vision-compare / app.py
wuhp's picture
Update app.py
3b9517f verified
raw
history blame
7.4 kB
"""
Gradio app to compare object‑detection models:
• Ultralytics YOLOv12 (n, s, m, l, x)
• Ultralytics YOLOv11 (n, s, m, l, x)
• Roboflow RF‑DETR (Base, Large)
• Custom fine‑tuned checkpoints (.pt/.pth upload)
Revision 2025‑04‑19‑d:
• Pre‑loads all selected models before running detections, with a visible progress bar.
• Progress shows two phases: *Loading weights* and *Running inference*.
• Keeps thin, semi‑transparent boxes and concise error labels.
"""
from __future__ import annotations
import time
from pathlib import Path
from typing import Dict, List, Optional, Tuple
import cv2
import numpy as np
from PIL import Image
import gradio as gr
import supervision as sv
from ultralytics import YOLO
from rfdetr import RFDETRBase, RFDETRLarge
from rfdetr.util.coco_classes import COCO_CLASSES
###############################################################################
# Model registry & cache
###############################################################################
YOLO_MODEL_MAP: Dict[str, str] = {
"YOLOv12‑n": "yolov12n.pt",
"YOLOv12‑s": "yolov12s.pt",
"YOLOv12‑m": "yolov12m.pt",
"YOLOv12‑l": "yolov12l.pt",
"YOLOv12‑x": "yolov12x.pt",
"YOLOv11‑n": "yolov11n.pt",
"YOLOv11‑s": "yolov11s.pt",
"YOLOv11‑m": "yolov11m.pt",
"YOLOv11‑l": "yolov11l.pt",
"YOLOv11‑x": "yolov11x.pt",
}
RFDETR_MODEL_MAP = {
"RF‑DETR‑Base (29M)": "base",
"RF‑DETR‑Large (128M)": "large",
}
ALL_MODELS = list(YOLO_MODEL_MAP.keys()) + list(RFDETR_MODEL_MAP.keys()) + [
"Custom YOLO (.pt/.pth)",
"Custom RF‑DETR (.pth)",
]
_loaded: Dict[str, object] = {}
def load_model(choice: str, custom_file: Optional[Path] = None):
"""Fetch and cache a detector instance for *choice*."""
if choice in _loaded:
return _loaded[choice]
if choice in YOLO_MODEL_MAP:
model = YOLO(YOLO_MODEL_MAP[choice]) # Ultralytics auto‑downloads if missing
elif choice in RFDETR_MODEL_MAP:
model = RFDETRBase() if RFDETR_MODEL_MAP[choice] == "base" else RFDETRLarge()
elif choice.startswith("Custom YOLO"):
if custom_file is None:
raise RuntimeError("Upload a YOLO .pt/.pth checkpoint first.")
model = YOLO(str(custom_file))
elif choice.startswith("Custom RF‑DETR"):
if custom_file is None:
raise RuntimeError("Upload an RF‑DETR .pth checkpoint first.")
model = RFDETRBase(pretrain_weights=str(custom_file))
else:
raise RuntimeError(f"Unsupported model choice: {choice}")
_loaded[choice] = model
return model
###############################################################################
# Inference helpers
###############################################################################
BOX_THICKNESS = 2 # thinner boxes
BOX_ALPHA = 0.6 # 60 % opacity
box_annotator = sv.BoxAnnotator(thickness=BOX_THICKNESS)
label_annotator = sv.LabelAnnotator()
def _blend(base: np.ndarray, overlay: np.ndarray, alpha: float = BOX_ALPHA) -> np.ndarray:
return cv2.addWeighted(overlay, alpha, base, 1 - alpha, 0)
def run_single_inference(model, image: Image.Image, threshold: float) -> Tuple[Image.Image, float]:
start = time.perf_counter()
if isinstance(model, (RFDETRBase, RFDETRLarge)):
detections = model.predict(image, threshold=threshold)
label_src = COCO_CLASSES
else:
ul_res = model.predict(image, verbose=False)[0]
detections = sv.Detections.from_ultralytics(ul_res)
label_src = model.names # type: ignore
runtime = time.perf_counter() - start
img_bgr = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
overlay = img_bgr.copy()
overlay = box_annotator.annotate(overlay, detections)
overlay = label_annotator.annotate(
overlay,
detections,
[f"{label_src[c]} {p:.2f}" for c, p in zip(detections.class_id, detections.confidence)],
)
blended = _blend(img_bgr, overlay)
return Image.fromarray(cv2.cvtColor(blended, cv2.COLOR_BGR2RGB)), runtime
###############################################################################
# Gradio generator callback with progress
###############################################################################
def compare_models(
models: List[str],
img: Image.Image,
threshold: float,
custom_file: Optional[Path],
):
if img is None:
raise gr.Error("Please upload an image first.")
if img.mode != "RGB":
img = img.convert("RGB")
total_steps = len(models) * 2 # phase 1: load, phase 2: inference
progress = gr.Progress(total=total_steps)
# ----- Phase 1: preload weights -----
detectors: Dict[str, object] = {}
for i, name in enumerate(models, 1):
try:
detectors[name] = load_model(name, custom_file)
except Exception as exc:
detectors[name] = exc # store exception for later reporting
progress.update(i, desc=f"Loading {name}")
# ----- Phase 2: run inference -----
results: List[Image.Image] = []
legends: Dict[str, str] = {}
for j, name in enumerate(models, 1):
detector_or_err = detectors[name]
step_index = len(models) + j
if isinstance(detector_or_err, Exception):
# model failed to load
results.append(Image.new("RGB", img.size, (40, 40, 40)))
emsg = str(detector_or_err)
legends[name] = "Unavailable (weights not found)" if "No such file" in emsg or "not found" in emsg else f"ERROR: {emsg.splitlines()[0][:120]}"
progress.update(step_index, desc=f"Skipped {name}")
continue
try:
annotated, latency = run_single_inference(detector_or_err, img, threshold)
results.append(annotated)
legends[name] = f"{latency*1000:.1f} ms"
except Exception as exc:
results.append(Image.new("RGB", img.size, (40, 40, 40)))
legends[name] = f"ERROR: {str(exc).splitlines()[0][:120]}"
progress.update(step_index, desc=f"Inference {name}")
yield results, legends # final output
###############################################################################
# Gradio UI
###############################################################################
def build_demo():
with gr.Blocks(title="CV Model Comparison") as demo:
gr.Markdown("""# 🔍 Compare Object‑Detection Models\nUpload an image, select detectors, then click **Run Inference**.\nThin, semi‑transparent boxes highlight detections.""")
with gr.Row():
sel_models = gr.CheckboxGroup(ALL_MODELS, value=["YOLOv12‑n"], label="Models")
conf_slider = gr.Slider(0.0, 1.0, 0.5, 0.05, label="Confidence")
ckpt_file = gr.File(label="Custom checkpoint (.pt/.pth)", file_types=[".pt", ".pth"], interactive=True)
img_in = gr.Image(type="pil", label="Image", sources=["upload", "webcam"])
with gr.Row():
gallery = gr.Gallery(label="Results", columns=2, height="auto")
legend_out = gr.JSON(label="Latency / status by model")
run_btn = gr.Button("Run Inference", variant="primary")
run_btn.click(compare_models, [sel_models, img_in, conf_slider, ckpt_file], [gallery, legend_out])
return demo
if __name__ == "__main__":
build_demo().launch()