Spaces:
Running
on
Zero
Running
on
Zero
File size: 34,131 Bytes
17f753b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 |
import logging
import time
import os
import pandas as pd
import numpy as np
import math
import scipy.io
import scipy.stats
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import StandardScaler, MinMaxScaler
from sklearn.metrics import mean_squared_error
from scipy.optimize import curve_fit
import joblib
import seaborn as sns
import matplotlib.pyplot as plt
import copy
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.optim.lr_scheduler import CosineAnnealingLR
from torch.optim.swa_utils import AveragedModel, SWALR
from torch.utils.data import DataLoader, TensorDataset
from sklearn.model_selection import KFold
from sklearn.model_selection import train_test_split
from data_processing import split_train_test
# ignore all warnings
import warnings
warnings.filterwarnings("ignore", category=DeprecationWarning)
class Mlp(nn.Module):
def __init__(self, input_features, hidden_features=256, out_features=1, drop_rate=0.2, act_layer=nn.GELU):
super().__init__()
self.fc1 = nn.Linear(input_features, hidden_features)
self.bn1 = nn.BatchNorm1d(hidden_features)
self.act1 = act_layer()
self.drop1 = nn.Dropout(drop_rate)
self.fc2 = nn.Linear(hidden_features, hidden_features // 2)
self.act2 = act_layer()
self.drop2 = nn.Dropout(drop_rate)
self.fc3 = nn.Linear(hidden_features // 2, out_features)
def forward(self, input_feature):
x = self.fc1(input_feature)
x = self.bn1(x)
x = self.act1(x)
x = self.drop1(x)
x = self.fc2(x)
x = self.act2(x)
x = self.drop2(x)
output = self.fc3(x)
return output
class MAEAndRankLoss(nn.Module):
def __init__(self, l1_w=1.0, rank_w=1.0, margin=0.0, use_margin=False):
super(MAEAndRankLoss, self).__init__()
self.l1_w = l1_w
self.rank_w = rank_w
self.margin = margin
self.use_margin = use_margin
def forward(self, y_pred, y_true):
# L1 loss/MAE loss
l_mae = F.l1_loss(y_pred, y_true, reduction='mean') * self.l1_w
# Rank loss
n = y_pred.size(0)
pred_diff = y_pred.unsqueeze(1) - y_pred.unsqueeze(0)
true_diff = y_true.unsqueeze(1) - y_true.unsqueeze(0)
# e(ytrue_i, ytrue_j)
masks = torch.sign(true_diff)
if self.use_margin and self.margin > 0:
true_diff = true_diff.abs() - self.margin
true_diff = F.relu(true_diff)
masks = true_diff.sign()
l_rank = F.relu(true_diff - masks * pred_diff)
l_rank = l_rank.sum() / (n * (n - 1))
loss = l_mae + l_rank * self.rank_w
return loss
def load_data(csv_file, mat_file, features, data_name, set_name):
try:
df = pd.read_csv(csv_file, skiprows=[], header=None)
except Exception as e:
logging.error(f'Read CSV file error: {e}')
raise
try:
if data_name == 'lsvq_train':
X_mat = features
else:
X_mat = scipy.io.loadmat(mat_file)
except Exception as e:
logging.error(f'Read MAT file error: {e}')
raise
y_data = df.values[1:, 2]
y = np.array(list(y_data), dtype=float)
if data_name == 'cross_dataset': # or data_name == 'lsvq_train':
y[y > 5] = 5
if set_name == 'test':
print(f"Modified y_true: {y}")
if data_name == 'lsvq_train':
X = np.asarray(X_mat, dtype=float)
else:
data_name = f'{data_name}_{set_name}_features'
X = np.asarray(X_mat[data_name], dtype=float)
return X, y
def preprocess_data(X, y):
X[np.isnan(X)] = 0
X[np.isinf(X)] = 0
imp = SimpleImputer(missing_values=np.nan, strategy='mean').fit(X)
X = imp.transform(X)
# scaler = StandardScaler()
scaler = MinMaxScaler().fit(X)
X = scaler.transform(X)
logging.info(f'Scaler: {scaler}')
y = y.reshape(-1, 1).squeeze()
return X, y, imp, scaler
# define 4-parameter logistic regression
def logistic_func(X, bayta1, bayta2, bayta3, bayta4):
logisticPart = 1 + np.exp(np.negative(np.divide(X - bayta3, np.abs(bayta4))))
