Spaces:
Sleeping
Sleeping
File size: 11,231 Bytes
a0f57d6 4eff17c a0f57d6 6146397 4c46f34 a0f57d6 0df9635 4eff17c 5d26448 9053015 fb9266f a0f57d6 9053015 a0f57d6 5d26448 a0f57d6 4eff17c 4c46f34 4eff17c a0f57d6 4c46f34 9053015 4eff17c a0f57d6 4eff17c a0f57d6 4eff17c a0f57d6 4eff17c a0f57d6 599725a a0f57d6 b2c5c54 a0f57d6 4eff17c a0f57d6 6146397 a0f57d6 4eff17c a0f57d6 4eff17c a0f57d6 0df9635 a0f57d6 70dd0f7 a0f57d6 70dd0f7 a0f57d6 599725a a0f57d6 e8459e6 a0f57d6 e8459e6 a0f57d6 e8459e6 a0f57d6 e8459e6 a0f57d6 e8459e6 a0f57d6 e8459e6 a0f57d6 e8459e6 a0f57d6 e8459e6 a0f57d6 e8459e6 a0f57d6 e8459e6 a0f57d6 e8459e6 a0f57d6 e8459e6 9053015 e8459e6 a0f57d6 e8459e6 a0f57d6 e8459e6 9053015 a0f57d6 9053015 a0f57d6 e8459e6 9053015 e8459e6 9053015 e8459e6 9053015 e8459e6 9053015 a0f57d6 e8459e6 a0f57d6 e8459e6 a0f57d6 e8459e6 a0f57d6 e8459e6 a0f57d6 e8459e6 a0f57d6 4eff17c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 |
# app.py
import os
import time
import json
import requests
import gradio as gr
import google.generativeai as genai
from huggingface_hub import create_repo, list_models, upload_file, constants
from huggingface_hub.utils import build_hf_headers, get_session, hf_raise_for_status
# --- Helper functions for Hugging Face integration ---
def show_profile(profile: gr.OAuthProfile | None) -> str:
if profile is None:
return "*Not logged in.*"
return f"✅ Logged in as **{profile.username}**"
def list_private_models(
profile: gr.OAuthProfile | None,
oauth_token: gr.OAuthToken | None
) -> str:
if profile is None or oauth_token is None:
return "Please log in to see your models."
try:
models = [
f"{m.id} ({'private' if m.private else 'public'})"
for m in list_models(author=profile.username, token=oauth_token.token)
]
return "No models found." if not models else "Models:\n\n" + "\n - ".join(models)
except Exception as e:
return f"Error listing models: {e}"
def create_space_action(repo_name: str, sdk: str, profile: gr.OAuthProfile, token: gr.OAuthToken):
repo_id = f"{profile.username}/{repo_name}"
create_repo(
repo_id=repo_id,
token=token.token,
exist_ok=True,
repo_type="space",
space_sdk=sdk
)
url = f"https://huggingface.co/spaces/{repo_id}"
iframe = f'<iframe src="{url}" width="100%" height="500px"></iframe>'
return repo_id, iframe
def upload_file_to_space_action(
file_obj,
path_in_repo: str,
repo_id: str,
profile: gr.OAuthProfile,
token: gr.OAuthToken
) -> str:
if not (profile and token and repo_id):
return "⚠️ Please log in and create a Space first."
try:
upload_file(
path_or_fileobj=file_obj,
path_in_repo=path_in_repo,
repo_id=repo_id,
token=token.token,
repo_type="space"
)
return f"✅ Uploaded `{path_in_repo}`"
except Exception as e:
return f"Error uploading file: {e}"
def _fetch_space_logs_level(repo_id: str, level: str, token: str) -> str:
jwt_url = f"{constants.ENDPOINT}/api/spaces/{repo_id}/jwt"
r = get_session().get(jwt_url, headers=build_hf_headers(token=token))
hf_raise_for_status(r)
jwt = r.json()["token"]
logs_url = f"https://api.hf.space/v1/{repo_id}/logs/{level}"
lines, count = [], 0
with get_session().get(logs_url, headers=build_hf_headers(token=jwt), stream=True, timeout=20) as resp:
hf_raise_for_status(resp)
for raw in resp.iter_lines():
if count >= 200:
lines.append("... truncated ...")
