Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,9 +5,10 @@ Gradio app to compare object‑detection models:
|
|
5 |
• Roboflow RF‑DETR (Base, Large)
|
6 |
• Custom fine‑tuned checkpoints (.pt/.pth upload)
|
7 |
|
8 |
-
Revision 2025‑04‑19‑
|
9 |
-
•
|
10 |
-
•
|
|
|
11 |
"""
|
12 |
|
13 |
from __future__ import annotations
|
@@ -26,7 +27,7 @@ from rfdetr import RFDETRBase, RFDETRLarge
|
|
26 |
from rfdetr.util.coco_classes import COCO_CLASSES
|
27 |
|
28 |
###############################################################################
|
29 |
-
# Model registry &
|
30 |
###############################################################################
|
31 |
|
32 |
YOLO_MODEL_MAP: Dict[str, str] = {
|
@@ -55,27 +56,24 @@ ALL_MODELS = list(YOLO_MODEL_MAP.keys()) + list(RFDETR_MODEL_MAP.keys()) + [
|
|
55 |
_loaded: Dict[str, object] = {}
|
56 |
|
57 |
def load_model(choice: str, custom_file: Optional[Path] = None):
|
58 |
-
"""
|
59 |
if choice in _loaded:
|
60 |
return _loaded[choice]
|
61 |
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
raise ValueError(f"Unsupported model choice: {choice}")
|
77 |
-
except Exception as exc:
|
78 |
-
raise RuntimeError(str(exc)) from exc
|
79 |
|
80 |
_loaded[choice] = model
|
81 |
return model
|
@@ -84,8 +82,8 @@ def load_model(choice: str, custom_file: Optional[Path] = None):
|
|
84 |
# Inference helpers
|
85 |
###############################################################################
|
86 |
|
87 |
-
BOX_THICKNESS = 2
|
88 |
-
BOX_ALPHA = 0.6
|
89 |
|
90 |
box_annotator = sv.BoxAnnotator(thickness=BOX_THICKNESS)
|
91 |
label_annotator = sv.LabelAnnotator()
|
@@ -100,28 +98,25 @@ def run_single_inference(model, image: Image.Image, threshold: float) -> Tuple[I
|
|
100 |
detections = model.predict(image, threshold=threshold)
|
101 |
label_src = COCO_CLASSES
|
102 |
else:
|
103 |
-
|
104 |
-
detections = sv.Detections.from_ultralytics(
|
105 |
label_src = model.names # type: ignore
|
106 |
|
107 |
runtime = time.perf_counter() - start
|
108 |
|
109 |
-
|
110 |
-
overlay =
|
111 |
-
|
112 |
overlay = box_annotator.annotate(overlay, detections)
|
113 |
overlay = label_annotator.annotate(
|
114 |
overlay,
|
115 |
detections,
|
116 |
-
[f"{label_src[
|
117 |
)
|
118 |
-
|
119 |
-
|
120 |
-
out_pil = Image.fromarray(cv2.cvtColor(blended, cv2.COLOR_BGR2RGB))
|
121 |
-
return out_pil, runtime
|
122 |
|
123 |
###############################################################################
|
124 |
-
# Gradio callback
|
125 |
###############################################################################
|
126 |
|
127 |
def compare_models(
|
@@ -135,24 +130,42 @@ def compare_models(
|
|
135 |
if img.mode != "RGB":
|
136 |
img = img.convert("RGB")
|
137 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
results: List[Image.Image] = []
|
139 |
legends: Dict[str, str] = {}
|
140 |
|
141 |
-
for
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
try:
|
143 |
-
|
144 |
-
annotated, latency = run_single_inference(detector, img, threshold)
|
145 |
results.append(annotated)
|
146 |
-
legends[
|
147 |
except Exception as exc:
|
148 |
results.append(Image.new("RGB", img.size, (40, 40, 40)))
|
149 |
-
|
150 |
-
|
151 |
-
legends[model_name] = "Unavailable (weights not found)"
|
152 |
-
else:
|
153 |
-
legends[model_name] = f"ERROR: {emsg.splitlines()[0][:120]}"
|
154 |
|
155 |
-
|
156 |
|
157 |
###############################################################################
|
158 |
# Gradio UI
|
@@ -160,9 +173,7 @@ def compare_models(
|
|
160 |
|
161 |
def build_demo():
|
162 |
with gr.Blocks(title="CV Model Comparison") as demo:
|
163 |
-
gr.Markdown(
|
164 |
-
"""# 🔍 Compare Object‑Detection Models\nUpload an image, choose detectors, and optionally add a custom checkpoint.\nBounding boxes are thin (2 px) and 60 % transparent for clarity."""
