wusize commited on
Commit
4fc655e
·
verified ·
1 Parent(s): 35d7231

Upload app.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. app.py +274 -0
app.py ADDED
@@ -0,0 +1,274 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import torch
3
+ from transformers import AutoConfig, AutoModelForCausalLM
4
+ from janus.models import MultiModalityCausalLM, VLChatProcessor
5
+ from janus.utils.io import load_pil_images
6
+ from PIL import Image
7
+
8
+ import numpy as np
9
+ import os
10
+ import time
11
+ from Upsample import RealESRGAN
12
+ import spaces # Import spaces for ZeroGPU compatibility
13
+
14
+
15
+ # Load model and processor
16
+ model_path = "deepseek-ai/Janus-Pro-7B"
17
+ config = AutoConfig.from_pretrained(model_path)
18
+ language_config = config.language_config
19
+ language_config._attn_implementation = 'eager'
20
+ vl_gpt = AutoModelForCausalLM.from_pretrained(model_path,
21
+ language_config=language_config,
22
+ trust_remote_code=True)
23
+ if torch.cuda.is_available():
24
+ vl_gpt = vl_gpt.to(torch.bfloat16).cuda()
25
+ else:
26
+ vl_gpt = vl_gpt.to(torch.float16)
27
+
28
+ vl_chat_processor = VLChatProcessor.from_pretrained(model_path)
29
+ tokenizer = vl_chat_processor.tokenizer
30
+ cuda_device = 'cuda' if torch.cuda.is_available() else 'cpu'
31
+
32
+ # SR model
33
+ sr_model = RealESRGAN(torch.device('cuda' if torch.cuda.is_available() else 'cpu'), scale=2)
34
+ sr_model.load_weights(f'weights/RealESRGAN_x2.pth', download=False)
35
+
36
+ @torch.inference_mode()
37
+ @spaces.GPU(duration=120)
38
+ # Multimodal Understanding function
39
+ def multimodal_understanding(image, question, seed, top_p, temperature, progress=gr.Progress(track_tqdm=True)):
40
+ # Clear CUDA cache before generating
41
+ torch.cuda.empty_cache()
42
+
43
+ # set seed
44
+ torch.manual_seed(seed)
45
+ np.random.seed(seed)
46
+ torch.cuda.manual_seed(seed)
47
+
48
+ conversation = [
49
+ {
50
+ "role": "<|User|>",
51
+ "content": f"<image_placeholder>\n{question}",
52
+ "images": [image],
53
+ },
54
+ {"role": "<|Assistant|>", "content": ""},
55
+ ]
56
+
57
+ pil_images = [Image.fromarray(image)]
58
+ prepare_inputs = vl_chat_processor(
59
+ conversations=conversation, images=pil_images, force_batchify=True
60
+ ).to(cuda_device, dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float16)
61
+
62
+
63
+ inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs)
64
+
65
+ outputs = vl_gpt.language_model.generate(
66
+ inputs_embeds=inputs_embeds,
67
+ attention_mask=prepare_inputs.attention_mask,
68
+ pad_token_id=tokenizer.eos_token_id,
69
+ bos_token_id=tokenizer.bos_token_id,
70
+ eos_token_id=tokenizer.eos_token_id,
71
+ max_new_tokens=512,
72
+ do_sample=False if temperature == 0 else True,
73
+ use_cache=True,
74
+ temperature=temperature,
75
+ top_p=top_p,
76
+ )
77
+
78
+ answer = tokenizer.decode(outputs[0].cpu().tolist(), skip_special_tokens=True)
79
+ return answer
80
+
81
+
82
+ def generate(input_ids,
83
+ width,
84
+ height,
85
+ temperature: float = 1,
86
+ parallel_size: int = 5,
87
+ cfg_weight: float = 5,
88
+ image_token_num_per_image: int = 576,
89
+ patch_size: int = 16,
90
+ progress=gr.Progress(track_tqdm=True)):
91
+ # Clear CUDA cache before generating
92
+ torch.cuda.empty_cache()
93
+
94
+ tokens = torch.zeros((parallel_size * 2, len(input_ids)), dtype=torch.int).to(cuda_device)
95
+ for i in range(parallel_size * 2):
96
+ tokens[i, :] = input_ids
97
+ if i % 2 != 0:
98
+ tokens[i, 1:-1] = vl_chat_processor.pad_id
99
+ inputs_embeds = vl_gpt.language_model.get_input_embeddings()(tokens)
