Spaces:
Starting
Starting
import os | |
from typing import Annotated, Optional, TypedDict | |
import gradio as gr | |
from langchain_core.messages import AnyMessage, HumanMessage, SystemMessage | |
from langchain_openai import ChatOpenAI | |
from langgraph.graph.message import add_messages | |
from langgraph.graph import StateGraph, START | |
from langgraph.prebuilt import tools_condition, ToolNode | |
import requests | |
import pandas as pd | |
from langchain.tools import Tool | |
from dotenv import load_dotenv | |
from arxiv_searcher import ArxivSearcher | |
from chess_algebraic_notation_retriever import ChessAlgebraicNotationMoveRetriever | |
from excel_file_reader import ExcelFileReader | |
from image_question_answer_tool import ImageQuestionAnswerTool | |
from python_code_question_answer_tool import PythonCodeQuestionAnswerTool | |
from tavily_searcher import TavilySearcher | |
from transcriber import Transcriber | |
from wikipedia_searcher import WikipediaSearcher | |
from youtube_video_question_answer_tool import YoutubeVideoQuestionAnswerTool | |
load_dotenv() | |
# (Keep Constants as is) | |
# --- Constants --- | |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
ASSOCIATED_FILE_ENDPOINT = f"{DEFAULT_API_URL}/files/" | |
# --- Basic Agent Definition --- | |
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------ | |
#search_tool = DuckDuckGoSearchRun() | |
#search_tool = DuckDuckGoSearcherTool() | |
def retrieve_task_file(task_id: str) -> Optional[bytes]: | |
""" | |
Retrieve the task file for a given task ID. | |
""" | |
try: | |
response = requests.get(ASSOCIATED_FILE_ENDPOINT + task_id, timeout=15) | |
response.raise_for_status() | |
if response.status_code != 200: | |
print(f"Error fetching file: {response.status_code}") | |
return None | |
#print(f"Fetched file: {response.content}") | |
return response.content | |
except requests.exceptions.RequestException as e: | |
print(f"Error fetching file: {e}") | |
return None | |
except Exception as e: | |
print(f"An unexpected error occurred fetching file: {e}") | |
return None | |
def retrieve_next_chess_move_in_algebraic_notation(task_file_path: str, is_black_turn: bool) -> str: | |
""" | |
Retrieve the next chess move in algebraic notation from an image path. | |
""" | |
if task_file_path is None: | |
return "Error: Task file not found." | |
# Retrieve the next chess move in algebraic notation | |
next_chess_move = ChessAlgebraicNotationMoveRetriever().retrieve(task_file_path, is_black_turn) | |
return next_chess_move | |
# Initialize the tool | |
retrieve_next_chess_move_in_algebraic_notation_tool = Tool( | |
name="retrieve_next_chess_move_in_algebraic_notation", | |
func=retrieve_next_chess_move_in_algebraic_notation, | |
description="Retrieve the next chess move in algebraic notation from an image path." | |
) | |
def transcribe_audio(file_path: str) -> str: | |
if file_path is None: | |
return "Error: Audio path not found." | |
# Transcribe the audio | |
return Transcriber().transcribe(file_path) | |
# Initialize the tool | |
transcribe_audio_tool = Tool( | |
name="transcribe_audio", | |
func=transcribe_audio, | |
description="Transcribe the audio from an audio path." | |
) | |
# Initialize the tool | |
answer_python_code_tool = PythonCodeQuestionAnswerTool() | |
# Initialize the tool | |
answer_image_question_tool = ImageQuestionAnswerTool() | |
# Initialize the tool | |
answer_youtube_video_question_tool = YoutubeVideoQuestionAnswerTool() | |
'''def answer_youtube_video_question(youtube_video_url: str, question: str) -> str: | |
""" | |
Answer the question based on the youtube video. | |
""" | |
if youtube_video_url is None: | |
return "Error: Video not found." | |
# Download the video | |
video_path = YoutubeVideoDownloader().download_video(youtube_video_url) | |
# Answer the question | |
return VideoQuestionAnswer().answer(video_path, question) | |
# Initialize the tool | |
answer_youtube_video_question_tool = Tool( | |
name="answer_youtube_video_question", | |
func=answer_youtube_video_question, | |
description="Answer the question based on the youtube video." | |
)''' | |
def read_excel_file(file_path: str) -> str: | |
if file_path is None: | |
return "Error: File not found." | |
return ExcelFileReader().read_file(file_path) | |
# Initialize the tool | |
read_excel_file_tool = Tool( | |
name="read_excel_file", | |
func=read_excel_file, | |
description="Read the excel file." | |
) | |
# Initialize the tool | |
wikipedia_search_tool = Tool( | |
name="wikipedia_search", | |