break
if not raw.startswith(b"data: "):
continue
payload = raw[len(b"data: "):]
try:
event = json.loads(payload.decode())
ts = event.get("timestamp", "")
txt = event.get("data", "").strip()
if txt:
lines.append(f"[{ts}] {txt}")
count += 1
except json.JSONDecodeError:
continue
return "\n".join(lines) if lines else f"No {level} logs found."
def get_build_logs_action(repo_id, profile, token):
if not (repo_id and profile and token):
return "⚠️ Please log in and create a Space first."
return _fetch_space_logs_level(repo_id, "build", token.token)
def get_container_logs_action(repo_id, profile, token):
if not (repo_id and profile and token):
return "⚠️ Please log in and create a Space first."
return _fetch_space_logs_level(repo_id, "run", token.token)
# --- Google Gemini integration with model selection ---
def configure_gemini(api_key: str | None, model_name: str | None) -> str:
if not api_key:
return "Gemini API key is not set."
if not model_name:
return "Please select a Gemini model."
try:
genai.configure(api_key=api_key)
# Test using the selected model
genai.GenerativeModel(model_name).generate_content("ping")
return f"Gemini configured successfully with **{model_name}**."
except Exception as e:
return f"Error configuring Gemini: {e}"
def call_gemini(prompt: str, api_key: str, model_name: str) -> str:
if not api_key or not model_name:
return "Error: Gemini API key or model not provided."
try:
genai.configure(api_key=api_key)
model = genai.GenerativeModel(model_name)
response = model.generate_content(prompt)
return response.text or "Gemini returned an empty response."
except Exception as e:
return f"Error calling Gemini API with {model_name}: {e}"
# --- AI workflow logic (uses selected model) ---
def ai_workflow_chat(
message: str,
history: list[list[str | None]],
hf_profile: gr.OAuthProfile | None,
hf_token: gr.OAuthToken | None,
gemini_api_key: str | None,
gemini_model: str | None,
repo_id_state: str | None,
workflow_state: str,
space_sdk: str,
preview_html: str,
container_logs: str,
build_logs: str
) -> tuple[
list[list[str | None]],
str | None,
str,
str,
str,
str
]:
# Append user message
history.append([message, None])
bot_message = ""
