File size: 34,131 Bytes
17f753b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
import logging
import time
import os
import pandas as pd
import numpy as np
import math
import scipy.io
import scipy.stats
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import StandardScaler, MinMaxScaler
from sklearn.metrics import mean_squared_error
from scipy.optimize import curve_fit
import joblib

import seaborn as sns
import matplotlib.pyplot as plt
import copy
import argparse

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.optim.lr_scheduler import CosineAnnealingLR
from torch.optim.swa_utils import AveragedModel, SWALR
from torch.utils.data import DataLoader, TensorDataset
from sklearn.model_selection import KFold
from sklearn.model_selection import train_test_split

from data_processing import split_train_test

# ignore all warnings
import warnings
warnings.filterwarnings("ignore", category=DeprecationWarning)


class Mlp(nn.Module):
    def __init__(self, input_features, hidden_features=256, out_features=1, drop_rate=0.2, act_layer=nn.GELU):
        super().__init__()
        self.fc1 = nn.Linear(input_features, hidden_features)
        self.bn1 = nn.BatchNorm1d(hidden_features)
        self.act1 = act_layer()
        self.drop1 = nn.Dropout(drop_rate)
        self.fc2 = nn.Linear(hidden_features, hidden_features // 2)
        self.act2 = act_layer()
        self.drop2 = nn.Dropout(drop_rate)
        self.fc3 = nn.Linear(hidden_features // 2, out_features)

    def forward(self, input_feature):
        x = self.fc1(input_feature)
        x = self.bn1(x)
        x = self.act1(x)
        x = self.drop1(x)
        x = self.fc2(x)
        x = self.act2(x)
        x = self.drop2(x)
        output = self.fc3(x)
        return output


class MAEAndRankLoss(nn.Module):
    def __init__(self, l1_w=1.0, rank_w=1.0, margin=0.0, use_margin=False):
        super(MAEAndRankLoss, self).__init__()
        self.l1_w = l1_w
        self.rank_w = rank_w
        self.margin = margin
        self.use_margin = use_margin

    def forward(self, y_pred, y_true):
        # L1 loss/MAE loss
        l_mae = F.l1_loss(y_pred, y_true, reduction='mean') * self.l1_w
        # Rank loss
        n = y_pred.size(0)
        pred_diff = y_pred.unsqueeze(1) - y_pred.unsqueeze(0)
        true_diff = y_true.unsqueeze(1) - y_true.unsqueeze(0)

        # e(ytrue_i, ytrue_j)
        masks = torch.sign(true_diff)

        if self.use_margin and self.margin > 0:
            true_diff = true_diff.abs() - self.margin
            true_diff = F.relu(true_diff)
            masks = true_diff.sign()

        l_rank = F.relu(true_diff - masks * pred_diff)
        l_rank = l_rank.sum() / (n * (n - 1))

        loss = l_mae + l_rank * self.rank_w
        return loss

def load_data(csv_file, mat_file, features, data_name, set_name):
    try:
        df = pd.read_csv(csv_file, skiprows=[], header=None)
    except Exception as e:
        logging.error(f'Read CSV file error: {e}')
        raise

    try:
        if data_name == 'lsvq_train':
            X_mat = features
        else:
            X_mat = scipy.io.loadmat(mat_file)
    except Exception as e:
        logging.error(f'Read MAT file error: {e}')
        raise

    y_data = df.values[1:, 2]
    y = np.array(list(y_data), dtype=float)

    if data_name == 'cross_dataset': # or data_name == 'lsvq_train':
        y[y > 5] = 5
    if set_name == 'test':
        print(f"Modified y_true: {y}")
    if data_name == 'lsvq_train':
        X = np.asarray(X_mat, dtype=float)
    else:
        data_name = f'{data_name}_{set_name}_features'
        X = np.asarray(X_mat[data_name], dtype=float)

    return X, y

def preprocess_data(X, y):
    X[np.isnan(X)] = 0
    X[np.isinf(X)] = 0
    imp = SimpleImputer(missing_values=np.nan, strategy='mean').fit(X)
    X = imp.transform(X)

