File size: 9,363 Bytes
4fc655e 0706fd4 cb33705 4fc655e cb33705 4fc655e cb33705 1858ad7 cb33705 1858ad7 cb33705 0706fd4 cb33705 4fc655e 047453c cb33705 0706fd4 cb33705 1858ad7 cb33705 0706fd4 1858ad7 cb33705 1858ad7 cb33705 4fc655e 1858ad7 4fc655e 1858ad7 4fc655e 047453c 4fc655e 047453c 1858ad7 047453c 1858ad7 0706fd4 047453c 4fc655e 1858ad7 047453c 1858ad7 047453c 1858ad7 4fc655e 1858ad7 1efd005 885d900 1efd005 4fc655e 1efd005 4fc655e 1efd005 4fc655e 1efd005 4fc655e 90172ea 4fc655e 90172ea 4fc655e 1efd005 4fc655e 047453c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
import gradio as gr
import torch
from transformers import AutoConfig
from transformers import AutoTokenizer, AutoModel
from PIL import Image
import numpy as np
import spaces # Import spaces for ZeroGPU compatibility
from einops import rearrange
PROMPT_TEMPLATE = dict(
SYSTEM='<|im_start|>system\n{system}<|im_end|>\n',
INSTRUCTION='<|im_start|>user\n{input}<|im_end|>\n<|im_start|>assistant\n',
SUFFIX='<|im_end|>',
SUFFIX_AS_EOS=True,
SEP='\n',
STOP_WORDS=['<|im_end|>', '<|endoftext|>'])
GENERATION_TEMPLATE = "Generate an image: {text}"
model_path = "wusize/Harmon-1_5B"
config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
llm_config = config.llm
llm_config['_attn_implementation'] = 'eager'
harmon_tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
harmon_model = AutoModel.from_pretrained(model_path, llm=llm_config,
trust_remote_code=True).eval()
special_tokens_dict = {'additional_special_tokens': ["<image>", ]}
num_added_toks = harmon_tokenizer.add_special_tokens(special_tokens_dict)
assert num_added_toks == 1
image_token_idx = harmon_tokenizer.encode("<image>", add_special_tokens=False)[-1]
print(f"Image token: {harmon_tokenizer.decode(image_token_idx)}", flush=True)
if torch.cuda.is_available():
harmon_model = harmon_model.to(torch.bfloat16).cuda()
else:
harmon_model = harmon_model.to(torch.float32)
def expand2square(pil_img, background_color):
width, height = pil_img.size
if width == height:
return pil_img
elif width > height:
result = Image.new(pil_img.mode, (width, width), background_color)
result.paste(pil_img, (0, (width - height) // 2))
return result
else:
result = Image.new(pil_img.mode, (height, height), background_color)
result.paste(pil_img, ((height - width) // 2, 0))
return result
@torch.inference_mode()
@spaces.GPU(duration=120)
# Multimodal Understanding function
def multimodal_understanding(image, question, seed, top_p, temperature, progress=gr.Progress(track_tqdm=True)):
# Clear CUDA cache before generating
torch.cuda.empty_cache()
# set seed
# torch.manual_seed(seed)
# np.random.seed(seed)
# torch.cuda.manual_seed(seed)
print(torch.cuda.is_available())
max_new_tokens = 512
image_size = 512
assert image_size == 512
image = Image.fromarray(image).convert('RGB')
image = expand2square(
image, (127, 127, 127))
image = image.resize(size=(image_size, image_size))
image = torch.from_numpy(np.array(image)).to(dtype=harmon_model.dtype, device=harmon_model.device)
image = rearrange(image, 'h w c -> c h w')[None]
image = 2 * (image / 255) - 1
prompt = PROMPT_TEMPLATE['INSTRUCTION'].format(input="<image>\n" + question)
assert '<image>' in prompt
image_length = (image_size // 16) ** 2 + harmon_model.mar.buffer_size
prompt = prompt.replace('<image>', '<image>' * image_length)
input_ids = harmon_tokenizer.encode(
prompt, add_special_tokens=True, return_tensors='pt').to(harmon_model.device)
_, z_enc = harmon_model.extract_visual_feature(harmon_model.encode(image))
inputs_embeds = z_enc.new_zeros(*input_ids.shape, harmon_model.llm.config.hidden_size)
inputs_embeds[input_ids == image_token_idx] = z_enc.flatten(0, 1)
inputs_embeds[input_ids != image_token_idx] = harmon_model.llm.get_input_embeddings()(
input_ids[input_ids != image_token_idx]
)
output = harmon_model.llm.generate(inputs_embeds=inputs_embeds,
eos_token_id=harmon_tokenizer.eos_token_id,
pad_token_id=harmon_tokenizer.pad_token_id
if harmon_tokenizer.pad_token_id is not None else
harmon_tokenizer.eos_token_id,
max_new_tokens=max_new_tokens,
do_sample=False, # if temperature == 0 else True,
use_cache=True,
# temperature=temperature,
# top_p=top_p
)
return harmon_tokenizer.decode(output[0], skip_special_tokens=True)
@torch.inference_mode()
@spaces.GPU(duration=120) # Specify a duration to avoid timeout
def generate_image(prompt,
seed=42,
guidance=3,
t2i_temperature=1.0,
progress=gr.Progress(track_tqdm=True)):
# Clear CUDA cache and avoid tracking gradients
torch.cuda.empty_cache()
# Set the seed for reproducible results
# if seed is not None:
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
np.random.seed(seed)
print(torch.cuda.is_available())
negative_prompt = 'Generate an image.'