|
165 |
-
)
|
166 |
|
167 |
with gr.Row():
|
168 |
sel_models = gr.CheckboxGroup(ALL_MODELS, value=["YOLOv12‑n"], label="Models")
|
|
|
5 |
• Roboflow RF‑DETR (Base, Large)
|
6 |
• Custom fine‑tuned checkpoints (.pt/.pth upload)
|
7 |
|
8 |
+
Revision 2025‑04‑19‑d:
|
9 |
+
• Pre‑loads all selected models before running detections, with a visible progress bar.
|
10 |
+
• Progress shows two phases: *Loading weights* and *Running inference*.
|
11 |
+
• Keeps thin, semi‑transparent boxes and concise error labels.
|
12 |
"""
|
13 |
|
14 |
from __future__ import annotations
|
|
|
27 |
from rfdetr.util.coco_classes import COCO_CLASSES
|
28 |
|
29 |
###############################################################################
|
30 |
+
# Model registry & cache
|
31 |
###############################################################################
|
32 |
|
33 |
YOLO_MODEL_MAP: Dict[str, str] = {
|
|
|
56 |
_loaded: Dict[str, object] = {}
|
57 |
|
58 |
def load_model(choice: str, custom_file: Optional[Path] = None):
|
59 |
+
"""Fetch and cache a detector instance for *choice*."""
|
60 |
if choice in _loaded:
|
61 |
return _loaded[choice]
|
62 |
|
63 |
+
if choice in YOLO_MODEL_MAP:
|
64 |
+
model = YOLO(YOLO_MODEL_MAP[choice]) # Ultralytics auto‑downloads if missing
|
65 |
+
elif choice in RFDETR_MODEL_MAP:
|
66 |
+
model = RFDETRBase() if RFDETR_MODEL_MAP[choice] == "base" else RFDETRLarge()
|
67 |
+
elif choice.startswith("Custom YOLO"):
|
68 |
+
if custom_file is None:
|
69 |
+
raise RuntimeError("Upload a YOLO .pt/.pth checkpoint first.")
|
70 |
+
model = YOLO(str(custom_file))
|
71 |
+
elif choice.startswith("Custom RF‑DETR"):
|
72 |
+
if custom_file is None:
|
73 |
+
raise RuntimeError("Upload an RF‑DETR .pth checkpoint first.")