    # scaler = StandardScaler()
    scaler = MinMaxScaler().fit(X)
    X = scaler.transform(X)
    logging.info(f'Scaler: {scaler}')

    y = y.reshape(-1, 1).squeeze()
    return X, y, imp, scaler

# define 4-parameter logistic regression
def logistic_func(X, bayta1, bayta2, bayta3, bayta4):
    logisticPart = 1 + np.exp(np.negative(np.divide(X - bayta3, np.abs(bayta4))))
    yhat = bayta2 + np.divide(bayta1 - bayta2, logisticPart)
    return yhat

def fit_logistic_regression(y_pred, y_true):
    beta = [np.max(y_true), np.min(y_true), np.mean(y_pred), 0.5]
    popt, _ = curve_fit(logistic_func, y_pred, y_true, p0=beta, maxfev=100000000)
    y_pred_logistic = logistic_func(y_pred, *popt)
    return y_pred_logistic, beta, popt

def compute_correlation_metrics(y_true, y_pred):
    y_pred_logistic, beta, popt = fit_logistic_regression(y_pred, y_true)

    plcc = scipy.stats.pearsonr(y_true, y_pred_logistic)[0]
    rmse = np.sqrt(mean_squared_error(y_true, y_pred_logistic))
    srcc = scipy.stats.spearmanr(y_true, y_pred)[0]

    try:
        krcc = scipy.stats.kendalltau(y_true, y_pred)[0]
    except Exception as e:
        logging.error(f'krcc calculation: {e}')
        krcc = scipy.stats.kendalltau(y_true, y_pred, method='asymptotic')[0]
    return y_pred_logistic, plcc, rmse, srcc, krcc

def plot_results(y_test, y_test_pred_logistic, df_pred_score, model_name, data_name, network_name, select_criteria):
    # nonlinear logistic fitted curve / logistic regression
    mos1 = y_test
    y1 = y_test_pred_logistic

    try:
        beta = [np.max(mos1), np.min(mos1), np.mean(y1), 0.5]
        popt, pcov = curve_fit(logistic_func, y1, mos1, p0=beta, maxfev=100000000)
        sigma = np.sqrt(np.diag(pcov))
    except:
        raise Exception('Fitting logistic function time-out!!')
    x_values1 = np.linspace(np.min(y1), np.max(y1), len(y1))
    plt.plot(x_values1, logistic_func(x_values1, *popt), '-', color='#c72e29', label='Fitted f(x)')

    fig1 = sns.scatterplot(x="y_test_pred_logistic", y="MOS", data=df_pred_score, markers='o', color='steelblue', label=network_name)
    plt.legend(loc='upper left')
    if data_name == 'live_vqc' or data_name == 'live_qualcomm' or data_name == 'cvd_2014' or data_name == 'lsvq_train':
        plt.ylim(0, 100)
        plt.xlim(0, 100)
    else:
        plt.ylim(1, 5)
        plt.xlim(1, 5)
    plt.title(f"Algorithm {network_name} with {model_name} on dataset {data_name}", fontsize=10)
    plt.xlabel('Predicted Score')
    plt.ylabel('MOS')
    reg_fig1 = fig1.get_figure()

    fig_path = f'../figs/{data_name}/'
    os.makedirs(fig_path, exist_ok=True)
    reg_fig1.savefig(fig_path + f"{network_name}_{model_name}_{data_name}_by{select_criteria}_kfold.png", dpi=300)
    plt.clf()
    plt.close()

def plot_and_save_losses(avg_train_losses, avg_val_losses, model_name, data_name, network_name, test_vids, i):
    plt.figure(figsize=(10, 6))

    plt.plot(avg_train_losses, label='Average Training Loss')
    plt.plot(avg_val_losses, label='Average Validation Loss')

    plt.xlabel('Epoch')
    plt.ylabel('Loss')
    plt.title(f'Average Training and Validation Loss Across Folds - {network_name} with {model_name} (test_vids: {test_vids})', fontsize=10)

    plt.legend()
    fig_par_path = f'../log/result/{data_name}/'
    os.makedirs(fig_par_path, exist_ok=True)
    plt.savefig(f'{fig_par_path}/{network_name}_Average_Training_Loss_test{i}.png', dpi=50)
    plt.clf()
    plt.close()

def configure_logging(log_path, model_name, data_name, network_name, select_criteria):
    log_file_name = os.path.join(log_path, f"{data_name}_{network_name}_{model_name}_corr_{select_criteria}_kfold.log")
    logging.basicConfig(filename=log_file_name, filemode='w', level=logging.DEBUG, format='%(levelname)s - %(message)s')
    logging.getLogger('matplotlib').setLevel(logging.WARNING)
    logging.info(f"Evaluating algorithm {network_name} with {model_name} on dataset {data_name}")
    logging.info(f"torch cuda: {torch.cuda.is_available()}")

