Spaces:
Running
Running
import os | |
from dotenv import load_dotenv | |
import gradio as gr | |
import requests | |
import google.generativeai as genai | |
from typing import List, Dict, Union | |
import requests | |
import wikipediaapi | |
import pandas as pd | |
load_dotenv() | |
# (Keep Constants as is) | |
# --- Constants --- | |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
# --- Basic Agent Definition --- | |
class BasicAgent: | |
def __init__(self, model_name: str = "gemini-pro"): | |
""" | |
Multi-modal agent powered by Google Gemini with: | |
- Web search | |
- Wikipedia access | |
- Document processing | |
""" | |
self.model = genai.GenerativeModel(model_name) | |
self.wiki = wikipediaapi.Wikipedia('en') | |
self.searx_url = "https://searx.space/search" # Public Searx instance | |
print("BasicAgent initialized.") | |
def __call__(self, question: str) -> str: | |
print(f"Agent received question (first 50 chars): {question[:50]}...") | |
fixed_answer = self.agent.process_request(question) | |
print(f"Agent returning answer: {fixed_answer}") | |
return fixed_answer | |
def generate_response(self, prompt: str) -> str: | |
"""Get response from Gemini""" | |
try: | |
response = self.model.generate_content(prompt) | |
return response.text | |
except Exception as e: | |
return f"Error generating response: {str(e)}" | |
def web_search(self, query: str) -> List[Dict]: | |
"""Use SearxNG meta-search engine""" | |
params = { | |
"q": query, | |
"format": "json", | |
"engines": "google,bing,duckduckgo" | |
} | |
try: | |
response = requests.get(self.searx_url, params=params) | |
response.raise_for_status() | |
return response.json().get("results", []) | |
except requests.RequestException: | |
return [] | |
def wikipedia_search(self, query: str) -> str: | |
"""Get Wikipedia summary""" | |
page = self.wiki.page(query) | |
return page.summary if page.exists() else "No Wikipedia page found" | |
def process_document(self, file_path: str) -> str: | |
"""Handle PDF, Word, CSV, Excel files""" | |
if not os.path.exists(file_path): | |
return "File not found" | |
ext = os.path.splitext(file_path)[1].lower() | |
try: | |
if ext == '.pdf': | |
return self._process_pdf(file_path) | |
elif ext in ('.doc', '.docx'): | |
return self._process_word(file_path) | |
elif ext == '.csv': | |
return pd.read_csv(file_path).to_string() | |
elif ext in ('.xls', '.xlsx'): | |
return pd.read_excel(file_path).to_string() | |
else: | |
return "Unsupported file format" | |
except Exception as e: | |
return f"Error processing document: {str(e)}" | |
def _process_pdf(self, file_path: str) -> str: | |
"""Process PDF using Gemini's vision capability""" | |
try: | |
# For Gemini 1.5 or later which supports file uploads | |
with open(file_path, "rb") as f: | |
file = genai.upload_file(f) | |
response = self.model.generate_content( | |
["Extract and summarize the key points from this document:", file] | |
) | |
return response.text | |
except: | |
# Fallback for older Gemini versions | |
try: | |
import PyPDF2 | |
with open(file_path, 'rb') as f: | |
reader = PyPDF2.PdfReader(f) | |
return "\n".join([page.extract_text() for page in reader.pages]) | |
except ImportError: | |
return "PDF processing requires PyPDF2 (pip install PyPDF2)" | |
def _process_word(self, file_path: str) -> str: | |
"""Process Word documents""" | |
try: | |
from docx import Document | |
doc = Document(file_path) | |
return "\n".join([para.text for para in doc.paragraphs]) | |
except ImportError: | |
return "Word processing requires python-docx (pip install python-docx)" | |
def process_request(self, request: Union[str, Dict]) -> str: | |
""" | |
Handle different request types: | |
- Direct text queries | |
- File processing requests | |
- Complex multi-step requests | |
""" | |
if isinstance(request, dict): | |
if 'steps' in request: | |
results = [] | |
for step in request['steps']: | |
if step['type'] == 'search': | |
results.append(self.web_search(step['query'])) | |
elif step['type'] == 'process': | |
results.append(self.process_document(step['file'])) | |
return self.generate_response(f"Process these results: {results}") | |
return "Unsupported request format" | |
return self.generate_response(request) | |
def run_and_submit_all( profile: gr.OAuthProfile | None): | |
""" | |
Fetches all questions, runs the BasicAgent on them, submits all answers, | |
and displays the results. | |
""" | |
# --- Determine HF Space Runtime URL and Repo URL --- | |
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code | |
if profile: | |
username= f"{profile.username}" | |
print(f"User logged in: {username}") | |
else: | |
print("User not logged in.") | |
return "Please Login to Hugging Face with the button.", None | |
api_url = DEFAULT_API_URL | |
questions_url = f"{api_url}/questions" | |
submit_url = f"{api_url}/submit" | |
# 1. Instantiate Agent ( modify this part to create your agent) | |
try: | |
agent = BasicAgent() | |
except Exception as e: | |
print(f"Error instantiating agent: {e}") | |
return f"Error initializing agent: {e}", None | |
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public) | |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" | |
print(agent_code) | |
# 2. Fetch Questions | |
print(f"Fetching questions from: {questions_url}") | |