yhat = bayta2 + np.divide(bayta1 - bayta2, logisticPart)
return yhat
def fit_logistic_regression(y_pred, y_true):
beta = [np.max(y_true), np.min(y_true), np.mean(y_pred), 0.5]
popt, _ = curve_fit(logistic_func, y_pred, y_true, p0=beta, maxfev=100000000)
y_pred_logistic = logistic_func(y_pred, *popt)
return y_pred_logistic, beta, popt
def compute_correlation_metrics(y_true, y_pred):
y_pred_logistic, beta, popt = fit_logistic_regression(y_pred, y_true)
plcc = scipy.stats.pearsonr(y_true, y_pred_logistic)[0]
rmse = np.sqrt(mean_squared_error(y_true, y_pred_logistic))
srcc = scipy.stats.spearmanr(y_true, y_pred)[0]
try:
krcc = scipy.stats.kendalltau(y_true, y_pred)[0]
except Exception as e:
logging.error(f'krcc calculation: {e}')
krcc = scipy.stats.kendalltau(y_true, y_pred, method='asymptotic')[0]
return y_pred_logistic, plcc, rmse, srcc, krcc
def plot_results(y_test, y_test_pred_logistic, df_pred_score, model_name, data_name, network_name, select_criteria):
# nonlinear logistic fitted curve / logistic regression
mos1 = y_test
y1 = y_test_pred_logistic
try:
beta = [np.max(mos1), np.min(mos1), np.mean(y1), 0.5]
popt, pcov = curve_fit(logistic_func, y1, mos1, p0=beta, maxfev=100000000)
sigma = np.sqrt(np.diag(pcov))
except:
raise Exception('Fitting logistic function time-out!!')
x_values1 = np.linspace(np.min(y1), np.max(y1), len(y1))
plt.plot(x_values1, logistic_func(x_values1, *popt), '-', color='#c72e29', label='Fitted f(x)')
fig1 = sns.scatterplot(x="y_test_pred_logistic", y="MOS", data=df_pred_score, markers='o', color='steelblue', label=network_name)
plt.legend(loc='upper left')
if data_name == 'live_vqc' or data_name == 'live_qualcomm' or data_name == 'cvd_2014' or data_name == 'lsvq_train':
plt.ylim(0, 100)
plt.xlim(0, 100)
else:
plt.ylim(1, 5)
plt.xlim(1, 5)
plt.title(f"Algorithm {network_name} with {model_name} on dataset {data_name}", fontsize=10)
plt.xlabel('Predicted Score')
plt.ylabel('MOS')
reg_fig1 = fig1.get_figure()
fig_path = f'../figs/{data_name}/'
os.makedirs(fig_path, exist_ok=True)
reg_fig1.savefig(fig_path + f"{network_name}_{model_name}_{data_name}_by{select_criteria}_kfold.png", dpi=300)
plt.clf()
plt.close()
def plot_and_save_losses(avg_train_losses, avg_val_losses, model_name, data_name, network_name, test_vids, i):
plt.figure(figsize=(10, 6))
plt.plot(avg_train_losses, label='Average Training Loss')
plt.plot(avg_val_losses, label='Average Validation Loss')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.title(f'Average Training and Validation Loss Across Folds - {network_name} with {model_name} (test_vids: {test_vids})', fontsize=10)
plt.legend()
fig_par_path = f'../log/result/{data_name}/'
os.makedirs(fig_par_path, exist_ok=True)
plt.savefig(f'{fig_par_path}/{network_name}_Average_Training_Loss_test{i}.png', dpi=50)
plt.clf()
plt.close()
def configure_logging(log_path, model_name, data_name, network_name, select_criteria):
log_file_name = os.path.join(log_path, f"{data_name}_{network_name}_{model_name}_corr_{select_criteria}_kfold.log")
logging.basicConfig(filename=log_file_name, filemode='w', level=logging.DEBUG, format='%(levelname)s - %(message)s')
logging.getLogger('matplotlib').setLevel(logging.WARNING)
logging.info(f"Evaluating algorithm {network_name} with {model_name} on dataset {data_name}")
logging.info(f"torch cuda: {torch.cuda.is_available()}")
def load_and_preprocess_data(metadata_path, feature_path, data_name, network_name, train_features, test_features):
if data_name == 'cross_dataset':
data_name1 = 'youtube_ugc_all'
data_name2 = 'cvd_2014_all'
csv_train_file = os.path.join(metadata_path, f'mos_files/{data_name1}_MOS_train.csv')
