Spaces:
Starting
Starting
import os | |
from dotenv import load_dotenv | |
import gradio as gr | |
import requests | |
from typing import List, Dict, Union | |
import requests | |
import wikipediaapi | |
import pandas as pd | |
import requests | |
from bs4 import BeautifulSoup | |
import re | |
from urllib.parse import quote | |
load_dotenv() | |
# (Keep Constants as is) | |
# --- Constants --- | |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
# --- Basic Agent Definition --- | |
class BasicAgent: | |
def __init__(self): | |
print("BasicAgent initialized.") | |
self.session = requests.Session() | |
self.session.headers.update({ | |
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36' | |
}) | |
self.cache = {} | |
def __call__(self, question: str) -> str: | |
print(f"Agent received question (first 50 chars): {question[:50]}...") | |
fixed_answer = agent.answer_question({question}) | |
print(f"Agent returning fixed answer: {fixed_answer}") | |
return fixed_answer | |
def analyze_query(self, query): | |
"""Analyze the query using regex patterns""" | |
return { | |
'entities': self._extract_entities(query), | |
'intent': self._determine_intent(query.lower()), | |
'time_constraints': self._extract_time_constraints(query), | |
'quantities': self._extract_quantities(query) | |
} | |
def _extract_entities(self, text): | |
"""Simple entity extraction using capitalization patterns""" | |
# Find proper nouns (capitalized phrases) | |
entities = re.findall(r'([A-Z][a-zA-Z]+(?:\s+[A-Z][a-zA-Z]+)*)', text) | |
# Filter out small words and standalone letters | |
return [(ent, 'UNKNOWN') for ent in entities if len(ent) > 2 and ' ' in ent] | |
def _determine_intent(self, query): | |
"""Determine intent using keyword patterns""" | |
if 'how many' in query: | |
return 'count' | |
elif 'when' in query or 'date' in query: | |
return 'date' | |
elif 'who' in query: | |
return 'person' | |
elif 'what is' in query or 'define' in query: | |
return 'definition' | |
elif 'list' in query or 'name all' in query: | |
return 'list' | |
return 'general' | |
def _extract_time_constraints(self, text): | |
"""Extract year ranges from text""" | |
constraints = [] | |
# Match patterns like "between 2000 and 2009" | |
range_match = re.search(r'between (\d{4}) and (\d{4})', text) | |
if range_match: | |
constraints.append(('range', int(range_match.group(1)), int(range_match.group(2)))) | |
# Match patterns like "in 2005" | |
year_match = re.search(r'in (\d{4})', text) | |
if year_match: | |
constraints.append(('point', int(year_match.group(1)))) | |
return constraints | |
def _extract_quantities(self, text): | |
"""Extract numbers from text""" | |
return [int(match) for match in re.findall(r'\b(\d+)\b', text)] | |
def search_wikipedia(self, query, num_results=3): | |
"""Search Wikipedia's API""" | |
url = "https://en.wikipedia.org/w/api.php" | |
params = { | |
'action': 'query', | |
'list': 'search', | |
'srsearch': query, | |
'format': 'json', | |
'srlimit': num_results | |
} | |
try: | |
response = self.session.get(url, params=params).json() | |
return [{ | |
'url': f"https://en.wikipedia.org/wiki/{item['title'].replace(' ', '_')}", | |
'title': item['title'], | |
'snippet': item['snippet'], | |
'source': 'wikipedia' | |
} for item in response['query']['search']] | |
except Exception as e: | |
print(f"Wikipedia search error: {e}") | |
return [] | |
def fetch_page(self, url): | |
"""Fetch and parse a Wikipedia page""" | |
if url in self.cache: | |
return self.cache[url] | |
try: | |
response = self.session.get(url, timeout=10) | |
soup = BeautifulSoup(response.text, 'html.parser') | |
# Clean the page content | |
for element in soup(['script', 'style', 'nav', 'footer', 'table']): | |
element.decompose() | |
page_data = { | |
'url': url, | |
'title': soup.title.string if soup.title else '', | |
'text': ' '.join(soup.stripped_strings), | |
'soup': soup | |
} | |
self.cache[url] = page_data | |
return page_data | |
except Exception as e: | |
print(f"Error fetching {url}: {e}") | |
return None | |
def answer_question(self, question): | |
"""Answer a question using Wikipedia""" | |
print(f"\nQuestion: {question}") | |
# Step 1: Analyze the question | |
analysis = self.analyze_query(question) | |
print(f"Analysis: {analysis}") | |
# Step 2: Search Wikipedia | |
search_results = self.search_wikipedia(question) | |
if not search_results: | |
return {"answer": "No Wikipedia results found", "source": None} | |
# Step 3: Fetch and analyze pages | |
answers = [] | |
for result in search_results: | |
page = self.fetch_page(result['url']) | |
if page: | |
answer = self._extract_answer(page, analysis) | |
if answer: | |
answers.append({ | |
'answer': answer, | |
'source': result['url'], | |
'confidence': self._calculate_confidence(answer, analysis) | |
}) | |
# Step 4: Return the best answer | |
if not answers: | |
return {"answer": "No answers found in Wikipedia", "source": None} | |
answers.sort(key=lambda x: x['confidence'], reverse=True) | |