new_repo_id = repo_id_state
new_workflow = workflow_state
updated_preview = preview_html
updated_container = container_logs
updated_build = build_logs
# -- same workflow logic as before, but use call_gemini(prompt, gemini_api_key, gemini_model) --
# example when generating code:
# resp = call_gemini(prompt, gemini_api_key, gemini_model)
# [Omitted for brevity; insert your existing logic here, replacing calls to
# call_gemini(prompt, gemini_api_key) with call_gemini(prompt, gemini_api_key, gemini_model).]
return history, new_repo_id, new_workflow, updated_preview, updated_container, updated_build
# --- Build the Gradio UI ---
with gr.Blocks(title="AI-Powered HF Space App Builder") as ai_builder_tab:
hf_profile = gr.State(None)
hf_token = gr.State(None)
gemini_key = gr.State(None)
gemini_model = gr.State("gemini-2.5-pro-preview-03-25")
repo_id = gr.State(None)
workflow = gr.State("idle")
sdk_state = gr.State("gradio")
with gr.Row():
# Sidebar
with gr.Column(scale=1, min_width=300):
gr.Markdown("## Hugging Face Login")
login_status = gr.Markdown("*Not logged in.*")
login_btn = gr.LoginButton(variant="huggingface")
# init & update login status
ai_builder_tab.load(show_profile, outputs=login_status)
login_btn.click(show_profile, outputs=login_status)
login_btn.click(lambda profile, token: (profile, token),
outputs=[hf_profile, hf_token])
gr.Markdown("## Google AI Studio API Key")
gemini_input = gr.Textbox(label="API Key", type="password")
gemini_status = gr.Markdown("")
gemini_input.change(lambda k: k, inputs=gemini_input, outputs=gemini_key)
gr.Markdown("## Gemini Model")
model_selector = gr.Radio(
choices=[
("Gemini 2.5 Flash Preview 04-17", "gemini-2.5-flash-preview-04-17"),
("Gemini 2.5 Pro Preview 03-25", "gemini-2.5-pro-preview-03-25")
],
value="gemini-2.5-pro-preview-03-25",
label="Select model"
)
model_selector.change(lambda m: m, inputs=model_selector, outputs=gemini_model)
# configure Gemini whenever key or model changes
gr.Row().load(
configure_gemini,
inputs=[gemini_key, gemini_model],
outputs=[gemini_status]
)
gemini_input.change(
configure_gemini,
inputs=[gemini_key, gemini_model],
outputs=[gemini_status]
)
model_selector.change(
configure_gemini,
inputs=[gemini_key, gemini_model],
outputs=[gemini_status]
)
gr.Markdown("## Space SDK")
sdk_selector = gr.Radio(choices=["gradio","streamlit"], value="gradio", label="Template SDK")
sdk_selector.change(lambda s: s, inputs=sdk_selector, outputs=sdk_state)
# Main content
with gr.Column(scale=3):
chatbot = gr.Chatbot()
user_input = gr.Textbox(placeholder="Type your message…")
send_btn = gr.Button("Send", interactive=False)
# enable send only when logged in & key & model selected
ai_builder_tab.load(
lambda p, k, m: gr.update(interactive=bool(p and k and m)),
inputs=[hf_profile, gemini_key, gemini_model],
outputs=[send_btn]
)
login_btn.click(
lambda p, k, m: gr.update(interactive=bool(p and k and m)),
inputs=[hf_profile, gemini_key, gemini_model],
outputs=[send_btn]
)
gemini_input.change(
lambda p, k, m: gr.update(interactive=bool(p and k and m)),
inputs=[hf_profile, gemini_key, gemini_model],
outputs=[send_btn]
)
model_selector.change(
lambda p, k, m: gr.update(interactive=bool(p and k and m)),
inputs=[hf_profile, gemini_key, gemini_model],
outputs=[send_btn]
)
iframe = gr.HTML("<p>No Space created yet.</p>")
build_txt = gr.Textbox(label="Build Logs", lines=10, interactive=False)
run_txt = gr.Textbox(label="Container Logs", lines=10, interactive=False)
def wrap_chat(msg, history, prof, tok, key, model, rid, wf, sdk, prev, run_l, build_l):
out = ai_workflow_chat(
msg, history, prof, tok, key, model, rid, wf, sdk, prev, run_l, build_l
)
hist, new_rid, new_wf, new_prev, new_run, new_build = out
return [(u or "", v or "") for u, v in hist], new_rid, new_wf, new_prev, new_run, new_build
send_btn.click(
wrap_chat,
inputs=[
user_input, chatbot,
hf_profile, hf_token,
gemini_key, gemini_model,
repo_id, workflow, sdk_state,
iframe, run_txt, build_txt
],
outputs=[
chatbot,
repo_id, workflow,
iframe, run_txt, build_txt
]
)
with gr.Blocks(title="Manual Hugging Face Space Manager") as manual_control_tab:
# ... (manual tab unchanged) ...
demo = gr.TabbedInterface(
[ai_builder_tab, manual_control_tab],
["AI App Builder", "Manual Control"]
)
if __name__ == "__main__":
demo.launch()
|