csv_test_file = os.path.join(metadata_path, f'mos_files/{data_name2}_MOS_test.csv')
mat_train_file = os.path.join(f'{feature_path}split_train_test/', f'{data_name1}_{network_name}_train_features.mat')
mat_test_file = os.path.join(f'{feature_path}split_train_test/', f'{data_name2}_{network_name}_test_features.mat')
X_train, y_train = load_data(csv_train_file, mat_train_file, None, data_name1, 'train')
X_test, y_test = load_data(csv_test_file, mat_test_file, None, data_name2, 'test')
elif data_name == 'lsvq_train':
csv_train_file = os.path.join(metadata_path, f'mos_files/{data_name}_MOS_train.csv')
csv_test_file = os.path.join(metadata_path, f'mos_files/{data_name}_MOS_test.csv')
X_train, y_train = load_data(csv_train_file, None, train_features, data_name, 'train')
X_test, y_test = load_data(csv_test_file, None, test_features, data_name, 'test')
else:
csv_train_file = os.path.join(metadata_path, f'mos_files/{data_name}_MOS_train.csv')
csv_test_file = os.path.join(metadata_path, f'mos_files/{data_name}_MOS_test.csv')
mat_train_file = os.path.join(f'{feature_path}split_train_test/', f'{data_name}_{network_name}_train_features.mat')
mat_test_file = os.path.join(f'{feature_path}split_train_test/', f'{data_name}_{network_name}_test_features.mat')
X_train, y_train = load_data(csv_train_file, mat_train_file, None, data_name, 'train')
X_test, y_test = load_data(csv_test_file, mat_test_file, None, data_name, 'test')
# standard min-max normalization of traning features
X_train, y_train, _, _ = preprocess_data(X_train, y_train)
X_test, y_test, _, _ = preprocess_data(X_test, y_test)
return X_train, y_train, X_test, y_test
def train_one_epoch(model, train_loader, criterion, optimizer, device):
"""Train the model for one epoch"""
model.train()
train_loss = 0.0
for inputs, targets in train_loader:
inputs, targets = inputs.to(device), targets.to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, targets.view(-1, 1))
loss.backward()
optimizer.step()
train_loss += loss.item() * inputs.size(0)
train_loss /= len(train_loader.dataset)
return train_loss
def evaluate(model, val_loader, criterion, device):
"""Evaluate model performance on validation sets"""
model.eval()
val_loss = 0.0
y_val_pred = []
with torch.no_grad():
for inputs, targets in val_loader:
inputs, targets = inputs.to(device), targets.to(device)
outputs = model(inputs)
y_val_pred.extend(outputs.view(-1).tolist())
loss = criterion(outputs, targets.view(-1, 1))
val_loss += loss.item() * inputs.size(0)
val_loss /= len(val_loader.dataset)
return val_loss, np.array(y_val_pred)
def update_best_model(select_criteria, best_metric, current_val, model):
is_better = False
if select_criteria == 'byrmse' and current_val < best_metric:
is_better = True
elif select_criteria == 'bykrcc' and current_val > best_metric:
is_better = True
if is_better:
return current_val, copy.deepcopy(model), is_better
return best_metric, model, is_better
def train_and_evaluate(X_train, y_train, config):
# parameters
n_repeats = config['n_repeats']
n_splits = config['n_splits']
batch_size = config['batch_size']
epochs = config['epochs']
hidden_features = config['hidden_features']
drop_rate = config['drop_rate']
loss_type = config['loss_type']
optimizer_type = config['optimizer_type']
select_criteria = config['select_criteria']
initial_lr = config['initial_lr']
weight_decay = config['weight_decay']
patience = config['patience']
l1_w = config['l1_w']
rank_w = config['rank_w']
use_swa = config.get('use_swa', False)
logging.info(f'Parameters - Number of repeats for 80-20 hold out test: {n_repeats}, Number of splits for kfold: {n_splits}, Batch size: {batch_size}, Number of epochs: {epochs}')