def load_and_preprocess_data(metadata_path, feature_path, data_name, network_name, train_features, test_features):
    if data_name == 'cross_dataset':
        data_name1 = 'youtube_ugc_all'
        data_name2 = 'cvd_2014_all'
        csv_train_file = os.path.join(metadata_path, f'mos_files/{data_name1}_MOS_train.csv')
        csv_test_file = os.path.join(metadata_path, f'mos_files/{data_name2}_MOS_test.csv')
        mat_train_file = os.path.join(f'{feature_path}split_train_test/', f'{data_name1}_{network_name}_train_features.mat')
        mat_test_file = os.path.join(f'{feature_path}split_train_test/', f'{data_name2}_{network_name}_test_features.mat')
        X_train, y_train = load_data(csv_train_file, mat_train_file, None, data_name1, 'train')
        X_test, y_test = load_data(csv_test_file, mat_test_file, None, data_name2, 'test')

    elif data_name == 'lsvq_train':
        csv_train_file = os.path.join(metadata_path, f'mos_files/{data_name}_MOS_train.csv')
        csv_test_file = os.path.join(metadata_path, f'mos_files/{data_name}_MOS_test.csv')
        X_train, y_train = load_data(csv_train_file, None, train_features, data_name, 'train')
        X_test, y_test = load_data(csv_test_file, None, test_features, data_name, 'test')

    else:
        csv_train_file = os.path.join(metadata_path, f'mos_files/{data_name}_MOS_train.csv')
        csv_test_file = os.path.join(metadata_path, f'mos_files/{data_name}_MOS_test.csv')
        mat_train_file = os.path.join(f'{feature_path}split_train_test/', f'{data_name}_{network_name}_train_features.mat')
        mat_test_file = os.path.join(f'{feature_path}split_train_test/', f'{data_name}_{network_name}_test_features.mat')
        X_train, y_train = load_data(csv_train_file, mat_train_file, None, data_name, 'train')
        X_test, y_test = load_data(csv_test_file, mat_test_file, None, data_name, 'test')

    # standard min-max normalization of traning features
    X_train, y_train, _, _ = preprocess_data(X_train, y_train)
    X_test, y_test, _, _ = preprocess_data(X_test, y_test)

    return X_train, y_train, X_test, y_test

def train_one_epoch(model, train_loader, criterion, optimizer, device):
    """Train the model for one epoch"""
    model.train()
    train_loss = 0.0
    for inputs, targets in train_loader:
        inputs, targets = inputs.to(device), targets.to(device)

        optimizer.zero_grad()
        outputs = model(inputs)
        loss = criterion(outputs, targets.view(-1, 1))
        loss.backward()
        optimizer.step()
        train_loss += loss.item() * inputs.size(0)
    train_loss /= len(train_loader.dataset)
    return train_loss

def evaluate(model, val_loader, criterion, device):
    """Evaluate model performance on validation sets"""
    model.eval()
    val_loss = 0.0
    y_val_pred = []
    with torch.no_grad():
        for inputs, targets in val_loader:
            inputs, targets = inputs.to(device), targets.to(device)

            outputs = model(inputs)
            y_val_pred.extend(outputs.view(-1).tolist())
            loss = criterion(outputs, targets.view(-1, 1))
            val_loss += loss.item() * inputs.size(0)
    val_loss /= len(val_loader.dataset)
    return val_loss, np.array(y_val_pred)

def update_best_model(select_criteria, best_metric, current_val, model):
    is_better = False
    if select_criteria == 'byrmse' and current_val < best_metric:
        is_better = True
    elif select_criteria == 'bykrcc' and current_val > best_metric:
        is_better = True

    if is_better:
        return current_val, copy.deepcopy(model), is_better
    return best_metric, model, is_better