prompt = GENERATION_TEMPLATE.format(text=prompt)
repeat = 4
num_steps = 64
image_size = 512
assert image_size == 512
m = n = image_size // 16
prompts = [PROMPT_TEMPLATE['INSTRUCTION'].format(input=prompt)] * repeat
if guidance != 1.0:
prompts += [PROMPT_TEMPLATE['INSTRUCTION'].format(input=negative_prompt)] * len(prompts)
inputs = harmon_tokenizer(
prompts, add_special_tokens=True, return_tensors='pt', padding=True).to(harmon_model.device)
# import pdb; pdb.set_trace()
with torch.no_grad():
images = harmon_model.sample(**inputs, num_iter=num_steps, cfg=guidance, cfg_schedule="constant",
temperature=t2i_temperature, progress=True, image_shape=(m, n))
images = rearrange(images, 'b c h w -> b h w c')
images = torch.clamp(
127.5 * images + 128.0, 0, 255).to("cpu", dtype=torch.uint8).numpy()
# ret_images = [image_upsample(Image.fromarray(image)) for image in images]
ret_images = [Image.fromarray(image) for image in images]
return ret_images
# Gradio interface
css = '''
.gradio-container {max-width: 960px !important}
'''
with gr.Blocks(css=css) as demo:
gr.Markdown("# Harmon 1.5B")
with gr.Tab("Text-to-Image Generation"):
gr.Markdown(value="## Text-to-Image Generation")
prompt_input = gr.Textbox(label="Prompt.")
generation_button = gr.Button("Generate Images")
image_output = gr.Gallery(label="Generated Images", columns=4, rows=1)
with gr.Accordion("Advanced options", open=False):
with gr.Row():
cfg_weight_input = gr.Slider(minimum=1, maximum=10, value=5, step=0.5, label="CFG Weight")
t2i_temperature = gr.Slider(minimum=0, maximum=1, value=1.0, step=0.05, label="temperature")
seed_input = gr.Number(label="Seed (Optional)", precision=0, value=1234)
examples_t2i = gr.Examples(
label="Text to image generation examples.",
examples=[
"a dog on the left and a cat on the right.",
"a photo of a pink stop sign.",
"Paper artwork, layered paper, colorful Chinese dragon surrounded by clouds.",
"a golden retriever lying peacefully on a wooden porch, with autumn leaves scattered around.",
],
inputs=prompt_input,
)
with gr.Tab("Multimodal Understanding"):
gr.Markdown(value="## Multimodal Understanding")
image_input = gr.Image()
with gr.Column():
question_input = gr.Textbox(label="Question")
understanding_button = gr.Button("Chat")
understanding_output = gr.Textbox(label="Response")
with gr.Accordion("Advanced options", open=False):
und_seed_input = gr.Number(label="Seed", precision=0, value=42)
top_p = gr.Slider(minimum=0, maximum=1, value=0.95, step=0.05, label="top_p")
temperature = gr.Slider(minimum=0, maximum=1, value=0.1, step=0.05, label="temperature")
examples_inpainting = gr.Examples(
label="Multimodal Understanding examples",
examples=[
[
"Is the picture taken in winter?",
"view.jpg",
],
[
"Briefly describe the image.",
"view.jpg",
],
],
inputs=[question_input, image_input],
)
generation_button.click(
fn=generate_image,
inputs=[prompt_input, seed_input, cfg_weight_input, t2i_temperature],
outputs=image_output
)
understanding_button.click(
multimodal_understanding,
inputs=[image_input, question_input, und_seed_input, top_p, temperature],
outputs=understanding_output
)
demo.launch(share=True)
# if __name__ == "__main__":
# image = Image.open('view.jpg')
# image = np.array(image)
# print(image.shape)
# # text = multimodal_understanding(image, question='Is the picture taken in winter?', seed=42, top_p=None, temperature=None)
# # print(text)
# res = generate_image('Paper artwork, layered paper, colorful Chinese dragon surrounded by clouds.')
# for idx, img in enumerate(res):
# img.save(f"{idx}.jpg")
|