func=WikipediaSearcher().search, | |
description="Search Wikipedia for a given query." | |
) | |
# Initialize the tool | |
arxiv_search_tool = Tool( | |
name="arxiv_search", | |
func=ArxivSearcher().search, | |
description="Search Arxiv for a given query." | |
) | |
tavily_search_tool = Tool( | |
name="tavily_search", | |
func=TavilySearcher().search, | |
description="Search the web for a given query." | |
) | |
def format_gaia_answer(answer: str) -> str: | |
llm = ChatOpenAI(model="o3-mini", openai_api_key=os.getenv("OPENAI_API_KEY")) | |
prompt = f""" | |
You are formatting answers for the GAIA benchmark, which requires responses to be concise and unambiguous. | |
Given the answer: {answer} | |
Return the answer in the correct GAIA format: | |
- If the answer is a single word or number, return it without any additional text or formatting. | |
- If the answer is a list, return a comma-separated list without any additional text or formatting. | |
- If the answer is a string, return it without any additional text or formatting. | |
Do not include any prefixes, dots, enumerations, explanations, or quotation marks. | |
Do not include any additional text or formatting. | |
""" | |
response = llm.invoke(prompt) | |
# Delete double quotes | |
return response.content.strip().replace('"', '') | |
class AgentState(TypedDict): | |
# The document provided | |
messages: Annotated[list[AnyMessage], add_messages] | |
file_path: Optional[str] | |
class BasicAgent: | |
def __init__(self): | |
tools = [ | |
tavily_search_tool, | |
arxiv_search_tool, | |
wikipedia_search_tool, | |
transcribe_audio_tool, | |
answer_python_code_tool, | |
answer_image_question_tool, | |
answer_youtube_video_question_tool, | |
read_excel_file_tool | |
] | |
'''llm = ChatGoogleGenerativeAI( | |
model="gemini-2.0-flash", | |
temperature=0.2, | |
api_key=os.getenv("GEMINI_API_KEY") | |
)''' | |
llm = ChatOpenAI(model="o3-mini", openai_api_key=os.getenv("OPENAI_API_KEY")) | |
self.llm_with_tools = llm.bind_tools(tools) | |
builder = StateGraph(AgentState) | |
# Define nodes: these do the work | |
builder.add_node("assistant", self.assistant) | |
builder.add_node("tools", ToolNode(tools)) | |
# Define edges: these determine how the control flow moves | |
builder.add_edge(START, "assistant") | |
builder.add_conditional_edges( | |
"assistant", | |
# If the latest message requires a tool, route to tools | |
# Otherwise, provide a direct response | |
tools_condition, | |
) | |
builder.add_edge("tools", "assistant") | |
self.agent = builder.compile() | |
print("BasicAgent initialized.") | |
def assistant(self, state: AgentState): | |
# System message | |
textual_description_of_tools=""" | |
tavily_search(query: str) -> str: | |
Search the web for a given query. | |
Args: | |
query: Query to search the web for (string). | |
Returns: | |
A single string containing the information found on the web. | |
arxiv_search(query: str) -> str: | |
Search Arxiv, that contains scientific papers, for a given query. | |
Args: | |
query: Query to search Arxiv for (string). | |
Returns: | |
A single string containing the answer to the question. | |
wikipedia_search(query: str) -> str: | |
Search Wikipedia for a given query. | |
Args: | |
query: Query to search Wikipedia for (string). | |
Returns: | |
A single string containing the answer to the question. | |
transcribe_audio(file_path: str) -> str: | |
Transcribe the audio from an audio path. | |
Args: | |
file_path: File path of the audio file (string). | |
Returns: | |
A single string containing the transcribed text from the audio. | |
answer_python_code(file_path: str, question: str) -> str: | |
Answer the question based on the python code. | |
Args: | |
file_path: File path of the python file (string). | |
question: Question to answer (string). | |
Returns: | |
A single string containing the answer to the question. | |
answer_image_question(file_path: str, question: str) -> str: | |
Answer the question based on the image. | |
Args: | |
file_path: File path of the image (string). | |
question: Question to answer (string). | |
Returns: | |
A single string containing the answer to the question. | |
download_youtube_video(youtube_video_url: str) -> str: | |
Download the Youtube video into a local file based on the URL | |
Args: | |
youtube_video_url: A youtube video url (string). | |
Returns: | |
A single string containing the file path of the downloaded youtube video. | |
answer_youtube_video_question(file_path: str, question: str) -> str: | |
