Spaces:
Running
Running
# -------------------------------------------------------- | |
# InternVL | |
# Copyright (c) 2023 OpenGVLab | |
# Licensed under The MIT License [see LICENSE for details] | |
# -------------------------------------------------------- | |
import argparse | |
import os | |
import os.path as osp | |
import shutil | |
import time | |
import warnings | |
import mmcv | |
import mmcv_custom # noqa: F401,F403 | |
import mmseg_custom # noqa: F401,F403 | |
import torch | |
from mmcv.parallel import MMDataParallel, MMDistributedDataParallel | |
from mmcv.runner import (get_dist_info, init_dist, load_checkpoint, | |
wrap_fp16_model) | |
from mmcv.utils import DictAction | |
from mmseg.apis import multi_gpu_test, single_gpu_test | |
from mmseg.datasets import build_dataloader, build_dataset | |
from mmseg.models import build_segmentor | |
def parse_args(): | |
parser = argparse.ArgumentParser( | |
description='mmseg test (and eval) a model') | |
parser.add_argument('config', help='test config file path') | |
parser.add_argument('checkpoint', help='checkpoint file') | |
parser.add_argument( | |
'--work-dir', | |
help=('if specified, the evaluation metric results will be dumped' | |
'into the directory as json')) | |
parser.add_argument( | |
'--aug-test', action='store_true', help='Use Flip and Multi scale aug') | |
parser.add_argument('--out', help='output result file in pickle format') | |
parser.add_argument( | |
'--format-only', | |
action='store_true', | |
help='Format the output results without perform evaluation. It is' | |
'useful when you want to format the result to a specific format and ' | |
'submit it to the test server') | |
parser.add_argument( | |
'--eval', | |
type=str, | |
nargs='+', | |
help='evaluation metrics, which depends on the dataset, e.g., "mIoU"' | |
' for generic datasets, and "cityscapes" for Cityscapes') | |
parser.add_argument('--show', action='store_true', help='show results') | |
parser.add_argument( | |
'--show-dir', help='directory where painted images will be saved') | |
parser.add_argument( | |
'--gpu-collect', | |
action='store_true', | |
help='whether to use gpu to collect results.') | |
parser.add_argument( | |
'--tmpdir', | |
help='tmp directory used for collecting results from multiple ' | |
'workers, available when gpu_collect is not specified') | |
parser.add_argument( | |
'--options', | |
nargs='+', | |
action=DictAction, | |
help="--options is deprecated in favor of --cfg_options' and it will " | |
'not be supported in version v0.22.0. Override some settings in the ' | |
'used config, the key-value pair in xxx=yyy format will be merged ' | |
'into config file. If the value to be overwritten is a list, it ' | |
'should be like key="[a,b]" or key=a,b It also allows nested ' | |
'list/tuple values, e.g. key="[(a,b),(c,d)]" Note that the quotation ' | |
'marks are necessary and that no white space is allowed.') | |
parser.add_argument( | |
'--cfg-options', | |
nargs='+', | |
action=DictAction, | |
help='override some settings in the used config, the key-value pair ' | |
'in xxx=yyy format will be merged into config file. If the value to ' | |
'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' | |
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' | |
'Note that the quotation marks are necessary and that no white space ' | |
'is allowed.') | |
parser.add_argument( | |
'--eval-options', | |
nargs='+', | |
action=DictAction, | |
help='custom options for evaluation') | |
parser.add_argument( | |
'--launcher', | |
choices=['none', 'pytorch', 'slurm', 'mpi'], | |
default='none', | |
help='job launcher') | |
parser.add_argument( | |
'--opacity', | |
type=float, | |
default=0.5, | |
help='Opacity of painted segmentation map. In (0, 1] range.') | |
parser.add_argument('--local_rank', type=int, default=0) | |
args = parser.parse_args() | |
if 'LOCAL_RANK' not in os.environ: | |
os.environ['LOCAL_RANK'] = str(args.local_rank) | |
if args.options and args.cfg_options: | |
raise ValueError( | |
'--options and --cfg-options cannot be both ' | |
'specified, --options is deprecated in favor of --cfg-options. ' | |
'--options will not be supported in version v0.22.0.') | |
if args.options: | |
warnings.warn('--options is deprecated in favor of --cfg-options. ' | |
'--options will not be supported in version v0.22.0.') | |
args.cfg_options = args.options | |
return args | |
def main(): | |
args = parse_args() | |
assert args.out or args.eval or args.format_only or args.show \ | |
or args.show_dir, \ | |
('Please specify at least one operation (save/eval/format/show the ' | |
'results / save the results) with the argument "--out", "--eval"' | |
', "--format-only", "--show" or "--show-dir"') | |
if args.eval and args.format_only: | |
raise ValueError('--eval and --format_only cannot be both specified') | |
if args.out is not None and not args.out.endswith(('.pkl', '.pickle')): | |
raise ValueError('The output file must be a pkl file.') | |
cfg = mmcv.Config.fromfile(args.config) | |
