Spaces:
Sleeping
Sleeping
# app.py | |
import os | |
import time | |
import json | |
import requests | |
import gradio as gr | |
import google.generativeai as genai | |
from huggingface_hub import create_repo, list_models, upload_file, constants | |
from huggingface_hub.utils import build_hf_headers, get_session, hf_raise_for_status | |
# --- Helper functions for Hugging Face integration --- | |
def show_profile(profile: gr.OAuthProfile | None) -> str: | |
if profile is None: | |
return "*Not logged in.*" | |
return f"✅ Logged in as **{profile.username}**" | |
def list_private_models( | |
profile: gr.OAuthProfile | None, | |
oauth_token: gr.OAuthToken | None | |
) -> str: | |
if profile is None or oauth_token is None: | |
return "Please log in to see your models." | |
try: | |
models = [ | |
f"{m.id} ({'private' if m.private else 'public'})" | |
for m in list_models(author=profile.username, token=oauth_token.token) | |
] | |
return "No models found." if not models else "Models:\n\n" + "\n - ".join(models) | |
except Exception as e: | |
return f"Error listing models: {e}" | |
def create_space_action(repo_name: str, sdk: str, profile: gr.OAuthProfile, token: gr.OAuthToken): | |
repo_id = f"{profile.username}/{repo_name}" | |
create_repo( | |
repo_id=repo_id, | |
token=token.token, | |
exist_ok=True, | |
repo_type="space", | |
space_sdk=sdk | |
) | |
url = f"https://huggingface.co/spaces/{repo_id}" | |
iframe = f'<iframe src="{url}" width="100%" height="500px"></iframe>' | |
return repo_id, iframe | |
def upload_file_to_space_action( | |
file_obj, | |
path_in_repo: str, | |
repo_id: str, | |
profile: gr.OAuthProfile, | |
token: gr.OAuthToken | |
) -> str: | |
if not (profile and token and repo_id): | |
return "⚠️ Please log in and create a Space first." | |
try: | |
upload_file( | |
path_or_fileobj=file_obj, | |
path_in_repo=path_in_repo, | |
repo_id=repo_id, | |
token=token.token, | |
repo_type="space" | |
) | |
return f"✅ Uploaded `{path_in_repo}`" | |
except Exception as e: | |
return f"Error uploading file: {e}" | |
def _fetch_space_logs_level(repo_id: str, level: str, token: str) -> str: | |
jwt_url = f"{constants.ENDPOINT}/api/spaces/{repo_id}/jwt" | |
r = get_session().get(jwt_url, headers=build_hf_headers(token=token)) | |
hf_raise_for_status(r) | |
jwt = r.json()["token"] | |
logs_url = f"https://api.hf.space/v1/{repo_id}/logs/{level}" | |
lines, count = [], 0 | |
with get_session().get(logs_url, headers=build_hf_headers(token=jwt), stream=True, timeout=20) as resp: | |
hf_raise_for_status(resp) | |
for raw in resp.iter_lines(): | |
if count >= 200: | |
lines.append("... truncated ...") | |
break | |
if not raw.startswith(b"data: "): | |
continue | |
payload = raw[len(b"data: "):] | |
try: | |
event = json.loads(payload.decode()) | |
ts = event.get("timestamp", "") | |
txt = event.get("data", "").strip() | |
if txt: | |
lines.append(f"[{ts}] {txt}") | |
count += 1 | |
except json.JSONDecodeError: | |
continue | |
return "\n".join(lines) if lines else f"No {level} logs found." | |
def get_build_logs_action(repo_id, profile, token): | |
if not (repo_id and profile and token): | |
return "⚠️ Please log in and create a Space first." | |
return _fetch_space_logs_level(repo_id, "build", token.token) | |
def get_container_logs_action(repo_id, profile, token): | |
if not (repo_id and profile and token): | |
return "⚠️ Please log in and create a Space first." | |
return _fetch_space_logs_level(repo_id, "run", token.token) | |
# --- Google Gemini integration with model selection --- | |
def configure_gemini(api_key: str | None, model_name: str | None) -> str: | |
if not api_key: | |
return "Gemini API key is not set." | |
if not model_name: | |
return "Please select a Gemini model." | |
try: | |
genai.configure(api_key=api_key) | |
# Test using the selected model | |
genai.GenerativeModel(model_name).generate_content("ping") | |
return f"Gemini configured successfully with **{model_name}**." | |
except Exception as e: | |
return f"Error configuring Gemini: {e}" | |
def call_gemini(prompt: str, api_key: str, model_name: str) -> str: | |
if not api_key or not model_name: | |
return "Error: Gemini API key or model not provided." | |
try: | |
genai.configure(api_key=api_key) | |
model = genai.GenerativeModel(model_name) | |
response = model.generate_content(prompt) | |
return response.text or "Gemini returned an empty response." | |
except Exception as e: | |
return f"Error calling Gemini API with {model_name}: {e}" | |
# --- AI workflow logic (uses selected model) --- | |
def ai_workflow_chat( | |
message: str, | |
history: list[list[str | None]], | |
hf_profile: gr.OAuthProfile | None, | |
hf_token: gr.OAuthToken | None, | |
gemini_api_key: str | None, | |
gemini_model: str | None, | |
repo_id_state: str | None, | |
workflow_state: str, | |
space_sdk: str, | |
preview_html: str, | |
container_logs: str, | |
build_logs: str | |
) -> tuple[ | |