def train_and_evaluate(X_train, y_train, config):
    # parameters
    n_repeats = config['n_repeats']
    n_splits = config['n_splits']
    batch_size = config['batch_size']
    epochs = config['epochs']
    hidden_features = config['hidden_features']
    drop_rate = config['drop_rate']
    loss_type = config['loss_type']
    optimizer_type = config['optimizer_type']
    select_criteria = config['select_criteria']
    initial_lr = config['initial_lr']
    weight_decay = config['weight_decay']
    patience = config['patience']
    l1_w = config['l1_w']
    rank_w = config['rank_w']
    use_swa = config.get('use_swa', False)
    logging.info(f'Parameters - Number of repeats for 80-20 hold out test: {n_repeats}, Number of splits for kfold: {n_splits}, Batch size: {batch_size}, Number of epochs: {epochs}')
    logging.info(f'Network Parameters - hidden_features: {hidden_features}, drop_rate: {drop_rate}, patience: {patience}')
    logging.info(f'Optimizer Parameters - loss_type: {loss_type}, optimizer_type: {optimizer_type}, initial_lr: {initial_lr}, weight_decay: {weight_decay}, use_swa: {use_swa}')
    logging.info(f'MAEAndRankLoss - l1_w: {l1_w}, rank_w: {rank_w}')

    kf = KFold(n_splits=n_splits, shuffle=True, random_state=42)
    best_model = None
    best_metric = float('inf') if select_criteria == 'byrmse' else float('-inf')

    # loss for every fold
    all_train_losses = []
    all_val_losses = []
    for fold, (train_idx, val_idx) in enumerate(kf.split(X_train)):
        print(f"Fold {fold + 1}/{n_splits}")

        X_train_fold, X_val_fold = X_train[train_idx], X_train[val_idx]
        y_train_fold, y_val_fold = y_train[train_idx], y_train[val_idx]

        # initialisation of model, loss function, optimiser
        model = Mlp(input_features=X_train_fold.shape[1], hidden_features=hidden_features, drop_rate=drop_rate)
        model = model.to(device) # to gpu

        if loss_type == 'MAERankLoss':
            criterion = MAEAndRankLoss()
            criterion.l1_w = l1_w
            criterion.rank_w = rank_w
        else:
            nn.MSELoss()

        if optimizer_type == 'sgd':
            optimizer = optim.SGD(model.parameters(), lr=initial_lr, momentum=0.9, weight_decay=weight_decay)
            scheduler = CosineAnnealingLR(optimizer, T_max=epochs, eta_min=1e-5)# initial eta_nim=1e-5
        else:
            optimizer = optim.Adam(model.parameters(), lr=initial_lr, weight_decay=weight_decay)  # L2 Regularisation initial: 0.01, 1e-5
            scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=2, gamma=0.95)  # step_size=10, gamma=0.1: every 10 epochs lr*0.1
        if use_swa:
            swa_model = AveragedModel(model).to(device)
            swa_scheduler = SWALR(optimizer, swa_lr=initial_lr, anneal_strategy='cos')

        # dataset loader
        train_dataset = TensorDataset(torch.FloatTensor(X_train_fold), torch.FloatTensor(y_train_fold))
        val_dataset = TensorDataset(torch.FloatTensor(X_val_fold), torch.FloatTensor(y_val_fold))
        train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
        val_loader = DataLoader(dataset=val_dataset, batch_size=batch_size, shuffle=False)

        train_losses, val_losses = [], []

        # early stopping parameters
        best_val_loss = float('inf')
        epochs_no_improve = 0
        early_stop_active = False
        swa_start = int(epochs * 0.7) if use_swa else epochs  # SWA starts after 70% of total epochs, only set SWA start if SWA is used

        for epoch in range(epochs):
            train_loss = train_one_epoch(model, train_loader, criterion, optimizer, device)
            train_losses.append(train_loss)
            scheduler.step() # update learning rate
            if use_swa and epoch >= swa_start:
                swa_model.update_parameters(model)
                swa_scheduler.step()
                early_stop_active = True
                print(f"Current learning rate with SWA: {swa_scheduler.get_last_lr()}")

            lr = optimizer.param_groups[0]['lr']
            print('Epoch %d: Learning rate: %f' % (epoch + 1, lr))