logging.info(f'Network Parameters - hidden_features: {hidden_features}, drop_rate: {drop_rate}, patience: {patience}')
logging.info(f'Optimizer Parameters - loss_type: {loss_type}, optimizer_type: {optimizer_type}, initial_lr: {initial_lr}, weight_decay: {weight_decay}, use_swa: {use_swa}')
logging.info(f'MAEAndRankLoss - l1_w: {l1_w}, rank_w: {rank_w}')
kf = KFold(n_splits=n_splits, shuffle=True, random_state=42)
best_model = None
best_metric = float('inf') if select_criteria == 'byrmse' else float('-inf')
# loss for every fold
all_train_losses = []
all_val_losses = []
for fold, (train_idx, val_idx) in enumerate(kf.split(X_train)):
print(f"Fold {fold + 1}/{n_splits}")
X_train_fold, X_val_fold = X_train[train_idx], X_train[val_idx]
y_train_fold, y_val_fold = y_train[train_idx], y_train[val_idx]
# initialisation of model, loss function, optimiser
model = Mlp(input_features=X_train_fold.shape[1], hidden_features=hidden_features, drop_rate=drop_rate)
model = model.to(device) # to gpu
if loss_type == 'MAERankLoss':
criterion = MAEAndRankLoss()
criterion.l1_w = l1_w
criterion.rank_w = rank_w
else:
nn.MSELoss()
if optimizer_type == 'sgd':
optimizer = optim.SGD(model.parameters(), lr=initial_lr, momentum=0.9, weight_decay=weight_decay)
scheduler = CosineAnnealingLR(optimizer, T_max=epochs, eta_min=1e-5)# initial eta_nim=1e-5
else:
optimizer = optim.Adam(model.parameters(), lr=initial_lr, weight_decay=weight_decay) # L2 Regularisation initial: 0.01, 1e-5
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=2, gamma=0.95) # step_size=10, gamma=0.1: every 10 epochs lr*0.1
if use_swa:
swa_model = AveragedModel(model).to(device)
swa_scheduler = SWALR(optimizer, swa_lr=initial_lr, anneal_strategy='cos')
# dataset loader
train_dataset = TensorDataset(torch.FloatTensor(X_train_fold), torch.FloatTensor(y_train_fold))
val_dataset = TensorDataset(torch.FloatTensor(X_val_fold), torch.FloatTensor(y_val_fold))
train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
val_loader = DataLoader(dataset=val_dataset, batch_size=batch_size, shuffle=False)
train_losses, val_losses = [], []
# early stopping parameters
best_val_loss = float('inf')
epochs_no_improve = 0
early_stop_active = False
swa_start = int(epochs * 0.7) if use_swa else epochs # SWA starts after 70% of total epochs, only set SWA start if SWA is used
for epoch in range(epochs):
train_loss = train_one_epoch(model, train_loader, criterion, optimizer, device)
train_losses.append(train_loss)
scheduler.step() # update learning rate
if use_swa and epoch >= swa_start:
swa_model.update_parameters(model)
swa_scheduler.step()
early_stop_active = True
print(f"Current learning rate with SWA: {swa_scheduler.get_last_lr()}")
lr = optimizer.param_groups[0]['lr']
print('Epoch %d: Learning rate: %f' % (epoch + 1, lr))
# decide which model to evaluate: SWA model or regular model
current_model = swa_model if use_swa and epoch >= swa_start else model
current_model.eval()
val_loss, y_val_pred = evaluate(current_model, val_loader, criterion, device)
val_losses.append(val_loss)
print(f"Epoch {epoch + 1}, Fold {fold + 1}, Training Loss: {train_loss}, Validation Loss: {val_loss}")
y_val_pred = np.array(list(y_val_pred), dtype=float)
_, _, rmse_val, _, krcc_val = compute_correlation_metrics(y_val_fold, y_val_pred)
current_metric = rmse_val if select_criteria == 'byrmse' else krcc_val
best_metric, best_model, is_better = update_best_model(select_criteria, best_metric, current_metric, current_model)
if is_better:
logging.info(f"Epoch {epoch + 1}, Fold {fold + 1}:")
y_val_pred_logistic_tmp, plcc_valid_tmp, rmse_valid_tmp, srcc_valid_tmp, krcc_valid_tmp = compute_correlation_metrics(y_val_fold, y_val_pred)