100
+ generated_tokens = torch.zeros((parallel_size, image_token_num_per_image), dtype=torch.int).to(cuda_device)
101
+
102
+ pkv = None
103
+ for i in range(image_token_num_per_image):
104
+ with torch.no_grad():
105
+ outputs = vl_gpt.language_model.model(inputs_embeds=inputs_embeds,
106
+ use_cache=True,
107
+ past_key_values=pkv)
108
+ pkv = outputs.past_key_values
109
+ hidden_states = outputs.last_hidden_state
110
+ logits = vl_gpt.gen_head(hidden_states[:, -1, :])
111
+ logit_cond = logits[0::2, :]
112
+ logit_uncond = logits[1::2, :]
113
+ logits = logit_uncond + cfg_weight * (logit_cond - logit_uncond)
114
+ probs = torch.softmax(logits / temperature, dim=-1)
115
+ next_token = torch.multinomial(probs, num_samples=1)
116
+ generated_tokens[:, i] = next_token.squeeze(dim=-1)
117
+ next_token = torch.cat([next_token.unsqueeze(dim=1), next_token.unsqueeze(dim=1)], dim=1).view(-1)
118
+
119
+ img_embeds = vl_gpt.prepare_gen_img_embeds(next_token)
120
+ inputs_embeds = img_embeds.unsqueeze(dim=1)
121
+
122
+
123
+
124
+ patches = vl_gpt.gen_vision_model.decode_code(generated_tokens.to(dtype=torch.int),
125
+ shape=[parallel_size, 8, width // patch_size, height // patch_size])
126
+
127
+ return generated_tokens.to(dtype=torch.int), patches
128
+
129
+ def unpack(dec, width, height, parallel_size=5):
130
+ dec = dec.to(torch.float32).cpu().numpy().transpose(0, 2, 3, 1)
131
+ dec = np.clip((dec + 1) / 2 * 255, 0, 255)
132
+
133
+ visual_img = np.zeros((parallel_size, width, height, 3), dtype=np.uint8)
134
+ visual_img[:, :, :] = dec
135
+
136
+ return visual_img
137
+
138
+
139
+
140
+ @torch.inference_mode()
141
+ @spaces.GPU(duration=120) # Specify a duration to avoid timeout
142
+ def generate_image(prompt,
143
+ seed=None,
144
+ guidance=5,
145
+ t2i_temperature=1.0,
146
+ progress=gr.Progress(track_tqdm=True)):
147
+ # Clear CUDA cache and avoid tracking gradients
148
+ torch.cuda.empty_cache()
149
+ # Set the seed for reproducible results
150
+ if seed is not None:
151
+ torch.manual_seed(seed)
152
+ torch.cuda.manual_seed(seed)
153
+ np.random.seed(seed)
154
+ width = 384
155
+ height = 384
156
+ parallel_size = 4
157
+
158
+ with torch.no_grad():
159
+ messages = [{'role': '<|User|>', 'content': prompt},
160
+ {'role': '<|Assistant|>', 'content': ''}]
161
+ text = vl_chat_processor.apply_sft_template_for_multi_turn_prompts(conversations=messages,
162
+ sft_format=vl_chat_processor.sft_format,
163
+ system_prompt='')
164
+ text = text + vl_chat_processor.image_start_tag
165
+
166
+ input_ids = torch.LongTensor(tokenizer.encode(text))
167
+ output, patches = generate(input_ids,
168
+ width // 16 * 16,
169
+ height // 16 * 16,
170
+ cfg_weight=guidance,
171
+ parallel_size=parallel_size,
172
+ temperature=t2i_temperature)
173
+ images = unpack(patches,
174
+ width // 16 * 16,
175
+ height // 16 * 16,
176
+ parallel_size=parallel_size)
177
+
178
+ # return [Image.fromarray(images[i]).resize((768, 768), Image.LANCZOS) for i in range(parallel_size)]
179
+ stime = time.time()
180
+ ret_images = [image_upsample(Image.fromarray(images[i])) for i in range(parallel_size)]
181
+ print(f'upsample time: {time.time() - stime}')
182
+ return ret_images
183
+
184
+
185
+ @spaces.GPU(duration=60)
186
+ def image_upsample(img: Image.Image) -> Image.Image:
187
+ if img is None:
188
+ raise Exception("Image not uploaded")
189
+
190
+ width, height = img.size
191
+
192
+ if width >= 5000 or height >= 5000:
193
+ raise Exception("The image is too large.")
