Spaces:
Running
on
Zero
Running
on
Zero
import pandas as pd | |
import numpy as np | |
import os | |
from scipy.io import loadmat, savemat | |
from sklearn.model_selection import train_test_split | |
import logging | |
# cross_dataset | |
def process_cross_dataset(train_data_name, test_data_name, metadata_path, feature_path, network_name): | |
metadata_name1 = f"{train_data_name.replace('_all', '').upper()}_metadata.csv" | |
metadata_name2 = f"{test_data_name.replace('_all', '').upper()}_metadata.csv" | |
# load CSV data | |
train_df = pd.read_csv(f'{metadata_path}/{metadata_name1}') | |
test_df = pd.read_csv(f'{metadata_path}/{metadata_name2}') | |
# grayscale videos, do not consider them for fair comparison | |
grey_df_train = pd.read_csv(f"{metadata_path}/greyscale_report/{train_data_name.replace('_all', '').upper()}_greyscale_metadata.csv") | |
grey_df_test = pd.read_csv(f"{metadata_path}/greyscale_report/{test_data_name.replace('_all', '').upper()}_greyscale_metadata.csv") | |
grey_indices_train = grey_df_train.iloc[:, 0].tolist() | |
grey_indices_test = grey_df_test.iloc[:, 0].tolist() | |
train_df = train_df.drop(index=grey_indices_train).reset_index(drop=True) | |
test_df = test_df.drop(index=grey_indices_test).reset_index(drop=True) | |
# split videonames into train and test sets | |
train_vids = train_df.iloc[:, 0] | |
test_vids = test_df.iloc[:, 0] | |
# scores (1-100) map to 1-5 | |
train_scores = train_df['mos'].tolist() | |
test_scores = test_df['mos'].tolist() | |
if train_data_name == 'konvid_1k_all' or train_data_name == 'youtube_ugc_all': | |
train_mos_list = ((np.array(train_scores) - 1) * (99/4) + 1.0).tolist() | |
else: | |
train_mos_list = train_scores | |
if test_data_name == 'konvid_1k_all' or test_data_name == 'youtube_ugc_all': | |
test_mos_list = ((np.array(test_scores) - 1) * (99/4) + 1.0).tolist() | |
else: | |
test_mos_list = test_scores | |
# reorder columns | |
sorted_train_df = pd.DataFrame({'vid': train_df['vid'], 'framerate': train_df['framerate'], 'MOS': train_mos_list, 'MOS_raw': train_df['mos']}) | |
sorted_test_df = pd.DataFrame({'vid': test_df['vid'], 'framerate': test_df['framerate'], 'MOS': test_mos_list, 'MOS_raw': test_df['mos']}) | |
# use indices from the train and test DataFrames to split features | |
train_data = loadmat(f"{feature_path}/{train_data_name.replace('_all', '')}_{network_name}_feats.mat") | |
test_data = loadmat(f"{feature_path}/{test_data_name.replace('_all', '')}_{network_name}_feats.mat") | |
train_features = train_data[f"{train_data_name.replace('_all', '')}"] | |
test_features = test_data[f"{test_data_name.replace('_all', '')}"] | |
train_features = np.delete(train_features, grey_indices_train, axis=0) | |
test_features = np.delete(test_features, grey_indices_test, axis=0) | |
# save the files | |
sorted_train_df.to_csv(f'{metadata_path}mos_files/{train_data_name}_MOS_train.csv', index=False) | |
sorted_test_df.to_csv(f'{metadata_path}mos_files/{test_data_name}_MOS_test.csv', index=False) | |
os.makedirs(os.path.join(feature_path, "split_train_test"), exist_ok=True) | |
savemat(f'{feature_path}/split_train_test/{train_data_name}_{network_name}_cross_train_features.mat', {f'{train_data_name}_train_features': train_features}) | |
savemat(f'{feature_path}/split_train_test/{test_data_name}_{network_name}_cross_test_features.mat', {f'{test_data_name}_test_features': test_features}) | |
return train_features, test_features, test_vids | |
#NR: original | |
def process_lsvq(train_data_name, test_data_name, metadata_path, feature_path, network_name): | |
train_df = pd.read_csv(f'{metadata_path}/{train_data_name.upper()}_metadata.csv') | |
test_df = pd.read_csv(f'{metadata_path}/{test_data_name.upper()}_metadata.csv') | |
# grayscale videos, do not consider them for fair comparison | |
grey_df_train = pd.read_csv(f'{metadata_path}/greyscale_report/{train_data_name.upper()}_greyscale_metadata.csv') | |
grey_df_test = pd.read_csv(f'{metadata_path}/greyscale_report/{test_data_name.upper()}_greyscale_metadata.csv') | |
grey_indices_train = grey_df_train.iloc[:, 0].tolist() | |
grey_indices_test = grey_df_test.iloc[:, 0].tolist() | |
train_df = train_df.drop(index=grey_indices_train).reset_index(drop=True) | |
test_df = test_df.drop(index=grey_indices_test).reset_index(drop=True) | |
test_vids = test_df['vid'] | |
# mos scores | |
train_scores = train_df['mos'].tolist() | |
test_scores = test_df['mos'].tolist() | |
train_mos_list = train_scores | |
test_mos_list = test_scores | |
# reorder columns | |
sorted_train_df = pd.DataFrame({'vid': train_df['vid'], 'framerate': train_df['framerate'], 'MOS': train_mos_list, 'MOS_raw': train_df['mos']}) | |
sorted_test_df = pd.DataFrame({'vid': test_df['vid'], 'framerate': test_df['framerate'], 'MOS': test_mos_list, 'MOS_raw': test_df['mos']}) | |