logging.info(f'Validation set - Evaluation Results - SRCC: {srcc_valid_tmp}, KRCC: {krcc_valid_tmp}, PLCC: {plcc_valid_tmp}, RMSE: {rmse_valid_tmp}')
X_train_fold_tensor = torch.FloatTensor(X_train_fold).to(device)
y_tra_pred_tmp = best_model(X_train_fold_tensor).detach().cpu().numpy().squeeze()
y_tra_pred_tmp = np.array(list(y_tra_pred_tmp), dtype=float)
y_tra_pred_logistic_tmp, plcc_train_tmp, rmse_train_tmp, srcc_train_tmp, krcc_train_tmp = compute_correlation_metrics(y_train_fold, y_tra_pred_tmp)
logging.info(f'Train set - Evaluation Results - SRCC: {srcc_train_tmp}, KRCC: {krcc_train_tmp}, PLCC: {plcc_train_tmp}, RMSE: {rmse_train_tmp}')
# check for loss improvement
if early_stop_active:
if val_loss < best_val_loss:
best_val_loss = val_loss
# save the best model if validation loss improves
best_model = copy.deepcopy(model)
epochs_no_improve = 0
else:
epochs_no_improve += 1
if epochs_no_improve >= patience:
# epochs to wait for improvement before stopping
print(f"Early stopping triggered after {epoch + 1} epochs.")
break
# saving SWA models and updating BN statistics
if use_swa:
train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True, collate_fn=lambda x: collate_to_device(x, device))
best_model = best_model.to(device)
best_model.eval()
torch.optim.swa_utils.update_bn(train_loader, best_model)
# swa_model_path = os.path.join('save_swa_path='../model/', f'model_swa_fold{fold}.pth')
# torch.save(swa_model.state_dict(), swa_model_path)
# logging.info(f'SWA model saved at {swa_model_path}')
all_train_losses.append(train_losses)
all_val_losses.append(val_losses)
max_length = max(len(x) for x in all_train_losses)
all_train_losses = [x + [x[-1]] * (max_length - len(x)) for x in all_train_losses]
max_length = max(len(x) for x in all_val_losses)
all_val_losses = [x + [x[-1]] * (max_length - len(x)) for x in all_val_losses]
return best_model, all_train_losses, all_val_losses
def collate_to_device(batch, device):
data, targets = zip(*batch)
return torch.stack(data).to(device), torch.stack(targets).to(device)
def model_test(best_model, X, y, device):
test_dataset = TensorDataset(torch.FloatTensor(X), torch.FloatTensor(y))
test_loader = DataLoader(dataset=test_dataset, batch_size=1, shuffle=False)
best_model.eval()
y_pred = []
with torch.no_grad():
for inputs, _ in test_loader:
inputs = inputs.to(device)
outputs = best_model(inputs)
y_pred.extend(outputs.view(-1).tolist())
return y_pred
def main(config):
model_name = config['model_name']
data_name = config['data_name']
network_name = config['network_name']
metadata_path = config['metadata_path']
feature_path = config['feature_path']
log_path = config['log_path']
save_path = config['save_path']
score_path = config['score_path']
result_path = config['result_path']
# parameters
select_criteria = config['select_criteria']
n_repeats = config['n_repeats']
# logging and result
os.makedirs(log_path, exist_ok=True)
os.makedirs(save_path, exist_ok=True)
os.makedirs(score_path, exist_ok=True)
os.makedirs(result_path, exist_ok=True)
result_file = f'{result_path}{data_name}_{network_name}_{select_criteria}.mat'
pred_score_filename = os.path.join(score_path, f"{data_name}_{network_name}_{select_criteria}.csv")
file_path = os.path.join(save_path, f"{data_name}_{network_name}_{select_criteria}_trained_median_model_param.pth")
configure_logging(log_path, model_name, data_name, network_name, select_criteria)
'''======================== Main Body ==========================='''
PLCC_all_repeats_test = []
SRCC_all_repeats_test = []
KRCC_all_repeats_test = []
RMSE_all_repeats_test = []
PLCC_all_repeats_train = []
SRCC_all_repeats_train = []
