcopy(model)
epochs_no_improve = 0
else:
epochs_no_improve += 1
if epochs_no_improve >= patience:
# epochs to wait for improvement before stopping
print(f"Early stopping triggered after {epoch + 1} epochs.")
break
# saving SWA models and updating BN statistics
if use_swa:
train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True, collate_fn=lambda x: collate_to_device(x, device))
best_model = best_model.to(device)
best_model.eval()
torch.optim.swa_utils.update_bn(train_loader, best_model)
# swa_model_path = os.path.join('save_swa_path='../model/', f'model_swa_fold{fold}.pth')
# torch.save(swa_model.state_dict(), swa_model_path)
# logging.info(f'SWA model saved at {swa_model_path}')
all_train_losses.append(train_losses)
all_val_losses.append(val_losses)
max_length = max(len(x) for x in all_train_losses)
all_train_losses = [x + [x[-1]] * (max_length - len(x)) for x in all_train_losses]
max_length = max(len(x) for x in all_val_losses)
all_val_losses = [x + [x[-1]] * (max_length - len(x)) for x in all_val_losses]
return best_model, all_train_losses, all_val_losses
def collate_to_device(batch, device):
data, targets = zip(*batch)
return torch.stack(data).to(device), torch.stack(targets).to(device)
def model_test(best_model, X, y, device):
test_dataset = TensorDataset(torch.FloatTensor(X), torch.FloatTensor(y))
test_loader = DataLoader(dataset=test_dataset, batch_size=1, shuffle=False)
best_model.eval()
y_pred = []
with torch.no_grad():
for inputs, _ in test_loader:
inputs = inputs.to(device)
outputs = best_model(inputs)
y_pred.extend(outputs.view(-1).tolist())
return y_pred
def main(config):
model_name = config['model_name']
data_name = config['data_name']
network_name = config['network_name']
metadata_path = config['metadata_path']
feature_path = config['feature_path']
log_path = config['log_path']
save_path = config['save_path']
score_path = config['score_path']
result_path = config['result_path']
# parameters
select_criteria = config['select_criteria']
n_repeats = config['n_repeats']
# logging and result
os.makedirs(log_path, exist_ok=True)
os.makedirs(save_path, exist_ok=True)
os.makedirs(score_path, exist_ok=True)
os.makedirs(result_path, exist_ok=True)
result_file = f'{result_path}{data_name}_{network_name}_{select_criteria}.mat'
pred_score_filename = os.path.join(score_path, f"{data_name}_{network_name}_{select_criteria}.csv")
file_path = os.path.join(save_path, f"{data_name}_{network_name}_{select_criteria}_trained_median_model_param.pth")
configure_logging(log_path, model_name, data_name, network_name, select_criteria)
'''======================== Main Body ==========================='''
PLCC_all_repeats_test = []
SRCC_all_repeats_test = []
KRCC_all_repeats_test = []
RMSE_all_repeats_test = []
PLCC_all_repeats_train = []
SRCC_all_repeats_train = []
KRCC_all_repeats_train = []
RMSE_all_repeats_train = []
all_repeats_test_vids = []
all_repeats_df_test_pred = []
best_model_list = []
for i in range(1, n_repeats + 1):
print(f"{i}th repeated 80-20 hold out test")
logging.info(f"{i}th repeated 80-20 hold out test")
t0 = time.time()
# train test split
test_size = 0.2
random_state = math.ceil(8.8 * i)
# NR: original
if data_name == 'lsvq_train':
test_data_name = 'lsvq_test' #lsvq_test, lsvq_test_1080p
train_features, test_features, test_vids = split_train_test.process_lsvq(data_name, test_data_name, metadata_path, feature_path, network_name)
elif data_name == 'cross_dataset':
train_data_name = 'youtube_ugc_all'
test_data_name = 'cvd_2014_all'
_, _, test_vids = split_train_test.process_cross_dataset(train_data_name, test_data_name, metadata_path, feature_path, network_name)
else:
_, _, test_vids = split_train_test.process_other(data_name, test_size, random_state, metadata_path, feature_path, network_name)
'''======================== read files =============================== '''
if data_name == 'lsvq_train':
X_train, y_train, X_test, y_test = load_and_preprocess_data(metadata_path, feature_path, data_name, network_name, train_features, test_features)
else:
X_train, y_train, X_test, y_test = load_and_preprocess_data(metadata_path, feature_path, data_name, network_name, None, None)
'''======================== regression model =============================== '''
best_model, all_train_losses, all_val_losses = train_and_evaluate(X_train, y_train, config)
# average loss plots
avg_train_losses = np.mean(all_train_losses, axis=0)
avg_val_losses = np.mean(all_val_losses, axis=0)
test_vids = test_vids.tolist()
plot_and_save_losses(avg_train_losses, avg_val_losses, model_name, data_name, network_name, len(test_vids), i)