# use indices from the train and test DataFrames to split features | |
train_data_chunk_1 = loadmat(f'{feature_path}/{train_data_name}_{network_name}_feats_chunk_1.mat')[f'{train_data_name}'] | |
train_data_chunk_2 = loadmat(f'{feature_path}/{train_data_name}_{network_name}_feats_chunk_2.mat')[f'{train_data_name}'] | |
train_data_chunk_3 = loadmat(f'{feature_path}/{train_data_name}_{network_name}_feats_chunk_3.mat')[f'{train_data_name}'] | |
merged_train_data = np.vstack((train_data_chunk_1, train_data_chunk_2, train_data_chunk_3)) | |
print(f"loaded {train_data_name}: dimensions are {merged_train_data.shape}") | |
train_features = merged_train_data | |
test_data = loadmat(f'{feature_path}/{test_data_name}_{network_name}_feats.mat') | |
test_features = test_data[f'{test_data_name}'] | |
train_features = np.delete(train_features, grey_indices_train, axis=0) | |
test_features = np.delete(test_features, grey_indices_test, axis=0) | |
print(len(train_features)) | |
print(len(test_features)) | |
# save the files | |
sorted_train_df.to_csv(f'{metadata_path}mos_files/{train_data_name}_MOS_train.csv', index=False) | |
sorted_test_df.to_csv(f'{metadata_path}mos_files/{train_data_name}_MOS_test.csv', index=False) | |
os.makedirs(os.path.join(feature_path, "split_train_test"), exist_ok=True) | |
# savemat(f'{feature_path}/split_train_test/{train_data_name}_{network_name}_train_features.mat', {f'{train_data_name}_train_features': train_features}) | |
# savemat(f'{feature_path}/split_train_test/{train_data_name}_{network_name}_test_features.mat', {f'{train_data_name}_test_features': test_features}) | |
return train_features, test_features, test_vids | |
def process_other(data_name, test_size, random_state, metadata_path, feature_path, network_name): | |
metadata_name = f'{data_name.upper()}_metadata.csv' | |
if data_name == 'test': | |
metadata_name = f'{data_name}_videos.csv' | |
# load CSV data | |
df = pd.read_csv(f'{metadata_path}/{metadata_name}') | |
if data_name == 'youtube_ugc': | |
# grayscale videos, do not consider them for fair comparison | |
grey_df = pd.read_csv(f'{metadata_path}/greyscale_report/{data_name.upper()}_greyscale_metadata.csv') | |
grey_indices = grey_df.iloc[:, 0].tolist() | |
df = df.drop(index=grey_indices).reset_index(drop=True) | |
# get unique vids | |
unique_vids = df['vid'].unique() | |
# split videonames into train and test sets | |
train_vids, test_vids = train_test_split(unique_vids, test_size=test_size, random_state=random_state) | |
# split all_dfs into train and test based on vids | |
train_df = df[df['vid'].isin(train_vids)] | |
test_df = df[df['vid'].isin(test_vids)] | |
# mos scores | |
train_scores = train_df['mos'].tolist() | |
test_scores = test_df['mos'].tolist() | |
train_mos_list = train_scores | |
test_mos_list = test_scores | |
# reorder columns | |
sorted_train_df = pd.DataFrame({'vid': train_df['vid'], 'framerate': train_df['framerate'], 'MOS': train_mos_list, 'MOS_raw': train_df['mos']}) | |
sorted_test_df = pd.DataFrame({'vid': test_df['vid'], 'framerate': test_df['framerate'], 'MOS': test_mos_list, 'MOS_raw': test_df['mos']}) | |
# use indices from the train and test DataFrames to split features | |
data = loadmat(f'{feature_path}/{data_name}_{network_name}_feats.mat') | |
features = data[f'{data_name}'] | |
if data_name == 'youtube_ugc': | |
features = np.delete(features, grey_indices, axis=0) | |
train_features = features[train_df.index] | |
test_features = features[test_df.index] | |
# save the files | |
sorted_train_df.to_csv(f'{metadata_path}mos_files/{data_name}_MOS_train.csv', index=False) | |
sorted_test_df.to_csv(f'{metadata_path}mos_files/{data_name}_MOS_test.csv', index=False) | |
os.makedirs(os.path.join(feature_path, "split_train_test"), exist_ok=True) | |
savemat(f'{feature_path}/split_train_test/{data_name}_{network_name}_train_features.mat', {f'{data_name}_train_features': train_features}) | |
savemat(f'{feature_path}/split_train_test/{data_name}_{network_name}_test_features.mat', {f'{data_name}_test_features': test_features}) | |
return train_features, test_features, test_vids | |
if __name__ == '__main__': | |
network_name = 'relaxvqa' | |
data_name = "test" | |
metadata_path = '../../metadata/' | |
feature_path = '../../features/' | |
# train test split | |
test_size = 0.2 | |
random_state = None | |
if data_name == 'lsvq_train': | |
test_data_name = 'lsvq_test' | |
process_lsvq(data_name, test_data_name, metadata_path, feature_path, network_name) | |
elif data_name == 'cross_dataset': | |
train_data_name = 'youtube_ugc_all' | |
test_data_name = 'cvd_2014_all' | |
_, _, test_vids = process_cross_dataset(train_data_name, test_data_name, metadata_path, feature_path, network_name) | |
else: | |
process_other(data_name, test_size, random_state, metadata_path, feature_path, network_name) | |