list[list[str | None]], | |
str | None, | |
str, | |
str, | |
str, | |
str | |
]: | |
# Append user message | |
history.append([message, None]) | |
bot_message = "" | |
new_repo_id = repo_id_state | |
new_workflow = workflow_state | |
updated_preview = preview_html | |
updated_container = container_logs | |
updated_build = build_logs | |
# -- same workflow logic as before, but use call_gemini(prompt, gemini_api_key, gemini_model) -- | |
# example when generating code: | |
# resp = call_gemini(prompt, gemini_api_key, gemini_model) | |
# [Omitted for brevity; insert your existing logic here, replacing calls to | |
# call_gemini(prompt, gemini_api_key) with call_gemini(prompt, gemini_api_key, gemini_model).] | |
return history, new_repo_id, new_workflow, updated_preview, updated_container, updated_build | |
# --- Build the Gradio UI --- | |
with gr.Blocks(title="AI-Powered HF Space App Builder") as ai_builder_tab: | |
hf_profile = gr.State(None) | |
hf_token = gr.State(None) | |
gemini_key = gr.State(None) | |
gemini_model = gr.State("gemini-2.5-pro-preview-03-25") | |
repo_id = gr.State(None) | |
workflow = gr.State("idle") | |
sdk_state = gr.State("gradio") | |
with gr.Row(): | |
# Sidebar | |
with gr.Column(scale=1, min_width=300): | |
gr.Markdown("## Hugging Face Login") | |
login_status = gr.Markdown("*Not logged in.*") | |
login_btn = gr.LoginButton(variant="huggingface") | |
# init & update login status | |
ai_builder_tab.load(show_profile, outputs=login_status) | |
login_btn.click(show_profile, outputs=login_status) | |
login_btn.click(lambda profile, token: (profile, token), | |
outputs=[hf_profile, hf_token]) | |
gr.Markdown("## Google AI Studio API Key") | |
gemini_input = gr.Textbox(label="API Key", type="password") | |
gemini_status = gr.Markdown("") | |
gemini_input.change(lambda k: k, inputs=gemini_input, outputs=gemini_key) | |
gr.Markdown("## Gemini Model") | |
model_selector = gr.Radio( | |
choices=[ | |
("Gemini 2.5 Flash Preview 04-17", "gemini-2.5-flash-preview-04-17"), | |
("Gemini 2.5 Pro Preview 03-25", "gemini-2.5-pro-preview-03-25") | |
], | |
value="gemini-2.5-pro-preview-03-25", | |
label="Select model" | |
) | |
model_selector.change(lambda m: m, inputs=model_selector, outputs=gemini_model) | |
# configure Gemini whenever key or model changes | |
gr.Row().load( | |
configure_gemini, | |
inputs=[gemini_key, gemini_model], | |
outputs=[gemini_status] | |
) | |
gemini_input.change( | |
configure_gemini, | |
inputs=[gemini_key, gemini_model], | |
outputs=[gemini_status] | |
) | |
model_selector.change( | |
configure_gemini, | |
inputs=[gemini_key, gemini_model], | |
outputs=[gemini_status] | |
) | |
gr.Markdown("## Space SDK") | |
sdk_selector = gr.Radio(choices=["gradio","streamlit"], value="gradio", label="Template SDK") | |
sdk_selector.change(lambda s: s, inputs=sdk_selector, outputs=sdk_state) | |
# Main content | |
with gr.Column(scale=3): | |
chatbot = gr.Chatbot() | |
user_input = gr.Textbox(placeholder="Type your message…") | |
send_btn = gr.Button("Send", interactive=False) | |
# enable send only when logged in & key & model selected | |
ai_builder_tab.load( | |
lambda p, k, m: gr.update(interactive=bool(p and k and m)), | |
inputs=[hf_profile, gemini_key, gemini_model], | |
outputs=[send_btn] | |
) | |
login_btn.click( | |
lambda p, k, m: gr.update(interactive=bool(p and k and m)), | |
inputs=[hf_profile, gemini_key, gemini_model], | |
outputs=[send_btn] | |
) | |
gemini_input.change( | |
lambda p, k, m: gr.update(interactive=bool(p and k and m)), | |
inputs=[hf_profile, gemini_key, gemini_model], | |
outputs=[send_btn] | |
) | |
model_selector.change( | |
lambda p, k, m: gr.update(interactive=bool(p and k and m)), | |
inputs=[hf_profile, gemini_key, gemini_model], | |
outputs=[send_btn] | |
) | |
iframe = gr.HTML("<p>No Space created yet.</p>") | |
build_txt = gr.Textbox(label="Build Logs", lines=10, interactive=False) | |
run_txt = gr.Textbox(label="Container Logs", lines=10, interactive=False) | |
def wrap_chat(msg, history, prof, tok, key, model, rid, wf, sdk, prev, run_l, build_l): | |
out = ai_workflow_chat( | |
msg, history, prof, tok, key, model, rid, wf, sdk, prev, run_l, build_l | |
) | |
hist, new_rid, new_wf, new_prev, new_run, new_build = out | |
return [(u or "", v or "") for u, v in hist], new_rid, new_wf, new_prev, new_run, new_build | |
send_btn.click( | |
wrap_chat, | |
inputs=[ | |
user_input, chatbot, | |
hf_profile, hf_token, | |
gemini_key, gemini_model, | |
repo_id, workflow, sdk_state, | |
iframe, run_txt, build_txt | |
], | |
outputs=[ | |
chatbot, | |
repo_id, workflow, | |
iframe, run_txt, build_txt | |
] | |
) | |
with gr.Blocks(title="Manual Hugging Face Space Manager") as manual_control_tab: | |
# ... (manual tab unchanged) ... | |
demo = gr.TabbedInterface( | |
[ai_builder_tab, manual_control_tab], | |
["AI App Builder", "Manual Control"] | |
) | |
if __name__ == "__main__": | |
demo.launch() | |