            # decide which model to evaluate: SWA model or regular model
            current_model = swa_model if use_swa and epoch >= swa_start else model
            current_model.eval()
            val_loss, y_val_pred = evaluate(current_model, val_loader, criterion, device)
            val_losses.append(val_loss)
            print(f"Epoch {epoch + 1}, Fold {fold + 1}, Training Loss: {train_loss}, Validation Loss: {val_loss}")

            y_val_pred = np.array(list(y_val_pred), dtype=float)
            _, _, rmse_val, _, krcc_val = compute_correlation_metrics(y_val_fold, y_val_pred)
            current_metric = rmse_val if select_criteria == 'byrmse' else krcc_val
            best_metric, best_model, is_better = update_best_model(select_criteria, best_metric, current_metric, current_model)
            if is_better:
                logging.info(f"Epoch {epoch + 1}, Fold {fold + 1}:")
                y_val_pred_logistic_tmp, plcc_valid_tmp, rmse_valid_tmp, srcc_valid_tmp, krcc_valid_tmp = compute_correlation_metrics(y_val_fold, y_val_pred)
                logging.info(f'Validation set - Evaluation Results - SRCC: {srcc_valid_tmp}, KRCC: {krcc_valid_tmp}, PLCC: {plcc_valid_tmp}, RMSE: {rmse_valid_tmp}')

                X_train_fold_tensor = torch.FloatTensor(X_train_fold).to(device)
                y_tra_pred_tmp = best_model(X_train_fold_tensor).detach().cpu().numpy().squeeze()
                y_tra_pred_tmp = np.array(list(y_tra_pred_tmp), dtype=float)
                y_tra_pred_logistic_tmp, plcc_train_tmp, rmse_train_tmp, srcc_train_tmp, krcc_train_tmp = compute_correlation_metrics(y_train_fold, y_tra_pred_tmp)
                logging.info(f'Train set - Evaluation Results - SRCC: {srcc_train_tmp}, KRCC: {krcc_train_tmp}, PLCC: {plcc_train_tmp}, RMSE: {rmse_train_tmp}')

            # check for loss improvement
            if early_stop_active:
                if val_loss < best_val_loss:
                    best_val_loss = val_loss
                    # save the best model if validation loss improves
                    best_model = copy.deepcopy(model)
                    epochs_no_improve = 0
                else:
                    epochs_no_improve += 1
                    if epochs_no_improve >= patience:
                        # epochs to wait for improvement before stopping
                        print(f"Early stopping triggered after {epoch + 1} epochs.")
                        break

        # saving SWA models and updating BN statistics
        if use_swa:
            train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True, collate_fn=lambda x: collate_to_device(x, device))
            best_model = best_model.to(device)
            best_model.eval()
            torch.optim.swa_utils.update_bn(train_loader, best_model)
            # swa_model_path = os.path.join('save_swa_path='../model/', f'model_swa_fold{fold}.pth')
            # torch.save(swa_model.state_dict(), swa_model_path)
            # logging.info(f'SWA model saved at {swa_model_path}')

        all_train_losses.append(train_losses)
        all_val_losses.append(val_losses)
        max_length = max(len(x) for x in all_train_losses)
        all_train_losses = [x + [x[-1]] * (max_length - len(x)) for x in all_train_losses]
        max_length = max(len(x) for x in all_val_losses)
        all_val_losses = [x + [x[-1]] * (max_length - len(x)) for x in all_val_losses]

    return best_model, all_train_losses, all_val_losses

def collate_to_device(batch, device):
    data, targets = zip(*batch)
    return torch.stack(data).to(device), torch.stack(targets).to(device)

def model_test(best_model, X, y, device):
    test_dataset = TensorDataset(torch.FloatTensor(X), torch.FloatTensor(y))
    test_loader = DataLoader(dataset=test_dataset, batch_size=1, shuffle=False)

    best_model.eval()
    y_pred = []
    with torch.no_grad():
        for inputs, _ in test_loader:
            inputs = inputs.to(device)

            outputs = best_model(inputs)
            y_pred.extend(outputs.view(-1).tolist())

    return y_pred

def main(config):
    model_name = config['model_name']
    data_name = config['data_name']
    network_name = config['network_name']

    metadata_path = config['metadata_path']
    feature_path = config['feature_path']
    log_path = config['log_path']
    save_path = config['save_path']
    score_path = config['score_path']
    result_path = config['result_path']