# predict best model on the train dataset
y_train_pred = model_test(best_model, X_train, y_train, device)
y_train_pred = np.array(list(y_train_pred), dtype=float)
y_train_pred_logistic, plcc_train, rmse_train, srcc_train, krcc_train = compute_correlation_metrics(y_train, y_train_pred)
# test best model on the test dataset
y_test_pred = model_test(best_model, X_test, y_test, device)
y_test_pred = np.array(list(y_test_pred), dtype=float)
y_test_pred_logistic, plcc_test, rmse_test, srcc_test, krcc_test = compute_correlation_metrics(y_test, y_test_pred)
# save the predict score results
test_pred_score = {'MOS': y_test, 'y_test_pred': y_test_pred, 'y_test_pred_logistic': y_test_pred_logistic}
df_test_pred = pd.DataFrame(test_pred_score)
# logging logistic predicted scores
logging.info("============================================================================================================")
SRCC_all_repeats_test.append(srcc_test)
KRCC_all_repeats_test.append(krcc_test)
PLCC_all_repeats_test.append(plcc_test)
RMSE_all_repeats_test.append(rmse_test)
SRCC_all_repeats_train.append(srcc_train)
KRCC_all_repeats_train.append(krcc_train)
PLCC_all_repeats_train.append(plcc_train)
RMSE_all_repeats_train.append(rmse_train)
all_repeats_test_vids.append(test_vids)
all_repeats_df_test_pred.append(df_test_pred)
best_model_list.append(copy.deepcopy(best_model))
# logging.info results for each iteration
logging.info('Best results in Mlp model within one split')
logging.info(f'MODEL: {best_model}')
logging.info('======================================================')
logging.info(f'Train set - Evaluation Results')
logging.info(f'SRCC_train: {srcc_train}')
logging.info(f'KRCC_train: {krcc_train}')
logging.info(f'PLCC_train: {plcc_train}')
logging.info(f'RMSE_train: {rmse_train}')
logging.info('======================================================')
logging.info(f'Test set - Evaluation Results')
logging.info(f'SRCC_test: {srcc_test}')
logging.info(f'KRCC_test: {krcc_test}')
logging.info(f'PLCC_test: {plcc_test}')
logging.info(f'RMSE_test: {rmse_test}')
logging.info('======================================================')
logging.info(' -- {} seconds elapsed...\n\n'.format(time.time() - t0))
logging.info('')
SRCC_all_repeats_test = np.nan_to_num(SRCC_all_repeats_test)
KRCC_all_repeats_test = np.nan_to_num(KRCC_all_repeats_test)
PLCC_all_repeats_test = np.nan_to_num(PLCC_all_repeats_test)
RMSE_all_repeats_test = np.nan_to_num(RMSE_all_repeats_test)
SRCC_all_repeats_train = np.nan_to_num(SRCC_all_repeats_train)
KRCC_all_repeats_train = np.nan_to_num(KRCC_all_repeats_train)
PLCC_all_repeats_train = np.nan_to_num(PLCC_all_repeats_train)
RMSE_all_repeats_train = np.nan_to_num(RMSE_all_repeats_train)
logging.info('======================================================')
logging.info('Average training results among all repeated 80-20 holdouts:')
logging.info('SRCC: %f (std: %f)', np.median(SRCC_all_repeats_train), np.std(SRCC_all_repeats_train))
logging.info('KRCC: %f (std: %f)', np.median(KRCC_all_repeats_train), np.std(KRCC_all_repeats_train))
logging.info('PLCC: %f (std: %f)', np.median(PLCC_all_repeats_train), np.std(PLCC_all_repeats_train))
logging.info('RMSE: %f (std: %f)', np.median(RMSE_all_repeats_train), np.std(RMSE_all_repeats_train))
logging.info('======================================================')
logging.info('Average testing results among all repeated 80-20 holdouts:')
logging.info('SRCC: %f (std: %f)', np.median(SRCC_all_repeats_test), np.std(SRCC_all_repeats_test))
logging.info('KRCC: %f (std: %f)', np.median(KRCC_all_repeats_test), np.std(KRCC_all_repeats_test))
logging.info('PLCC: %f (std: %f)', np.median(PLCC_all_repeats_test), np.std(PLCC_all_repeats_test))
logging.info('RMSE: %f (std: %f)', np.median(RMSE_all_repeats_test), np.std(RMSE_all_repeats_test))
logging.info('======================================================')
logging.info('\n')
# find the median model and the index of the median
print('======================================================')
if select_criteria == 'byrmse':
median_metrics = np.median(RMSE_all_repeats_test)
indices = np.where(RMSE_all_repeats_test == median_metrics)[0]
select_criteria = select_criteria.replace('by', '').upper()
print(RMSE_all_repeats_test)
logging.info(f'all {select_criteria}: {RMSE_all_repeats_test}')
elif select_criteria == 'bykrcc':
median_metrics = np.median(KRCC_all_repeats_test)
indices = np.where(KRCC_all_repeats_test == median_metrics)[0]
select_criteria = select_criteria.replace('by', '').upper()
print(KRCC_all_repeats_test)
