import pandas as pd import numpy as np import os from scipy.io import loadmat, savemat from sklearn.model_selection import train_test_split import logging # cross_dataset def process_cross_dataset(train_data_name, test_data_name, metadata_path, feature_path, network_name): metadata_name1 = f"{train_data_name.replace('_all', '').upper()}_metadata.csv" metadata_name2 = f"{test_data_name.replace('_all', '').upper()}_metadata.csv" # load CSV data train_df = pd.read_csv(f'{metadata_path}/{metadata_name1}') test_df = pd.read_csv(f'{metadata_path}/{metadata_name2}') # grayscale videos, do not consider them for fair comparison grey_df_train = pd.read_csv(f"{metadata_path}/greyscale_report/{train_data_name.replace('_all', '').upper()}_greyscale_metadata.csv") grey_df_test = pd.read_csv(f"{metadata_path}/greyscale_report/{test_data_name.replace('_all', '').upper()}_greyscale_metadata.csv") grey_indices_train = grey_df_train.iloc[:, 0].tolist() grey_indices_test = grey_df_test.iloc[:, 0].tolist() train_df = train_df.drop(index=grey_indices_train).reset_index(drop=True) test_df = test_df.drop(index=grey_indices_test).reset_index(drop=True) # split videonames into train and test sets train_vids = train_df.iloc[:, 0] test_vids = test_df.iloc[:, 0] # scores (1-100) map to 1-5 train_scores = train_df['mos'].tolist() test_scores = test_df['mos'].tolist() if train_data_name == 'konvid_1k_all' or train_data_name == 'youtube_ugc_all': train_mos_list = ((np.array(train_scores) - 1) * (99/4) + 1.0).tolist() else: train_mos_list = train_scores if test_data_name == 'konvid_1k_all' or test_data_name == 'youtube_ugc_all': test_mos_list = ((np.array(test_scores) - 1) * (99/4) + 1.0).tolist() else: test_mos_list = test_scores # reorder columns sorted_train_df = pd.DataFrame({'vid': train_df['vid'], 'framerate': train_df['framerate'], 'MOS': train_mos_list, 'MOS_raw': train_df['mos']}) sorted_test_df = pd.DataFrame({'vid': test_df['vid'], 'framerate': test_df['framerate'], 'MOS': test_mos_list, 'MOS_raw': test_df['mos']}) # use indices from the train and test DataFrames to split features train_data = loadmat(f"{feature_path}/{train_data_name.replace('_all', '')}_{network_name}_feats.mat") test_data = loadmat(f"{feature_path}/{test_data_name.replace('_all', '')}_{network_name}_feats.mat") train_features = train_data[f"{train_data_name.replace('_all', '')}"] test_features = test_data[f"{test_data_name.replace('_all', '')}"] train_features = np.delete(train_features, grey_indices_train, axis=0) test_features = np.delete(test_features, grey_indices_test, axis=0) # save the files sorted_train_df.to_csv(f'{metadata_path}mos_files/{train_data_name}_MOS_train.csv', index=False) sorted_test_df.to_csv(f'{metadata_path}mos_files/{test_data_name}_MOS_test.csv', index=False) os.makedirs(os.path.join(feature_path, "split_train_test"), exist_ok=True) savemat(f'{feature_path}/split_train_test/{train_data_name}_{network_name}_cross_train_features.mat', {f'{train_data_name}_train_features': train_features}) savemat(f'{feature_path}/split_train_test/{test_data_name}_{network_name}_cross_test_features.mat', {f'{test_data_name}_test_features': test_features}) return train_features, test_features, test_vids #NR: original def process_lsvq(train_data_name, test_data_name, metadata_path, feature_path, network_name): train_df = pd.read_csv(f'{metadata_path}/{train_data_name.upper()}_metadata.csv') test_df = pd.read_csv(f'{metadata_path}/{test_data_name.upper()}_metadata.csv') # grayscale videos, do not consider them for fair comparison grey_df_train = pd.read_csv(f'{metadata_path}/greyscale_report/{train_data_name.upper()}_greyscale_metadata.csv') grey_df_test = pd.read_csv(f'{metadata_path}/greyscale_report/{test_data_name.upper()}_greyscale_metadata.csv') grey_indices_train = grey_df_train.iloc[:, 0].tolist() grey_indices_test = grey_df_test.iloc[:, 0].tolist() train_df = train_df.drop(index=grey_indices_train).reset_index(drop=True) test_df = test_df.drop(index=grey_indices_test).reset_index(drop=True) test_vids = test_df['vid'] # mos scores train_scores = train_df['mos'].tolist() test_scores = test_df['mos'].tolist() train_mos_list = train_scores test_mos_list = test_scores # reorder columns sorted_train_df = pd.DataFrame({'vid': train_df['vid'], 'framerate': train_df['framerate'], 'MOS': train_mos_list, 'MOS_raw': train_df['mos']}) sorted_test_df = pd.DataFrame({'vid': test_df['vid'], 'framerate': test_df['framerate'], 'MOS': test_mos_list, 'MOS_raw': test_df['mos']}) # use indices