    # parameters
    select_criteria = config['select_criteria']
    n_repeats = config['n_repeats']

    # logging and result
    os.makedirs(log_path, exist_ok=True)
    os.makedirs(save_path, exist_ok=True)
    os.makedirs(score_path, exist_ok=True)
    os.makedirs(result_path, exist_ok=True)
    result_file = f'{result_path}{data_name}_{network_name}_{select_criteria}.mat'
    pred_score_filename = os.path.join(score_path, f"{data_name}_{network_name}_{select_criteria}.csv")
    file_path = os.path.join(save_path, f"{data_name}_{network_name}_{select_criteria}_trained_median_model_param.pth")
    configure_logging(log_path, model_name, data_name, network_name, select_criteria)

    '''======================== Main Body ==========================='''
    PLCC_all_repeats_test = []
    SRCC_all_repeats_test = []
    KRCC_all_repeats_test = []
    RMSE_all_repeats_test = []
    PLCC_all_repeats_train = []
    SRCC_all_repeats_train = []
    KRCC_all_repeats_train = []
    RMSE_all_repeats_train = []
    all_repeats_test_vids = []
    all_repeats_df_test_pred = []
    best_model_list = []

    for i in range(1, n_repeats + 1):
        print(f"{i}th repeated 80-20 hold out test")
        logging.info(f"{i}th repeated 80-20 hold out test")
        t0 = time.time()

        # train test split
        test_size = 0.2
        random_state = math.ceil(8.8 * i)
        # NR: original
        if data_name == 'lsvq_train':
            test_data_name = 'lsvq_test' #lsvq_test, lsvq_test_1080p
            train_features, test_features, test_vids = split_train_test.process_lsvq(data_name, test_data_name, metadata_path, feature_path, network_name)
        elif data_name == 'cross_dataset':
            train_data_name = 'youtube_ugc_all'
            test_data_name = 'cvd_2014_all'
            _, _, test_vids = split_train_test.process_cross_dataset(train_data_name, test_data_name, metadata_path, feature_path, network_name)
        else:
            _, _, test_vids = split_train_test.process_other(data_name, test_size, random_state, metadata_path, feature_path, network_name)

        '''======================== read files =============================== '''
        if data_name == 'lsvq_train':
            X_train, y_train, X_test, y_test = load_and_preprocess_data(metadata_path, feature_path, data_name, network_name, train_features, test_features)
        else:
            X_train, y_train, X_test, y_test = load_and_preprocess_data(metadata_path, feature_path, data_name, network_name, None, None)

        '''======================== regression model =============================== '''
        best_model, all_train_losses, all_val_losses = train_and_evaluate(X_train, y_train, config)

        # average loss plots
        avg_train_losses = np.mean(all_train_losses, axis=0)
        avg_val_losses = np.mean(all_val_losses, axis=0)
        test_vids = test_vids.tolist()
        plot_and_save_losses(avg_train_losses, avg_val_losses, model_name, data_name, network_name, len(test_vids), i)

        # predict best model on the train dataset
        y_train_pred = model_test(best_model, X_train, y_train, device)
        y_train_pred = np.array(list(y_train_pred), dtype=float)
        y_train_pred_logistic, plcc_train, rmse_train, srcc_train, krcc_train = compute_correlation_metrics(y_train, y_train_pred)

        # test best model on the test dataset
        y_test_pred = model_test(best_model, X_test, y_test, device)
        y_test_pred = np.array(list(y_test_pred), dtype=float)
        y_test_pred_logistic, plcc_test, rmse_test, srcc_test, krcc_test = compute_correlation_metrics(y_test, y_test_pred)

        # save the predict score results
        test_pred_score = {'MOS': y_test, 'y_test_pred': y_test_pred, 'y_test_pred_logistic': y_test_pred_logistic}
        df_test_pred = pd.DataFrame(test_pred_score)

        # logging logistic predicted scores
        logging.info("============================================================================================================")
        SRCC_all_repeats_test.append(srcc_test)
        KRCC_all_repeats_test.append(krcc_test)
        PLCC_all_repeats_test.append(plcc_test)
        RMSE_all_repeats_test.append(rmse_test)
        SRCC_all_repeats_train.append(srcc_train)
        KRCC_all_repeats_train.append(krcc_train)
        PLCC_all_repeats_train.append(plcc_train)
        RMSE_all_repeats_train.append(rmse_train)
        all_repeats_test_vids.append(test_vids)
        all_repeats_df_test_pred.append(df_test_pred)
        best_model_list.append(copy.deepcopy(best_model))