best_answer = answers[0] | |
# Format the output | |
result = { | |
"question": question, | |
"answer": best_answer['answer'], | |
"source": best_answer['source'], | |
"confidence": f"{best_answer['confidence']:.0%}" | |
} | |
if isinstance(best_answer['answer'], list): | |
result['answer'] = "\n- " + "\n- ".join(best_answer['answer']) | |
return result | |
def _extract_answer(self, page, analysis): | |
"""Extract answer based on intent""" | |
if analysis['intent'] == 'count': | |
return self._extract_count(page['text'], analysis) | |
elif analysis['intent'] == 'date': | |
return self._extract_date(page['text'], analysis) | |
elif analysis['intent'] == 'list': | |
return self._extract_list(page['soup'], analysis) | |
else: | |
return self._extract_general(page['text'], analysis) | |
def _extract_count(self, text, analysis): | |
"""Extract a count/number from text""" | |
entities = [e[0] for e in analysis['entities']] | |
pattern = r'(\b\d+\b)[^\.]*\b(' + '|'.join(re.escape(e) for e in entities) + r')\b' | |
matches = re.finditer(pattern, text, re.IGNORECASE) | |
counts = [int(match.group(1)) for match in matches] | |
return max(counts) if counts else None | |
def _extract_date(self, text, analysis): | |
"""Extract dates from text""" | |
date_pattern = r'\b(\d{1,2}(?:st|nd|rd|th)?\s+(?:\w+)\s+\d{4}|\d{4})\b' | |
dates = [match.group(0) for match in re.finditer(date_pattern, text)] | |
entities = [e[0] for e in analysis['entities']] | |
return next((d for d in dates if any(e.lower() in text.lower() for e in entities)), None) | |
def _extract_list(self, soup, analysis): | |
"""Extract list items from page""" | |
entities = [e[0] for e in analysis['entities']] | |
items = [] | |
for list_tag in soup.find_all(['ul', 'ol']): | |
list_items = [li.get_text().strip() for li in list_tag.find_all('li')] | |
if any(e.lower() in ' '.join(list_items).lower() for e in entities): | |
items.extend(list_items) | |
return items if items else None | |
def _extract_general(self, text, analysis): | |
"""Extract general information from text""" | |
entities = [e[0] for e in analysis['entities']] | |
sentences = re.split(r'(?<!\w\.\w.)(?<![A-Z][a-z]\.)(?<=\.|\?)\s', text) | |
relevant = [s for s in sentences if any(e.lower() in s.lower() for e in entities)] | |
return ' '.join(relevant) if relevant else None | |
def _calculate_confidence(self, answer, analysis): | |
"""Calculate confidence score for an answer""" | |
confidence = 0.5 # Base confidence | |
if analysis['intent'] == 'count' and isinstance(answer, int): | |
confidence += 0.3 | |
elif analysis['intent'] == 'date' and re.match(r'.*\d{4}.*', str(answer)): | |
confidence += 0.3 | |
elif analysis['intent'] == 'list' and isinstance(answer, list): | |
confidence += 0.3 | |
if analysis['time_constraints'] and str(answer): | |
for constraint in analysis['time_constraints']: | |
if constraint[0] == 'range': | |
years = re.findall(r'\b(19|20)\d{2}\b', str(answer)) | |
if any(constraint[1] <= int(y) <= constraint[2] for y in years): | |
confidence += 0.2 | |
return min(0.99, max(0.1, confidence)) | |
# Example usage | |
if __name__ == "__main__": | |
agent = BasicAgent() | |
questions = [ | |
"How many studio albums did Taylor Swift release between 2010 and 2015?", | |
"When was the first iPhone released?", | |
"What is the capital of Canada?", | |
"List the planets in our solar system" | |
] | |
for question in questions: | |
result = agent.answer_question(question) | |
print(f"\nAnswer: {result['answer']}") | |
#print(f"Source: {result['source']}") | |
#print(f"Confidence: {result['confidence']}") | |
#print("="*50) | |
def run_and_submit_all( profile: gr.OAuthProfile | None): | |
""" | |
Fetches all questions, runs the BasicAgent on them, submits all answers, | |
and displays the results. | |
""" | |
# --- Determine HF Space Runtime URL and Repo URL --- | |
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code | |
if profile: | |
username= f"{profile.username}" | |
print(f"User logged in: {username}") | |
else: | |
print("User not logged in.") | |
return "Please Login to Hugging Face with the button.", None | |
api_url = DEFAULT_API_URL | |
questions_url = f"{api_url}/questions" | |
submit_url = f"{api_url}/submit" | |
# 1. Instantiate Agent ( modify this part to create your agent) | |
try: | |
agent = BasicAgent() | |
except Exception as e: | |
print(f"Error instantiating agent: {e}") | |
return f"Error initializing agent: {e}", None | |
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public) | |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" | |
print(agent_code) | |
# 2. Fetch Questions | |
print(f"Fetching questions from: {questions_url}") | |
try: | |
response = requests.get(questions_url, timeout=15) | |
response.raise_for_status() | |
questions_data = response.json() | |
if not questions_data: | |
print("Fetched questions list is empty.") | |
return "Fetched questions list is empty or invalid format.", None | |