from the train and test DataFrames to split features train_data_chunk_1 = loadmat(f'{feature_path}/{train_data_name}_{network_name}_feats_chunk_1.mat')[f'{train_data_name}'] train_data_chunk_2 = loadmat(f'{feature_path}/{train_data_name}_{network_name}_feats_chunk_2.mat')[f'{train_data_name}'] train_data_chunk_3 = loadmat(f'{feature_path}/{train_data_name}_{network_name}_feats_chunk_3.mat')[f'{train_data_name}'] merged_train_data = np.vstack((train_data_chunk_1, train_data_chunk_2, train_data_chunk_3)) print(f"loaded {train_data_name}: dimensions are {merged_train_data.shape}") train_features = merged_train_data test_data = loadmat(f'{feature_path}/{test_data_name}_{network_name}_feats.mat') test_features = test_data[f'{test_data_name}'] train_features = np.delete(train_features, grey_indices_train, axis=0) test_features = np.delete(test_features, grey_indices_test, axis=0) print(len(train_features)) print(len(test_features)) # save the files sorted_train_df.to_csv(f'{metadata_path}mos_files/{train_data_name}_MOS_train.csv', index=False) sorted_test_df.to_csv(f'{metadata_path}mos_files/{train_data_name}_MOS_test.csv', index=False) os.makedirs(os.path.join(feature_path, "split_train_test"), exist_ok=True) # savemat(f'{feature_path}/split_train_test/{train_data_name}_{network_name}_train_features.mat', {f'{train_data_name}_train_features': train_features}) # savemat(f'{feature_path}/split_train_test/{train_data_name}_{network_name}_test_features.mat', {f'{train_data_name}_test_features': test_features}) return train_features, test_features, test_vids def process_other(data_name, test_size, random_state, metadata_path, feature_path, network_name): metadata_name = f'{data_name.upper()}_metadata.csv' if data_name == 'test': metadata_name = f'{data_name}_videos.csv' # load CSV data df = pd.read_csv(f'{metadata_path}/{metadata_name}') if data_name == 'youtube_ugc': # grayscale videos, do not consider them for fair comparison grey_df = pd.read_csv(f'{metadata_path}/greyscale_report/{data_name.upper()}_greyscale_metadata.csv') grey_indices = grey_df.iloc[:, 0].tolist() df = df.drop(index=grey_indices).reset_index(drop=True) # get unique vids unique_vids = df['vid'].unique() # split videonames into train and test sets train_vids, test_vids = train_test_split(unique_vids, test_size=test_size, random_state=random_state) # split all_dfs into train and test based on vids train_df = df[df['vid'].isin(train_vids)] test_df = df[df['vid'].isin(test_vids)] # mos scores train_scores = train_df['mos'].tolist() test_scores = test_df['mos'].tolist() train_mos_list = train_scores test_mos_list = test_scores # reorder columns sorted_train_df = pd.DataFrame({'vid': train_df['vid'], 'framerate': train_df['framerate'], 'MOS': train_mos_list, 'MOS_raw': train_df['mos']}) sorted_test_df = pd.DataFrame({'vid': test_df['vid'], 'framerate': test_df['framerate'], 'MOS': test_mos_list, 'MOS_raw': test_df['mos']}) # use indices from the train and test DataFrames to split features data = loadmat(f'{feature_path}/{data_name}_{network_name}_feats.mat') features = data[f'{data_name}'] if data_name == 'youtube_ugc': features = np.delete(features, grey_indices, axis=0) train_features = features[train_df.index] test_features = features[test_df.index] # save the files sorted_train_df.to_csv(f'{metadata_path}mos_files/{data_name}_MOS_train.csv', index=False) sorted_test_df.to_csv(f'{metadata_path}mos_files/{data_name}_MOS_test.csv', index=False) os.makedirs(os.path.join(feature_path, "split_train_test"), exist_ok=True) savemat(f'{feature_path}/split_train_test/{data_name}_{network_name}_train_features.mat', {f'{data_name}_train_features': train_features}) savemat(f'{feature_path}/split_train_test/{data_name}_{network_name}_test_features.mat', {f'{data_name}_test_features': test_features}) return train_features, test_features, test_vids if __name__ == '__main__': network_name = 'relaxvqa' data_name = "test" metadata_path = '../../metadata/' feature_path = '../../features/' # train test split test_size = 0.2 random_state = None if data_name == 'lsvq_train': test_data_name = 'lsvq_test' process_lsvq(data_name, test_data_name, metadata_path, feature_path, network_name) elif data_name == 'cross_dataset': train_data_name = 'youtube_ugc_all' test_data_name = 'cvd_2014_all' _, _, test_vids = process_cross_dataset(train_data_name, test_data_name, metadata_path, feature_path, network_name) else: process_other(data_name, test_size, random_state, metadata_path, feature_path, network_name)