KRCC_all_repeats_train = []
RMSE_all_repeats_train = []
all_repeats_test_vids = []
all_repeats_df_test_pred = []
best_model_list = []
for i in range(1, n_repeats + 1):
print(f"{i}th repeated 80-20 hold out test")
logging.info(f"{i}th repeated 80-20 hold out test")
t0 = time.time()
# train test split
test_size = 0.2
random_state = math.ceil(8.8 * i)
# NR: original
if data_name == 'lsvq_train':
test_data_name = 'lsvq_test' #lsvq_test, lsvq_test_1080p
train_features, test_features, test_vids = split_train_test.process_lsvq(data_name, test_data_name, metadata_path, feature_path, network_name)
elif data_name == 'cross_dataset':
train_data_name = 'youtube_ugc_all'
test_data_name = 'cvd_2014_all'
_, _, test_vids = split_train_test.process_cross_dataset(train_data_name, test_data_name, metadata_path, feature_path, network_name)
else:
_, _, test_vids = split_train_test.process_other(data_name, test_size, random_state, metadata_path, feature_path, network_name)
'''======================== read files =============================== '''
if data_name == 'lsvq_train':
X_train, y_train, X_test, y_test = load_and_preprocess_data(metadata_path, feature_path, data_name, network_name, train_features, test_features)
else:
X_train, y_train, X_test, y_test = load_and_preprocess_data(metadata_path, feature_path, data_name, network_name, None, None)
'''======================== regression model =============================== '''
best_model, all_train_losses, all_val_losses = train_and_evaluate(X_train, y_train, config)
# average loss plots
avg_train_losses = np.mean(all_train_losses, axis=0)
avg_val_losses = np.mean(all_val_losses, axis=0)
test_vids = test_vids.tolist()
plot_and_save_losses(avg_train_losses, avg_val_losses, model_name, data_name, network_name, len(test_vids), i)
# predict best model on the train dataset
y_train_pred = model_test(best_model, X_train, y_train, device)
y_train_pred = np.array(list(y_train_pred), dtype=float)
y_train_pred_logistic, plcc_train, rmse_train, srcc_train, krcc_train = compute_correlation_metrics(y_train, y_train_pred)
# test best model on the test dataset
y_test_pred = model_test(best_model, X_test, y_test, device)
y_test_pred = np.array(list(y_test_pred), dtype=float)
y_test_pred_logistic, plcc_test, rmse_test, srcc_test, krcc_test = compute_correlation_metrics(y_test, y_test_pred)
# save the predict score results
test_pred_score = {'MOS': y_test, 'y_test_pred': y_test_pred, 'y_test_pred_logistic': y_test_pred_logistic}
df_test_pred = pd.DataFrame(test_pred_score)
# logging logistic predicted scores
logging.info("============================================================================================================")
SRCC_all_repeats_test.append(srcc_test)
KRCC_all_repeats_test.append(krcc_test)
PLCC_all_repeats_test.append(plcc_test)
RMSE_all_repeats_test.append(rmse_test)
SRCC_all_repeats_train.append(srcc_train)
KRCC_all_repeats_train.append(krcc_train)
PLCC_all_repeats_train.append(plcc_train)
RMSE_all_repeats_train.append(rmse_train)
all_repeats_test_vids.append(test_vids)
all_repeats_df_test_pred.append(df_test_pred)
best_model_list.append(copy.deepcopy(best_model))
# logging.info results for each iteration
logging.info('Best results in Mlp model within one split')
logging.info(f'MODEL: {best_model}')
logging.info('======================================================')
logging.info(f'Train set - Evaluation Results')
logging.info(f'SRCC_train: {srcc_train}')
logging.info(f'KRCC_train: {krcc_train}')
logging.info(f'PLCC_train: {plcc_train}')
logging.info(f'RMSE_train: {rmse_train}')
logging.info('======================================================')
