wuhp commited on
Commit
a6cb66e
·
verified ·
1 Parent(s): 3b9517f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -4
app.py CHANGED
@@ -131,7 +131,7 @@ def compare_models(
131
  img = img.convert("RGB")
132
 
133
  total_steps = len(models) * 2 # phase 1: load, phase 2: inference
134
- progress = gr.Progress(total=total_steps)
135
 
136
  # ----- Phase 1: preload weights -----
137
  detectors: Dict[str, object] = {}
@@ -140,7 +140,7 @@ def compare_models(
140
  detectors[name] = load_model(name, custom_file)
141
  except Exception as exc:
142
  detectors[name] = exc # store exception for later reporting
143
- progress.update(i, desc=f"Loading {name}")
144
 
145
  # ----- Phase 2: run inference -----
146
  results: List[Image.Image] = []
@@ -154,7 +154,7 @@ def compare_models(
154
  results.append(Image.new("RGB", img.size, (40, 40, 40)))
155
  emsg = str(detector_or_err)
156
  legends[name] = "Unavailable (weights not found)" if "No such file" in emsg or "not found" in emsg else f"ERROR: {emsg.splitlines()[0][:120]}"
157
- progress.update(step_index, desc=f"Skipped {name}")
158
  continue
159
  try:
160
  annotated, latency = run_single_inference(detector_or_err, img, threshold)
@@ -163,7 +163,7 @@ def compare_models(
163
  except Exception as exc:
164
  results.append(Image.new("RGB", img.size, (40, 40, 40)))
165
  legends[name] = f"ERROR: {str(exc).splitlines()[0][:120]}"
166
- progress.update(step_index, desc=f"Inference {name}")
167
 
168
  yield results, legends # final output
169
 
 
131
  img = img.convert("RGB")
132
 
133
  total_steps = len(models) * 2 # phase 1: load, phase 2: inference
134
+ progress = gr.Progress()
135
 
136
  # ----- Phase 1: preload weights -----
137
  detectors: Dict[str, object] = {}
 
140
  detectors[name] = load_model(name, custom_file)
141
  except Exception as exc:
142
  detectors[name] = exc # store exception for later reporting
143
+ progress(i, total=total_steps, desc=f"Loading {name}")
144
 
145
  # ----- Phase 2: run inference -----
146
  results: List[Image.Image] = []
 
154
  results.append(Image.new("RGB", img.size, (40, 40, 40)))
155
  emsg = str(detector_or_err)
156
  legends[name] = "Unavailable (weights not found)" if "No such file" in emsg or "not found" in emsg else f"ERROR: {emsg.splitlines()[0][:120]}"
157
+ progress(step_index, total=total_steps, desc=f"Skipped {name}")
158
  continue
159
  try:
160
  annotated, latency = run_single_inference(detector_or_err, img, threshold)
 
163
  except Exception as exc:
164
  results.append(Image.new("RGB", img.size, (40, 40, 40)))
165
  legends[name] = f"ERROR: {str(exc).splitlines()[0][:120]}"
166
+ progress(step_index, total=total_steps, desc=f"Inference {name}")
167
 
168
  yield results, legends # final output
169