194
+
195
+ global sr_model
196
+ result = sr_model.predict(img.convert('RGB'))
197
+ return result
198
+
199
+
200
+ # Gradio interface
201
+ css = '''
202
+ .gradio-container {max-width: 960px !important}
203
+ '''
204
+ with gr.Blocks(css=css) as demo:
205
+ gr.Markdown("# Janus Pro 7B")
206
+ with gr.Tab("Multimodal Understanding"):
207
+ gr.Markdown(value="## Multimodal Understanding")
208
+ image_input = gr.Image()
209
+ with gr.Column():
210
+ question_input = gr.Textbox(label="Question")
211
+
212
+ understanding_button = gr.Button("Chat")
213
+ understanding_output = gr.Textbox(label="Response")
214
+
215
+ with gr.Accordion("Advanced options", open=False):
216
+ und_seed_input = gr.Number(label="Seed", precision=0, value=42)
217
+ top_p = gr.Slider(minimum=0, maximum=1, value=0.95, step=0.05, label="top_p")
218
+ temperature = gr.Slider(minimum=0, maximum=1, value=0.1, step=0.05, label="temperature")
219
+
220
+ examples_inpainting = gr.Examples(
221
+ label="Multimodal Understanding examples",
222
+ examples=[
223
+ [
224
+ "explain this meme",
225
+ "doge.png",
226
+ ],
227
+ [
228
+ "Convert the formula into latex code.",
229
+ "equation.png",
230
+ ],
231
+ ],
232
+ inputs=[question_input, image_input],
233
+ )
234
+
235
+ with gr.Tab("Text-to-Image Generation"):
236
+ gr.Markdown(value="## Text-to-Image Generation")
237
+
238
+ prompt_input = gr.Textbox(label="Prompt. (Prompt in more detail can help produce better images!")
239
+
240
+ generation_button = gr.Button("Generate Images")
241
+
242
+ image_output = gr.Gallery(label="Generated Images", columns=4, rows=1)
243
+
244
+ with gr.Accordion("Advanced options", open=False):
245
+ with gr.Row():
246
+ cfg_weight_input = gr.Slider(minimum=1, maximum=10, value=5, step=0.5, label="CFG Weight")
247
+ t2i_temperature = gr.Slider(minimum=0, maximum=1, value=1.0, step=0.05, label="temperature")
248
+ seed_input = gr.Number(label="Seed (Optional)", precision=0, value=1234)
249
+
250
+ examples_t2i = gr.Examples(
251
+ label="Text to image generation examples.",
252
+ examples=[
253
+ "Master shifu racoon wearing drip attire as a street gangster.",
254
+ "The face of a beautiful girl",
255
+ "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
256
+ "A cute and adorable baby fox with big brown eyes, autumn leaves in the background enchanting,immortal,fluffy, shiny mane,Petals,fairyism,unreal engine 5 and Octane Render,highly detailed, photorealistic, cinematic, natural colors.",
257
+ "The image features an intricately designed eye set against a circular backdrop adorned with ornate swirl patterns that evoke both realism and surrealism. At the center of attention is a strikingly vivid blue iris surrounded by delicate veins radiating outward from the pupil to create depth and intensity. The eyelashes are long and dark, casting subtle shadows on the skin around them which appears smooth yet slightly textured as if aged or weathered over time.\n\nAbove the eye, there's a stone-like structure resembling part of classical architecture, adding layers of mystery and timeless elegance to the composition. This architectural element contrasts sharply but harmoniously with the organic curves surrounding it. Below the eye lies another decorative motif reminiscent of baroque artistry, further enhancing the overall sense of eternity encapsulated within each meticulously crafted detail. \n\nOverall, the atmosphere exudes a mysterious aura intertwined seamlessly with elements suggesting timelessness, achieved through the juxtaposition of realistic textures and surreal artistic flourishes. Each component\u2014from the intricate designs framing the eye to the ancient-looking stone piece above\u2014contributes uniquely towards creating a visually captivating tableau imbued with enigmatic allure.",
258
+ ],
259
+ inputs=prompt_input,
260
+ )
261
+
262
+ understanding_button.click(
263
+ multimodal_understanding,
264
+ inputs=[image_input, question_input, und_seed_input, top_p, temperature],
265
+ outputs=understanding_output
266
+ )
267
+
268
+ generation_button.click(
269
+ fn=generate_image,
270
+ inputs=[prompt_input, seed_input, cfg_weight_input, t2i_temperature],
271
+ outputs=image_output
272
+ )
273
+
274
+ demo.launch(share=True)