print(f"Fetched {len(questions_data)} questions.") | |
except requests.exceptions.RequestException as e: | |
print(f"Error fetching questions: {e}") | |
return f"Error fetching questions: {e}", None | |
except requests.exceptions.JSONDecodeError as e: | |
print(f"Error decoding JSON response from questions endpoint: {e}") | |
print(f"Response text: {response.text[:500]}") | |
return f"Error decoding server response for questions: {e}", None | |
except Exception as e: | |
print(f"An unexpected error occurred fetching questions: {e}") | |
return f"An unexpected error occurred fetching questions: {e}", None | |
# 3. Run your Agent | |
results_log = [] | |
answers_payload = [] | |
print(f"Running agent on {len(questions_data)} questions...") | |
for item in questions_data: | |
task_id = item.get("task_id") | |
question_text = item.get("question") | |
if not task_id or question_text is None: | |
print(f"Skipping item with missing task_id or question: {item}") | |
continue | |
try: | |
submitted_answer = agent(question_text) | |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) | |
except Exception as e: | |
print(f"Error running agent on task {task_id}: {e}") | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) | |
if not answers_payload: | |
print("Agent did not produce any answers to submit.") | |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) | |
# 4. Prepare Submission | |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} | |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." | |
print(status_update) | |
# 5. Submit | |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}") | |
try: | |
response = requests.post(submit_url, json=submission_data, timeout=60) | |
response.raise_for_status() | |
result_data = response.json() | |
final_status = ( | |
f"Submission Successful!\n" | |
f"User: {result_data.get('username')}\n" | |
f"Overall Score: {result_data.get('score', 'N/A')}% " | |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" | |
f"Message: {result_data.get('message', 'No message received.')}" | |
) | |
print("Submission successful.") | |
results_df = pd.DataFrame(results_log) | |
return final_status, results_df | |
except requests.exceptions.HTTPError as e: | |
error_detail = f"Server responded with status {e.response.status_code}." | |
try: | |
error_json = e.response.json() | |
error_detail += f" Detail: {error_json.get('detail', e.response.text)}" | |
except requests.exceptions.JSONDecodeError: | |
error_detail += f" Response: {e.response.text[:500]}" | |
status_message = f"Submission Failed: {error_detail}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except requests.exceptions.Timeout: | |
status_message = "Submission Failed: The request timed out." | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except requests.exceptions.RequestException as e: | |
status_message = f"Submission Failed: Network error - {e}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except Exception as e: | |
status_message = f"An unexpected error occurred during submission: {e}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
# --- Build Gradio Interface using Blocks --- | |
with gr.Blocks() as demo: | |
gr.Markdown("# Basic Agent Evaluation Runner") | |
gr.Markdown( | |
""" | |
**Instructions:** | |
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ... | |
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission. | |
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score. | |
--- | |
**Disclaimers:** | |
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions). | |
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async. | |
""" | |
) | |
gr.LoginButton() | |
run_button = gr.Button("Run Evaluation & Submit All Answers") | |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) | |
# Removed max_rows=10 from DataFrame constructor | |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) | |
run_button.click( | |
fn=run_and_submit_all, | |
outputs=[status_output, results_table] | |
) | |
if __name__ == "__main__": | |
print("\n" + "-"*30 + " App Starting " + "-"*30) | |
# Check for SPACE_HOST and SPACE_ID at startup for information | |
space_host_startup = os.getenv("SPACE_HOST") | |
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup | |
if space_host_startup: | |
print(f"✅ SPACE_HOST found: {space_host_startup}") | |
print(f" Runtime URL should be: https://{space_host_startup}.hf.space") | |
else: | |
print("ℹ️ SPACE_HOST environment variable not found (running locally?).") | |
if space_id_startup: # Print repo URLs if SPACE_ID is found | |
print(f"✅ SPACE_ID found: {space_id_startup}") | |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") | |
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") | |
else: | |
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") | |
print("-"*(60 + len(" App Starting ")) + "\n") | |
print("Launching Gradio Interface for Basic Agent Evaluation...") | |
demo.launch(debug=True, share=False) |