File size: 9,363 Bytes
4fc655e
 
0706fd4
cb33705
4fc655e
 
 
 
cb33705
4fc655e
 
cb33705
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1858ad7
cb33705
 
 
 
 
 
 
 
 
 
1858ad7
cb33705
0706fd4
cb33705
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4fc655e
 
 
 
 
 
 
 
047453c
 
 
 
cb33705
 
 
 
 
 
 
 
 
0706fd4
cb33705
 
 
 
 
1858ad7
cb33705
 
0706fd4
1858ad7
 
cb33705
1858ad7
cb33705
4fc655e
1858ad7
 
 
 
 
 
 
 
 
 
 
4fc655e
1858ad7
4fc655e
 
 
 
 
047453c
 
4fc655e
 
 
 
 
047453c
 
 
 
 
1858ad7
 
047453c
1858ad7
 
 
 
 
 
 
 
 
 
 
 
 
0706fd4
047453c
4fc655e
1858ad7
 
047453c
1858ad7
 
 
 
 
 
047453c
 
 
1858ad7
4fc655e
 
 
 
 
 
 
 
 
1858ad7
1efd005
 
 
 
 
 
 
 
 
 
 
 
 
885d900
1efd005
 
 
 
 
 
 
 
 
 
 
 
 
4fc655e
 
 
 
 
1efd005
4fc655e
 
1efd005
4fc655e
1efd005
 
 
 
4fc655e
 
 
 
90172ea
 
4fc655e
 
90172ea
 
4fc655e
 
 
 
 
1efd005
 
 
 
 
4fc655e
 
 
 
 
 
 
047453c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import gradio as gr
import torch
from transformers import AutoConfig
from transformers import AutoTokenizer, AutoModel
from PIL import Image

import numpy as np
import spaces  # Import spaces for ZeroGPU compatibility
from einops import rearrange


PROMPT_TEMPLATE = dict(
    SYSTEM='<|im_start|>system\n{system}<|im_end|>\n',
    INSTRUCTION='<|im_start|>user\n{input}<|im_end|>\n<|im_start|>assistant\n',
    SUFFIX='<|im_end|>',
    SUFFIX_AS_EOS=True,
    SEP='\n',
    STOP_WORDS=['<|im_end|>', '<|endoftext|>'])

GENERATION_TEMPLATE = "Generate an image: {text}"


model_path = "wusize/Harmon-1_5B"
config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
llm_config = config.llm
llm_config['_attn_implementation'] = 'eager'
harmon_tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
harmon_model = AutoModel.from_pretrained(model_path, llm=llm_config,
                                         trust_remote_code=True).eval()

special_tokens_dict = {'additional_special_tokens': ["<image>", ]}
num_added_toks = harmon_tokenizer.add_special_tokens(special_tokens_dict)
assert num_added_toks == 1

image_token_idx = harmon_tokenizer.encode("<image>", add_special_tokens=False)[-1]
print(f"Image token: {harmon_tokenizer.decode(image_token_idx)}", flush=True)

if torch.cuda.is_available():
    harmon_model = harmon_model.to(torch.bfloat16).cuda()
else:
    harmon_model = harmon_model.to(torch.float32)


def expand2square(pil_img, background_color):
    width, height = pil_img.size
    if width == height:
        return pil_img
    elif width > height:
        result = Image.new(pil_img.mode, (width, width), background_color)
        result.paste(pil_img, (0, (width - height) // 2))
        return result
    else:
        result = Image.new(pil_img.mode, (height, height), background_color)
        result.paste(pil_img, ((height - width) // 2, 0))
        return result


@torch.inference_mode()
@spaces.GPU(duration=120) 
# Multimodal Understanding function
def multimodal_understanding(image, question, seed, top_p, temperature, progress=gr.Progress(track_tqdm=True)):
    # Clear CUDA cache before generating
    torch.cuda.empty_cache()
    
    # set seed
    # torch.manual_seed(seed)
    # np.random.seed(seed)
    # torch.cuda.manual_seed(seed)
    print(torch.cuda.is_available())

    max_new_tokens = 512
    image_size = 512

    assert image_size == 512
    image = Image.fromarray(image).convert('RGB')
    image = expand2square(
        image, (127, 127, 127))
    image = image.resize(size=(image_size, image_size))
    image = torch.from_numpy(np.array(image)).to(dtype=harmon_model.dtype, device=harmon_model.device)
    image = rearrange(image, 'h w c -> c h w')[None]
    image = 2 * (image / 255) - 1

    prompt = PROMPT_TEMPLATE['INSTRUCTION'].format(input="<image>\n" + question)
    assert '<image>' in prompt
    image_length = (image_size // 16) ** 2 + harmon_model.mar.buffer_size
    prompt = prompt.replace('<image>', '<image>' * image_length)
    input_ids = harmon_tokenizer.encode(
        prompt, add_special_tokens=True, return_tensors='pt').to(harmon_model.device)
    _, z_enc = harmon_model.extract_visual_feature(harmon_model.encode(image))
    inputs_embeds = z_enc.new_zeros(*input_ids.shape, harmon_model.llm.config.hidden_size)
    inputs_embeds[input_ids == image_token_idx] = z_enc.flatten(0, 1)
    inputs_embeds[input_ids != image_token_idx] = harmon_model.llm.get_input_embeddings()(
        input_ids[input_ids != image_token_idx]
    )
    output = harmon_model.llm.generate(inputs_embeds=inputs_embeds,
                                       eos_token_id=harmon_tokenizer.eos_token_id,
                                       pad_token_id=harmon_tokenizer.pad_token_id
                                       if harmon_tokenizer.pad_token_id is not None else
                                       harmon_tokenizer.eos_token_id,
                                       max_new_tokens=max_new_tokens,
                                       do_sample=False,  # if temperature == 0 else True,
                                       use_cache=True,
                                       # temperature=temperature,
                                       # top_p=top_p
                                       )

    return harmon_tokenizer.decode(output[0],  skip_special_tokens=True)