        # logging.info results for each iteration
        logging.info('Best results in Mlp model within one split')
        logging.info(f'MODEL: {best_model}')
        logging.info('======================================================')
        logging.info(f'Train set - Evaluation Results')
        logging.info(f'SRCC_train: {srcc_train}')
        logging.info(f'KRCC_train: {krcc_train}')
        logging.info(f'PLCC_train: {plcc_train}')
        logging.info(f'RMSE_train: {rmse_train}')
        logging.info('======================================================')
        logging.info(f'Test set - Evaluation Results')
        logging.info(f'SRCC_test: {srcc_test}')
        logging.info(f'KRCC_test: {krcc_test}')
        logging.info(f'PLCC_test: {plcc_test}')
        logging.info(f'RMSE_test: {rmse_test}')
        logging.info('======================================================')
        logging.info(' -- {} seconds elapsed...\n\n'.format(time.time() - t0))

    logging.info('')
    SRCC_all_repeats_test = np.nan_to_num(SRCC_all_repeats_test)
    KRCC_all_repeats_test = np.nan_to_num(KRCC_all_repeats_test)
    PLCC_all_repeats_test = np.nan_to_num(PLCC_all_repeats_test)
    RMSE_all_repeats_test = np.nan_to_num(RMSE_all_repeats_test)
    SRCC_all_repeats_train = np.nan_to_num(SRCC_all_repeats_train)
    KRCC_all_repeats_train = np.nan_to_num(KRCC_all_repeats_train)
    PLCC_all_repeats_train = np.nan_to_num(PLCC_all_repeats_train)
    RMSE_all_repeats_train = np.nan_to_num(RMSE_all_repeats_train)
    logging.info('======================================================')
    logging.info('Average training results among all repeated 80-20 holdouts:')
    logging.info('SRCC: %f (std: %f)', np.median(SRCC_all_repeats_train), np.std(SRCC_all_repeats_train))
    logging.info('KRCC: %f (std: %f)', np.median(KRCC_all_repeats_train), np.std(KRCC_all_repeats_train))
    logging.info('PLCC: %f (std: %f)', np.median(PLCC_all_repeats_train), np.std(PLCC_all_repeats_train))
    logging.info('RMSE: %f (std: %f)', np.median(RMSE_all_repeats_train), np.std(RMSE_all_repeats_train))
    logging.info('======================================================')
    logging.info('Average testing results among all repeated 80-20 holdouts:')
    logging.info('SRCC: %f (std: %f)', np.median(SRCC_all_repeats_test), np.std(SRCC_all_repeats_test))
    logging.info('KRCC: %f (std: %f)', np.median(KRCC_all_repeats_test), np.std(KRCC_all_repeats_test))
    logging.info('PLCC: %f (std: %f)', np.median(PLCC_all_repeats_test), np.std(PLCC_all_repeats_test))
    logging.info('RMSE: %f (std: %f)', np.median(RMSE_all_repeats_test), np.std(RMSE_all_repeats_test))
    logging.info('======================================================')
    logging.info('\n')

    # find the median model and the index of the median
    print('======================================================')
    if select_criteria == 'byrmse':
        median_metrics = np.median(RMSE_all_repeats_test)
        indices = np.where(RMSE_all_repeats_test == median_metrics)[0]
        select_criteria = select_criteria.replace('by', '').upper()
        print(RMSE_all_repeats_test)
        logging.info(f'all {select_criteria}: {RMSE_all_repeats_test}')
    elif select_criteria == 'bykrcc':
        median_metrics = np.median(KRCC_all_repeats_test)
        indices = np.where(KRCC_all_repeats_test == median_metrics)[0]
        select_criteria = select_criteria.replace('by', '').upper()
        print(KRCC_all_repeats_test)
        logging.info(f'all {select_criteria}: {KRCC_all_repeats_test}')

    median_test_vids = [all_repeats_test_vids[i] for i in indices]
    test_vids = [arr.tolist() for arr in median_test_vids] if len(median_test_vids) > 1 else (median_test_vids[0] if median_test_vids else [])