logging.info(f'Test set - Evaluation Results')
logging.info(f'SRCC_test: {srcc_test}')
logging.info(f'KRCC_test: {krcc_test}')
logging.info(f'PLCC_test: {plcc_test}')
logging.info(f'RMSE_test: {rmse_test}')
logging.info('======================================================')
logging.info(' -- {} seconds elapsed...\n\n'.format(time.time() - t0))
logging.info('')
SRCC_all_repeats_test = np.nan_to_num(SRCC_all_repeats_test)
KRCC_all_repeats_test = np.nan_to_num(KRCC_all_repeats_test)
PLCC_all_repeats_test = np.nan_to_num(PLCC_all_repeats_test)
RMSE_all_repeats_test = np.nan_to_num(RMSE_all_repeats_test)
SRCC_all_repeats_train = np.nan_to_num(SRCC_all_repeats_train)
KRCC_all_repeats_train = np.nan_to_num(KRCC_all_repeats_train)
PLCC_all_repeats_train = np.nan_to_num(PLCC_all_repeats_train)
RMSE_all_repeats_train = np.nan_to_num(RMSE_all_repeats_train)
logging.info('======================================================')
logging.info('Average training results among all repeated 80-20 holdouts:')
logging.info('SRCC: %f (std: %f)', np.median(SRCC_all_repeats_train), np.std(SRCC_all_repeats_train))
logging.info('KRCC: %f (std: %f)', np.median(KRCC_all_repeats_train), np.std(KRCC_all_repeats_train))
logging.info('PLCC: %f (std: %f)', np.median(PLCC_all_repeats_train), np.std(PLCC_all_repeats_train))
logging.info('RMSE: %f (std: %f)', np.median(RMSE_all_repeats_train), np.std(RMSE_all_repeats_train))
logging.info('======================================================')
logging.info('Average testing results among all repeated 80-20 holdouts:')
logging.info('SRCC: %f (std: %f)', np.median(SRCC_all_repeats_test), np.std(SRCC_all_repeats_test))
logging.info('KRCC: %f (std: %f)', np.median(KRCC_all_repeats_test), np.std(KRCC_all_repeats_test))
logging.info('PLCC: %f (std: %f)', np.median(PLCC_all_repeats_test), np.std(PLCC_all_repeats_test))
logging.info('RMSE: %f (std: %f)', np.median(RMSE_all_repeats_test), np.std(RMSE_all_repeats_test))
logging.info('======================================================')
logging.info('\n')
# find the median model and the index of the median
print('======================================================')
if select_criteria == 'byrmse':
median_metrics = np.median(RMSE_all_repeats_test)
indices = np.where(RMSE_all_repeats_test == median_metrics)[0]
select_criteria = select_criteria.replace('by', '').upper()
print(RMSE_all_repeats_test)
logging.info(f'all {select_criteria}: {RMSE_all_repeats_test}')
elif select_criteria == 'bykrcc':
median_metrics = np.median(KRCC_all_repeats_test)
indices = np.where(KRCC_all_repeats_test == median_metrics)[0]
select_criteria = select_criteria.replace('by', '').upper()
print(KRCC_all_repeats_test)
logging.info(f'all {select_criteria}: {KRCC_all_repeats_test}')
median_test_vids = [all_repeats_test_vids[i] for i in indices]
test_vids = [arr.tolist() for arr in median_test_vids] if len(median_test_vids) > 1 else (median_test_vids[0] if median_test_vids else [])
# select the model with the first index where the median is located
# Note: If there are multiple iterations with the same median RMSE, the first index is selected here
median_model = None
if len(indices) > 0:
median_index = indices[0] # select the first index
median_model = best_model_list[median_index]
median_model_df_test_pred = all_repeats_df_test_pred[median_index]
median_model_df_test_pred.to_csv(pred_score_filename, index=False)
plot_results(y_test, y_test_pred_logistic, median_model_df_test_pred, model_name, data_name, network_name, select_criteria)
print(f'Median Metrics: {median_metrics}')
print(f'Indices: {indices}')
# print(f'Test Videos: {test_vids}')
print(f'Best model: {median_model}')