logging.info(f'all {select_criteria}: {KRCC_all_repeats_test}')
median_test_vids = [all_repeats_test_vids[i] for i in indices]
test_vids = [arr.tolist() for arr in median_test_vids] if len(median_test_vids) > 1 else (median_test_vids[0] if median_test_vids else [])
# select the model with the first index where the median is located
# Note: If there are multiple iterations with the same median RMSE, the first index is selected here
median_model = None
if len(indices) > 0:
median_index = indices[0] # select the first index
median_model = best_model_list[median_index]
median_model_df_test_pred = all_repeats_df_test_pred[median_index]
median_model_df_test_pred.to_csv(pred_score_filename, index=False)
plot_results(y_test, y_test_pred_logistic, median_model_df_test_pred, model_name, data_name, network_name, select_criteria)
print(f'Median Metrics: {median_metrics}')
print(f'Indices: {indices}')
# print(f'Test Videos: {test_vids}')
print(f'Best model: {median_model}')
logging.info(f'median test {select_criteria}: {median_metrics}')
logging.info(f"Indices of median metrics: {indices}")
# logging.info(f'Best training and test dataset: {test_vids}')
logging.info(f'Best model predict score: {median_model_df_test_pred}')
logging.info(f'Best model: {median_model}')
# ================================================================================
# save mats
scipy.io.savemat(result_file, mdict={'SRCC_train': np.asarray(SRCC_all_repeats_train, dtype=float), \
'KRCC_train': np.asarray(KRCC_all_repeats_train, dtype=float), \
'PLCC_train': np.asarray(PLCC_all_repeats_train, dtype=float), \
'RMSE_train': np.asarray(RMSE_all_repeats_train, dtype=float), \
'SRCC_test': np.asarray(SRCC_all_repeats_test, dtype=float), \
'KRCC_test': np.asarray(KRCC_all_repeats_test, dtype=float), \
'PLCC_test': np.asarray(PLCC_all_repeats_test, dtype=float), \
'RMSE_test': np.asarray(RMSE_all_repeats_test, dtype=float), \
f'Median_{select_criteria}': median_metrics, \
'Test_Videos_list': all_repeats_test_vids, \
'Test_videos_Median_model': test_vids, \
})
# save model
torch.save(median_model.state_dict(), file_path)
print(f"Model state_dict saved to {file_path}")
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# input parameters
parser.add_argument('--model_name', type=str, default='Mlp')
parser.add_argument('--data_name', type=str, default='lsvq_train', help='konvid_1k, youtube_ugc, live_vqc, cvd_2014, lsvq_train, cross_dataset')
parser.add_argument('--network_name', type=str, default='relaxvqa', help='relaxvqa, {frag_name}_{network_name}_{layer_name}')
parser.add_argument('--metadata_path', type=str, default='../metadata/')
parser.add_argument('--feature_path', type=str, default='../features/')
parser.add_argument('--log_path', type=str, default='../log/')
parser.add_argument('--save_path', type=str, default='../model/')
parser.add_argument('--score_path', type=str, default='../log/predict_score/')
parser.add_argument('--result_path', type=str, default='../log/result/')
# training parameters
parser.add_argument('--select_criteria', type=str, default='byrmse', help='byrmse, bykrcc')
parser.add_argument('--n_repeats', type=int, default=21, help='Number of repeats for 80-20 hold out test')
parser.add_argument('--n_splits', type=int, default=10, help='Number of splits for k-fold validation')
parser.add_argument('--batch_size', type=int, default=256, help='Batch size for training')
parser.add_argument('--epochs', type=int, default=20, help='Epochs for training') # 120(small), 20(big)
parser.add_argument('--hidden_features', type=int, default=256, help='Hidden features')
parser.add_argument('--drop_rate', type=float, default=0.1, help='Dropout rate.')
# misc
parser.add_argument('--loss_type', type=str, default='MAERankLoss', help='MSEloss or MAERankLoss')
parser.add_argument('--optimizer_type', type=str, default='sgd', help='adam or sgd')
parser.add_argument('--initial_lr', type=float, default=1e-1, help='Initial learning rate: 1e-2')
parser.add_argument('--weight_decay', type=float, default=0.005, help='Weight decay (L2 loss): 1e-4')
parser.add_argument('--patience', type=int, default=5, help='Early stopping patience.')
parser.add_argument('--use_swa', type=bool, default=True, help='Use Stochastic Weight Averaging')
parser.add_argument('--l1_w', type=float, default=0.6, help='MAE loss weight')
parser.add_argument('--rank_w', type=float, default=1.0, help='Rank loss weight')
args = parser.parse_args()
config = vars(args) # args to dict
print(config)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(device)
if device.type == "cuda":
torch.cuda.set_device(0)
main(config)