Answer the question based on file path of the downloaded youtube video | |
Args: | |
file_path: File path of the downloaded youtube video (string). | |
question: Question to answer (string). | |
Returns: | |
A single string containing the answer to the question. | |
read_excel_file(file_path: str) -> str: | |
Read the excel file. | |
Args: | |
file_path: File path of the excel file (string). | |
Returns: | |
A markdown formatted string containing the contents of the excel file. | |
""" | |
file_path=state["file_path"] | |
prompt = f""" | |
You are a helpful assistant that can analyse images, videos, excel files and Python scripts and run computations with provided tools: | |
{textual_description_of_tools} | |
You have access to the file path of the attached file in case it's informed. Currently the file path is: {file_path} | |
Be direct and specific. GAIA benchmark requires exact matching answers. | |
For example, if asked "What is the capital of France?", respond simply with "Paris". | |
Do not include any prefixes, dots, enumerations, explanations, or quotation marks. | |
Do not include any additional text or formatting. | |
If you are required a number, return a number, not the items. | |
""" | |
sys_msg = SystemMessage(content=prompt) | |
return { | |
"messages": [self.llm_with_tools.invoke([sys_msg] + state["messages"], config={"configurable": {"file_path": state["file_path"]}})], | |
"file_path": state["file_path"] | |
} | |
'''return { | |
"messages": [self.llm_with_tools.invoke( | |
state["messages"], | |
config={"configurable": {"file_path": state["file_path"]}} # Aquí pasas el task_id | |
)], | |
"file_path": state["file_path"] | |
}''' | |
def __call__(self, question: str, task_id: str, file_name: str) -> str: | |
print(f"######################### Agent received question (first 50 chars): {question[:50]}... with file_name: {file_name}") | |
# Get the file path | |
tmp_file_path = None | |
if file_name is not None and file_name != "": | |
file_content = retrieve_task_file(task_id) | |
if file_content is not None: | |
print(f"Saving file {file_name} to tmp folder") | |
tmp_file_path = f"tmp/{file_name}" | |
with open(tmp_file_path, "wb") as f: | |
f.write(file_content) | |
# Show the file path | |
print(f"File path: {tmp_file_path}") | |
messages = self.agent.invoke({"messages": [HumanMessage(question)], "file_path": tmp_file_path}) | |
# Show the messages | |
for m in messages['messages']: | |
m.pretty_print() | |
answer = messages["messages"][-1].content | |
answer = format_gaia_answer(answer) | |
print(f"######################### Agent returning answer: {answer}\n") | |
# Delete the file | |
if tmp_file_path is not None: | |
os.remove(tmp_file_path) | |
return answer | |
def run_and_submit_all( profile: gr.OAuthProfile | None): | |
""" | |
Fetches all questions, runs the BasicAgent on them, submits all answers, | |
and displays the results. | |
""" | |
# --- Determine HF Space Runtime URL and Repo URL --- | |
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code | |
if profile: | |
username= f"{profile.username}" | |
print(f"User logged in: {username}") | |
else: | |
print("User not logged in.") | |
return "Please Login to Hugging Face with the button.", None | |
api_url = DEFAULT_API_URL | |
questions_url = f"{api_url}/questions" | |
submit_url = f"{api_url}/submit" | |
# 1. Instantiate Agent ( modify this part to create your agent) | |
try: | |
agent = BasicAgent() | |
except Exception as e: | |
print(f"Error instantiating agent: {e}") | |
return f"Error initializing agent: {e}", None | |
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public) | |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" | |
print(agent_code) | |
# 2. Fetch Questions | |
print(f"Fetching questions from: {questions_url}") | |
try: | |
response = requests.get(questions_url, timeout=15) | |
response.raise_for_status() | |
questions_data = response.json() | |
if not questions_data: | |
print("Fetched questions list is empty.") | |
return "Fetched questions list is empty or invalid format.", None | |
print(f"Fetched {len(questions_data)} questions.") | |
except requests.exceptions.RequestException as e: | |
print(f"Error fetching questions: {e}") | |
return f"Error fetching questions: {e}", None | |
except requests.exceptions.JSONDecodeError as e: | |
print(f"Error decoding JSON response from questions endpoint: {e}") | |
print(f"Response text: {response.text[:500]}") | |
return f"Error decoding server response for questions: {e}", None | |