try: | |
response = requests.get(questions_url, timeout=15) | |
response.raise_for_status() | |
questions_data = response.json() | |
if not questions_data: | |
print("Fetched questions list is empty.") | |
return "Fetched questions list is empty or invalid format.", None | |
print(f"Fetched {len(questions_data)} questions.") | |
except requests.exceptions.RequestException as e: | |
print(f"Error fetching questions: {e}") | |
return f"Error fetching questions: {e}", None | |
except requests.exceptions.JSONDecodeError as e: | |
print(f"Error decoding JSON response from questions endpoint: {e}") | |
print(f"Response text: {response.text[:500]}") | |
return f"Error decoding server response for questions: {e}", None | |
except Exception as e: | |
print(f"An unexpected error occurred fetching questions: {e}") | |
return f"An unexpected error occurred fetching questions: {e}", None | |
# 3. Run your Agent | |
results_log = [] | |
answers_payload = [] | |
print(f"Running agent on {len(questions_data)} questions...") | |
for item in questions_data: | |
task_id = item.get("task_id") | |
question_text = item.get("question") | |
if not task_id or question_text is None: | |
print(f"Skipping item with missing task_id or question: {item}") | |
continue | |
try: | |
submitted_answer = agent(question_text) | |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) | |
except Exception as e: | |
print(f"Error running agent on task {task_id}: {e}") | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) | |
if not answers_payload: | |
print("Agent did not produce any answers to submit.") | |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) | |
# 4. Prepare Submission | |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} | |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." | |
print(status_update) | |
# 5. Submit | |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}") | |
try: | |
response = requests.post(submit_url, json=submission_data, timeout=60) | |
response.raise_for_status() | |
result_data = response.json() | |
final_status = ( | |
f"Submission Successful!\n" | |
f"User: {result_data.get('username')}\n" | |
f"Overall Score: {result_data.get('score', 'N/A')}% " | |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" | |
f"Message: {result_data.get('message', 'No message received.')}" | |
) | |
print("Submission successful.") | |
results_df = pd.DataFrame(results_log) | |
return final_status, results_df | |
except requests.exceptions.HTTPError as e: | |
error_detail = f"Server responded with status {e.response.status_code}." | |
try: | |
error_json = e.response.json() | |
error_detail += f" Detail: {error_json.get('detail', e.response.text)}" | |
except requests.exceptions.JSONDecodeError: | |
error_detail += f" Response: {e.response.text[:500]}" | |
status_message = f"Submission Failed: {error_detail}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except requests.exceptions.Timeout: | |
status_message = "Submission Failed: The request timed out." | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except requests.exceptions.RequestException as e: | |
status_message = f"Submission Failed: Network error - {e}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except Exception as e: | |
status_message = f"An unexpected error occurred during submission: {e}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
# --- Build Gradio Interface using Blocks --- | |
with gr.Blocks() as demo: | |
gr.Markdown("# Basic Agent Evaluation Runner") | |
gr.Markdown( | |
""" | |
**Instructions:** | |
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ... | |
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission. | |
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score. | |
--- | |
**Disclaimers:** | |
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions). | |
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async. | |
""" | |
) | |
gr.LoginButton() | |
run_button = gr.Button("Run Evaluation & Submit All Answers") | |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) | |
# Removed max_rows=10 from DataFrame constructor | |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) | |
run_button.click( | |
fn=run_and_submit_all, | |
outputs=[status_output, results_table] | |
) | |
if __name__ == "__main__": | |
print("\n" + "-"*30 + " App Starting " + "-"*30) | |
# Check for SPACE_HOST and SPACE_ID at startup for information | |
space_host_startup = os.getenv("SPACE_HOST") | |
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup | |
if space_host_startup: | |
print(f"✅ SPACE_HOST found: {space_host_startup}") | |
print(f" Runtime URL should be: https://{space_host_startup}.hf.space") | |
else: | |
print("ℹ️ SPACE_HOST environment variable not found (running locally?).") | |
if space_id_startup: # Print repo URLs if SPACE_ID is found | |
print(f"✅ SPACE_ID found: {space_id_startup}") | |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") | |
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") | |
else: | |
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") | |
print("-"*(60 + len(" App Starting ")) + "\n") | |
print("Launching Gradio Interface for Basic Agent Evaluation...") | |
demo.launch(debug=True, share=False) |