if args.cfg_options is not None: | |
cfg.merge_from_dict(args.cfg_options) | |
# set cudnn_benchmark | |
if cfg.get('cudnn_benchmark', False): | |
torch.backends.cudnn.benchmark = True | |
if args.aug_test: | |
# hard code index | |
cfg.data.test.pipeline[1].img_ratios = [ | |
0.5, 0.75, 1.0, 1.25, 1.5, 1.75 | |
] | |
cfg.data.test.pipeline[1].flip = True | |
cfg.model.pretrained = None | |
cfg.data.test.test_mode = True | |
# init distributed env first, since logger depends on the dist info. | |
if args.launcher == 'none': | |
distributed = False | |
else: | |
distributed = True | |
init_dist(args.launcher, **cfg.dist_params) | |
rank, _ = get_dist_info() | |
# allows not to create | |
if args.work_dir is not None and rank == 0: | |
mmcv.mkdir_or_exist(osp.abspath(args.work_dir)) | |
timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime()) | |
if args.aug_test: | |
json_file = osp.join(args.work_dir, | |
f'eval_multi_scale_{timestamp}.json') | |
else: | |
json_file = osp.join(args.work_dir, | |
f'eval_single_scale_{timestamp}.json') | |
elif rank == 0: | |
work_dir = osp.join('./work_dirs', | |
osp.splitext(osp.basename(args.config))[0]) | |
mmcv.mkdir_or_exist(osp.abspath(work_dir)) | |
timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime()) | |
if args.aug_test: | |
json_file = osp.join(work_dir, | |
f'eval_multi_scale_{timestamp}.json') | |
else: | |
json_file = osp.join(work_dir, | |
f'eval_single_scale_{timestamp}.json') | |
# build the dataloader | |
# TODO: support multiple images per gpu (only minor changes are needed) | |
dataset = build_dataset(cfg.data.test) | |
data_loader = build_dataloader( | |
dataset, | |
samples_per_gpu=1, | |
workers_per_gpu=cfg.data.workers_per_gpu, | |
dist=distributed, | |
shuffle=False) | |
# build the model and load checkpoint | |
cfg.model.train_cfg = None | |
model = build_segmentor(cfg.model, test_cfg=cfg.get('test_cfg')) | |
fp16_cfg = cfg.get('fp16', None) | |
if fp16_cfg is not None: | |
wrap_fp16_model(model) | |
checkpoint = load_checkpoint(model, args.checkpoint, map_location='cpu') | |
if 'CLASSES' in checkpoint.get('meta', {}): | |
model.CLASSES = checkpoint['meta']['CLASSES'] | |
else: | |
print('"CLASSES" not found in meta, use dataset.CLASSES instead') | |
model.CLASSES = dataset.CLASSES | |
if 'PALETTE' in checkpoint.get('meta', {}): | |
model.PALETTE = checkpoint['meta']['PALETTE'] | |
else: | |
print('"PALETTE" not found in meta, use dataset.PALETTE instead') | |
model.PALETTE = dataset.PALETTE | |
# clean gpu memory when starting a new evaluation. | |
torch.cuda.empty_cache() | |
eval_kwargs = {} if args.eval_options is None else args.eval_options | |
# Deprecated | |
efficient_test = eval_kwargs.get('efficient_test', False) | |
if efficient_test: | |
warnings.warn( | |
'``efficient_test=True`` does not have effect in tools/test.py, ' | |
'the evaluation and format results are CPU memory efficient by ' | |
'default') | |
eval_on_format_results = ( | |
args.eval is not None and 'cityscapes' in args.eval) | |
if eval_on_format_results: | |
assert len(args.eval) == 1, 'eval on format results is not ' \ | |
'applicable for metrics other than ' \ | |
'cityscapes' | |
if args.format_only or eval_on_format_results: | |
if 'imgfile_prefix' in eval_kwargs: | |
tmpdir = eval_kwargs['imgfile_prefix'] | |
else: | |
tmpdir = '.format_cityscapes' | |
eval_kwargs.setdefault('imgfile_prefix', tmpdir) | |
mmcv.mkdir_or_exist(tmpdir) | |
else: | |
tmpdir = None | |
if not distributed: | |
model = MMDataParallel(model, device_ids=[0]) | |
results = single_gpu_test( | |
model, | |
data_loader, | |
args.show, | |
args.show_dir, | |
False, | |
args.opacity, | |
pre_eval=args.eval is not None and not eval_on_format_results, | |
format_only=args.format_only or eval_on_format_results, | |
format_args=eval_kwargs) | |
else: | |
model = MMDistributedDataParallel( | |
model.cuda(), | |
device_ids=[torch.cuda.current_device()], | |
broadcast_buffers=False) | |
results = multi_gpu_test( | |
model, | |
data_loader, | |
args.tmpdir, | |
args.gpu_collect, | |
False, | |
pre_eval=args.eval is not None and not eval_on_format_results, | |
format_only=args.format_only or eval_on_format_results, | |
format_args=eval_kwargs) | |
rank, _ = get_dist_info() | |
if rank == 0: | |
if args.out: | |
warnings.warn( | |
'The behavior of ``args.out`` has been changed since MMSeg ' | |
'v0.16, the pickled outputs could be seg map as type of ' | |
'np.array, pre-eval results or file paths for ' | |
'``dataset.format_results()``.') | |
print(f'\nwriting results to {args.out}') | |
mmcv.dump(results, args.out) | |
if args.eval: | |
eval_kwargs.update(metric=args.eval) | |
metric = dataset.evaluate(results, **eval_kwargs) | |
metric_dict = dict(config=args.config, metric=metric) | |
mmcv.dump(metric_dict, json_file, indent=4) | |
if tmpdir is not None and eval_on_format_results: | |
# remove tmp dir when cityscapes evaluation | |
shutil.rmtree(tmpdir) | |
if __name__ == '__main__': | |
main() | |