@torch.inference_mode()
@spaces.GPU(duration=120)  # Specify a duration to avoid timeout
def generate_image(prompt,
                   seed=42,
                   guidance=3,
                   t2i_temperature=1.0,
                   progress=gr.Progress(track_tqdm=True)):
    # Clear CUDA cache and avoid tracking gradients
    torch.cuda.empty_cache()
    # Set the seed for reproducible results
    # if seed is not None:
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    np.random.seed(seed)
    print(torch.cuda.is_available())

    negative_prompt = 'Generate an image.'
    prompt = GENERATION_TEMPLATE.format(text=prompt)
    repeat = 4
    num_steps = 64
    image_size = 512

    assert image_size == 512
    m = n = image_size // 16

    prompts = [PROMPT_TEMPLATE['INSTRUCTION'].format(input=prompt)] * repeat

    if guidance != 1.0:
        prompts += [PROMPT_TEMPLATE['INSTRUCTION'].format(input=negative_prompt)] * len(prompts)

    inputs = harmon_tokenizer(
        prompts, add_special_tokens=True, return_tensors='pt', padding=True).to(harmon_model.device)
    # import pdb; pdb.set_trace()
    with torch.no_grad():

        images = harmon_model.sample(**inputs, num_iter=num_steps, cfg=guidance, cfg_schedule="constant",
                                     temperature=t2i_temperature, progress=True, image_shape=(m, n))

        images = rearrange(images, 'b c h w -> b h w c')

        images = torch.clamp(
            127.5 * images + 128.0, 0, 255).to("cpu", dtype=torch.uint8).numpy()

        # ret_images = [image_upsample(Image.fromarray(image)) for image in images]
        ret_images = [Image.fromarray(image) for image in images]


        return ret_images



# Gradio interface
css = '''
.gradio-container {max-width: 960px !important}
'''
with gr.Blocks(css=css) as demo:
    gr.Markdown("# Harmon 1.5B")

    with gr.Tab("Text-to-Image Generation"):
        gr.Markdown(value="## Text-to-Image Generation")

        prompt_input = gr.Textbox(label="Prompt.")
    
        generation_button = gr.Button("Generate Images")
    
        image_output = gr.Gallery(label="Generated Images", columns=4, rows=1)

        with gr.Accordion("Advanced options", open=False):
            with gr.Row():
                cfg_weight_input = gr.Slider(minimum=1, maximum=10, value=5, step=0.5, label="CFG Weight")
                t2i_temperature = gr.Slider(minimum=0, maximum=1, value=1.0, step=0.05, label="temperature")
            seed_input = gr.Number(label="Seed (Optional)", precision=0, value=1234)
    
        examples_t2i = gr.Examples(
            label="Text to image generation examples.",
            examples=[
                "a dog on the left and a cat on the right.",
                "a photo of a pink stop sign.",
                "Paper artwork, layered paper, colorful Chinese dragon surrounded by clouds.",
                "a golden retriever lying peacefully on a wooden porch, with autumn leaves scattered around.",
            ],
            inputs=prompt_input,
        )

    with gr.Tab("Multimodal Understanding"):
        gr.Markdown(value="## Multimodal Understanding")
        image_input = gr.Image()
        with gr.Column():
            question_input = gr.Textbox(label="Question")

        understanding_button = gr.Button("Chat")
        understanding_output = gr.Textbox(label="Response")

        with gr.Accordion("Advanced options", open=False):
            und_seed_input = gr.Number(label="Seed", precision=0, value=42)
            top_p = gr.Slider(minimum=0, maximum=1, value=0.95, step=0.05, label="top_p")
            temperature = gr.Slider(minimum=0, maximum=1, value=0.1, step=0.05, label="temperature")

        examples_inpainting = gr.Examples(
            label="Multimodal Understanding examples",
            examples=[
                [
                    "Is the picture taken in winter?",
                    "view.jpg",
                ],
                [
                    "Briefly describe the image.",
                    "view.jpg",
                ],
            ],
            inputs=[question_input, image_input],
        )

    generation_button.click(
        fn=generate_image,
        inputs=[prompt_input, seed_input, cfg_weight_input, t2i_temperature],
        outputs=image_output
    )

    understanding_button.click(
        multimodal_understanding,
        inputs=[image_input, question_input, und_seed_input, top_p, temperature],
        outputs=understanding_output
    )

demo.launch(share=True)

# if __name__ == "__main__":
#     image = Image.open('view.jpg')
#     image = np.array(image)
#     print(image.shape)
#     # text = multimodal_understanding(image, question='Is the picture taken in winter?', seed=42, top_p=None, temperature=None)

#     # print(text)

#     res = generate_image('Paper artwork, layered paper, colorful Chinese dragon surrounded by clouds.')

#     for idx, img in enumerate(res):
#         img.save(f"{idx}.jpg")