|
74 |
+
model = RFDETRBase(pretrain_weights=str(custom_file))
|
75 |
+
else:
|
76 |
+
raise RuntimeError(f"Unsupported model choice: {choice}")
|
|
|
|
|
|
|
77 |
|
78 |
_loaded[choice] = model
|
79 |
return model
|
|
|
82 |
# Inference helpers
|
83 |
###############################################################################
|
84 |
|
85 |
+
BOX_THICKNESS = 2 # thinner boxes
|
86 |
+
BOX_ALPHA = 0.6 # 60 % opacity
|
87 |
|
88 |
box_annotator = sv.BoxAnnotator(thickness=BOX_THICKNESS)
|
89 |
label_annotator = sv.LabelAnnotator()
|
|
|
98 |
detections = model.predict(image, threshold=threshold)
|
99 |
label_src = COCO_CLASSES
|
100 |
else:
|
101 |
+
ul_res = model.predict(image, verbose=False)[0]
|
102 |
+
detections = sv.Detections.from_ultralytics(ul_res)
|
103 |
label_src = model.names # type: ignore
|
104 |
|
105 |
runtime = time.perf_counter() - start
|
106 |
|
107 |
+
img_bgr = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
108 |
+
overlay = img_bgr.copy()
|
|
|
109 |
overlay = box_annotator.annotate(overlay, detections)
|
110 |
overlay = label_annotator.annotate(
|
111 |
overlay,
|
112 |
detections,
|
113 |
+
[f"{label_src[c]} {p:.2f}" for c, p in zip(detections.class_id, detections.confidence)],
|
114 |
)
|
115 |
+
blended = _blend(img_bgr, overlay)
|
116 |
+
return Image.fromarray(cv2.cvtColor(blended, cv2.COLOR_BGR2RGB)), runtime
|
|
|
|
|
117 |
|
118 |
###############################################################################
|
119 |
+
# Gradio generator callback with progress
|
120 |
###############################################################################
|
121 |
|
122 |
def compare_models(
|
|
|
130 |
if img.mode != "RGB":
|
131 |
img = img.convert("RGB")
|
132 |
|
133 |
+
total_steps = len(models) * 2 # phase 1: load, phase 2: inference
|
134 |
+
progress = gr.Progress(total=total_steps)
|
135 |
+
|
136 |
+
# ----- Phase 1: preload weights -----
|
137 |
+
detectors: Dict[str, object] = {}
|
138 |
+
for i, name in enumerate(models, 1):
|
139 |
+
try:
|
140 |
+
detectors[name] = load_model(name, custom_file)
|
141 |
+
except Exception as exc:
|
142 |
+
detectors[name] = exc # store exception for later reporting
|
143 |
+
progress.update(i, desc=f"Loading {name}")
|
144 |
+
|
145 |
+
# ----- Phase 2: run inference -----
|
146 |
results: List[Image.Image] = []
|
147 |
legends: Dict[str, str] = {}
|
148 |
|
149 |
+
for j, name in enumerate(models, 1):
|
150 |
+
detector_or_err = detectors[name]
|
151 |
+
step_index = len(models) + j
|
152 |
+
if isinstance(detector_or_err, Exception):
|
153 |
+
# model failed to load
|
154 |
+
results.append(Image.new("RGB", img.size, (40, 40, 40)))
|
155 |
+
emsg = str(detector_or_err)
|
156 |
+
legends[name] = "Unavailable (weights not found)" if "No such file" in emsg or "not found" in emsg else f"ERROR: {emsg.splitlines()[0][:120]}"
|
157 |
+
progress.update(step_index, desc=f"Skipped {name}")
|
158 |
+
continue
|
159 |
try:
|
160 |
+
annotated, latency = run_single_inference(detector_or_err, img, threshold)
|
|
|
161 |
results.append(annotated)
|
162 |
+
legends[name] = f"{latency*1000:.1f} ms"
|
163 |
except Exception as exc:
|
164 |
results.append(Image.new("RGB", img.size, (40, 40, 40)))
|
165 |
+
legends[name] = f"ERROR: {str(exc).splitlines()[0][:120]}"
|
166 |
+
progress.update(step_index, desc=f"Inference {name}")
|
|
|
|
|
|
|
167 |
|
168 |
+
yield results, legends # final output
|
169 |
|
170 |
###############################################################################
|
171 |
# Gradio UI
|
|
|
173 |
|
174 |
def build_demo():
|
175 |
with gr.Blocks(title="CV Model Comparison") as demo:
|
176 |
+
gr.Markdown("""# 🔍 Compare Object‑Detection Models\nUpload an image, select detectors, then click **Run Inference**.\nThin, semi‑transparent boxes highlight detections.""")
|
|
|
|
|
177 |
|
178 |
with gr.Row():
|
179 |
sel_models = gr.CheckboxGroup(ALL_MODELS, value=["YOLOv12‑n"], label="Models")
|