logging.info(f'median test {select_criteria}: {median_metrics}')
logging.info(f"Indices of median metrics: {indices}")
# logging.info(f'Best training and test dataset: {test_vids}')
logging.info(f'Best model predict score: {median_model_df_test_pred}')
logging.info(f'Best model: {median_model}')
# ================================================================================
# save mats
scipy.io.savemat(result_file, mdict={'SRCC_train': np.asarray(SRCC_all_repeats_train, dtype=float), \
'KRCC_train': np.asarray(KRCC_all_repeats_train, dtype=float), \
'PLCC_train': np.asarray(PLCC_all_repeats_train, dtype=float), \
'RMSE_train': np.asarray(RMSE_all_repeats_train, dtype=float), \
'SRCC_test': np.asarray(SRCC_all_repeats_test, dtype=float), \
'KRCC_test': np.asarray(KRCC_all_repeats_test, dtype=float), \
'PLCC_test': np.asarray(PLCC_all_repeats_test, dtype=float), \
'RMSE_test': np.asarray(RMSE_all_repeats_test, dtype=float), \
f'Median_{select_criteria}': median_metrics, \
'Test_Videos_list': all_repeats_test_vids, \
'Test_videos_Median_model': test_vids, \
})
# save model
torch.save(median_model.state_dict(), file_path)
print(f"Model state_dict saved to {file_path}")
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# input parameters
parser.add_argument('--model_name', type=str, default='Mlp')
parser.add_argument('--data_name', type=str, default='lsvq_train', help='konvid_1k, youtube_ugc, live_vqc, cvd_2014, lsvq_train, cross_dataset')
parser.add_argument('--network_name', type=str, default='relaxvqa', help='relaxvqa, {frag_name}_{network_name}_{layer_name}')
parser.add_argument('--metadata_path', type=str, default='../metadata/')
parser.add_argument('--feature_path', type=str, default='../features/')
parser.add_argument('--log_path', type=str, default='../log/')
parser.add_argument('--save_path', type=str, default='../model/')
parser.add_argument('--score_path', type=str, default='../log/predict_score/')
parser.add_argument('--result_path', type=str, default='../log/result/')
# training parameters
parser.add_argument('--select_criteria', type=str, default='byrmse', help='byrmse, bykrcc')
parser.add_argument('--n_repeats', type=int, default=21, help='Number of repeats for 80-20 hold out test')
parser.add_argument('--n_splits', type=int, default=10, help='Number of splits for k-fold validation')
parser.add_argument('--batch_size', type=int, default=256, help='Batch size for training')
parser.add_argument('--epochs', type=int, default=20, help='Epochs for training') # 120(small), 20(big)
parser.add_argument('--hidden_features', type=int, default=256, help='Hidden features')
parser.add_argument('--drop_rate', type=float, default=0.1, help='Dropout rate.')
# misc
parser.add_argument('--loss_type', type=str, default='MAERankLoss', help='MSEloss or MAERankLoss')
parser.add_argument('--optimizer_type', type=str, default='sgd', help='adam or sgd')
parser.add_argument('--initial_lr', type=float, default=1e-1, help='Initial learning rate: 1e-2')
parser.add_argument('--weight_decay', type=float, default=0.005, help='Weight decay (L2 loss): 1e-4')
parser.add_argument('--patience', type=int, default=5, help='Early stopping patience.')
parser.add_argument('--use_swa', type=bool, default=True, help='Use Stochastic Weight Averaging')
parser.add_argument('--l1_w', type=float, default=0.6, help='MAE loss weight')
parser.add_argument('--rank_w', type=float, default=1.0, help='Rank loss weight')
args = parser.parse_args()
config = vars(args) # args to dict
print(config)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(device)
if device.type == "cuda":
torch.cuda.set_device(0)
main(config) |