except Exception as e: | |
print(f"An unexpected error occurred fetching questions: {e}") | |
return f"An unexpected error occurred fetching questions: {e}", None | |
# 3. Run your Agent | |
results_log = [] | |
answers_payload = [] | |
print(f"Running agent on {len(questions_data)} questions...") | |
for item in questions_data: | |
task_id = item.get("task_id") | |
question_text = item.get("question") | |
if not task_id or question_text is None: | |
print(f"Skipping item with missing task_id or question: {item}") | |
continue | |
try: | |
submitted_answer = agent(question_text) | |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) | |
except Exception as e: | |
print(f"Error running agent on task {task_id}: {e}") | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) | |
if not answers_payload: | |
print("Agent did not produce any answers to submit.") | |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) | |
# 4. Prepare Submission | |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} | |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." | |
print(status_update) | |
# 5. Submit | |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}") | |
try: | |
response = requests.post(submit_url, json=submission_data, timeout=60) | |
response.raise_for_status() | |
result_data = response.json() | |
final_status = ( | |
f"Submission Successful!\n" | |
f"User: {result_data.get('username')}\n" | |
f"Overall Score: {result_data.get('score', 'N/A')}% " | |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" | |
f"Message: {result_data.get('message', 'No message received.')}" | |
) | |
print("Submission successful.") | |
results_df = pd.DataFrame(results_log) | |
return final_status, results_df | |
except requests.exceptions.HTTPError as e: | |
error_detail = f"Server responded with status {e.response.status_code}." | |
try: | |
error_json = e.response.json() | |
error_detail += f" Detail: {error_json.get('detail', e.response.text)}" | |
except requests.exceptions.JSONDecodeError: | |
error_detail += f" Response: {e.response.text[:500]}" | |
status_message = f"Submission Failed: {error_detail}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except requests.exceptions.Timeout: | |
status_message = "Submission Failed: The request timed out." | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except requests.exceptions.RequestException as e: | |
status_message = f"Submission Failed: Network error - {e}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except Exception as e: | |
status_message = f"An unexpected error occurred during submission: {e}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
# --- Build Gradio Interface using Blocks --- | |
with gr.Blocks() as demo: | |
gr.Markdown("# Basic Agent Evaluation Runner") | |
gr.Markdown( | |
""" | |
**Instructions:** | |
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ... | |
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission. | |
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score. | |
--- | |
**Disclaimers:** | |
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions). | |
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async. | |
""" | |
) | |
gr.LoginButton() | |
run_button = gr.Button("Run Evaluation & Submit All Answers") | |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) | |
# Removed max_rows=10 from DataFrame constructor | |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) | |
run_button.click( | |
fn=run_and_submit_all, | |
outputs=[status_output, results_table] | |
) | |
if __name__ == "__main__": | |
print("\n" + "-"*30 + " App Starting " + "-"*30) | |
# Check for SPACE_HOST and SPACE_ID at startup for information | |
space_host_startup = os.getenv("SPACE_HOST") | |
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup | |
if space_host_startup: | |
print(f"✅ SPACE_HOST found: {space_host_startup}") | |
print(f" Runtime URL should be: https://{space_host_startup}.hf.space") | |
else: | |
print("ℹ️ SPACE_HOST environment variable not found (running locally?).") | |
if space_id_startup: # Print repo URLs if SPACE_ID is found | |
print(f"✅ SPACE_ID found: {space_id_startup}") | |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") | |
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") | |
else: | |
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") | |
print("-"*(60 + len(" App Starting ")) + "\n") | |
print("Launching Gradio Interface for Basic Agent Evaluation...") | |
demo.launch(debug=True, share=False) |