    # select the model with the first index where the median is located
    # Note: If there are multiple iterations with the same median RMSE, the first index is selected here
    median_model = None
    if len(indices) > 0:
        median_index = indices[0]  # select the first index
        median_model = best_model_list[median_index]
        median_model_df_test_pred = all_repeats_df_test_pred[median_index]

        median_model_df_test_pred.to_csv(pred_score_filename, index=False)
        plot_results(y_test, y_test_pred_logistic, median_model_df_test_pred, model_name, data_name, network_name, select_criteria)

    print(f'Median Metrics: {median_metrics}')
    print(f'Indices: {indices}')
    # print(f'Test Videos: {test_vids}')
    print(f'Best model: {median_model}')

    logging.info(f'median test {select_criteria}: {median_metrics}')
    logging.info(f"Indices of median metrics: {indices}")
    # logging.info(f'Best training and test dataset: {test_vids}')
    logging.info(f'Best model predict score: {median_model_df_test_pred}')
    logging.info(f'Best model: {median_model}')

    # ================================================================================
    # save mats
    scipy.io.savemat(result_file, mdict={'SRCC_train': np.asarray(SRCC_all_repeats_train, dtype=float), \
                            'KRCC_train': np.asarray(KRCC_all_repeats_train, dtype=float), \
                            'PLCC_train': np.asarray(PLCC_all_repeats_train, dtype=float), \
                            'RMSE_train': np.asarray(RMSE_all_repeats_train, dtype=float), \
                            'SRCC_test': np.asarray(SRCC_all_repeats_test, dtype=float), \
                            'KRCC_test': np.asarray(KRCC_all_repeats_test, dtype=float), \
                            'PLCC_test': np.asarray(PLCC_all_repeats_test, dtype=float), \
                            'RMSE_test': np.asarray(RMSE_all_repeats_test, dtype=float), \
                            f'Median_{select_criteria}': median_metrics, \
                            'Test_Videos_list': all_repeats_test_vids, \
                            'Test_videos_Median_model': test_vids, \
                            })

    # save model
    torch.save(median_model.state_dict(), file_path)
    print(f"Model state_dict saved to {file_path}")


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    # input parameters
    parser.add_argument('--model_name', type=str, default='Mlp')
    parser.add_argument('--data_name', type=str, default='lsvq_train', help='konvid_1k, youtube_ugc, live_vqc, cvd_2014, lsvq_train, cross_dataset')
    parser.add_argument('--network_name', type=str, default='relaxvqa', help='relaxvqa, {frag_name}_{network_name}_{layer_name}')

    parser.add_argument('--metadata_path', type=str, default='../metadata/')
    parser.add_argument('--feature_path', type=str, default='../features/')
    parser.add_argument('--log_path', type=str, default='../log/')
    parser.add_argument('--save_path', type=str, default='../model/')
    parser.add_argument('--score_path', type=str, default='../log/predict_score/')
    parser.add_argument('--result_path', type=str, default='../log/result/')
    # training parameters
    parser.add_argument('--select_criteria', type=str, default='byrmse', help='byrmse, bykrcc')
    parser.add_argument('--n_repeats', type=int, default=21, help='Number of repeats for 80-20 hold out test')
    parser.add_argument('--n_splits', type=int, default=10, help='Number of splits for k-fold validation')
    parser.add_argument('--batch_size', type=int, default=256, help='Batch size for training')
    parser.add_argument('--epochs', type=int, default=20, help='Epochs for training') # 120(small), 20(big)
    parser.add_argument('--hidden_features', type=int, default=256, help='Hidden features')
    parser.add_argument('--drop_rate', type=float, default=0.1, help='Dropout rate.')
    # misc
    parser.add_argument('--loss_type', type=str, default='MAERankLoss', help='MSEloss or MAERankLoss')
    parser.add_argument('--optimizer_type', type=str, default='sgd', help='adam or sgd')
    parser.add_argument('--initial_lr', type=float, default=1e-1, help='Initial learning rate: 1e-2')
    parser.add_argument('--weight_decay', type=float, default=0.005, help='Weight decay (L2 loss): 1e-4')
    parser.add_argument('--patience', type=int, default=5, help='Early stopping patience.')
    parser.add_argument('--use_swa', type=bool, default=True, help='Use Stochastic Weight Averaging')
    parser.add_argument('--l1_w', type=float, default=0.6, help='MAE loss weight')
    parser.add_argument('--rank_w', type=float, default=1.0, help='Rank loss weight')

    args = parser.parse_args()
    config = vars(args)  # args to dict
    print(config)

    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    print(device)
    if device.type == "cuda":
        torch.cuda.set_device(0)

    main(config)