Spaces:
Running
Running
none
commited on
Commit
·
1b58092
1
Parent(s):
8551eaf
init
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- app.py +65 -18
- datasets/Grid/README.md +0 -1
- datasets/V2C/README.md +0 -1
- datasets/V2C/V2C_Setting2.txt +0 -0
- datasets/V2C/V2C_Setting3.txt +0 -0
- src/third_party/InternVL/internvl_chat/README.md +635 -0
- src/third_party/InternVL/internvl_chat/evaluate.sh +726 -0
- src/third_party/InternVL/internvl_chat/internvl/conversation.py +402 -0
- src/third_party/InternVL/internvl_chat/internvl/dist_utils.py +104 -0
- src/third_party/InternVL/internvl_chat/internvl/model/__init__.py +51 -0
- src/third_party/InternVL/internvl_chat/internvl/model/internlm2/configuration_internlm2.py +150 -0
- src/third_party/InternVL/internvl_chat/internvl/model/internlm2/modeling_internlm2.py +1429 -0
- src/third_party/InternVL/internvl_chat/internvl/model/internlm2/tokenization_internlm2.py +235 -0
- src/third_party/InternVL/internvl_chat/internvl/model/internlm2/tokenization_internlm2_fast.py +211 -0
- src/third_party/InternVL/internvl_chat/internvl/model/internvl_chat/__init__.py +13 -0
- src/third_party/InternVL/internvl_chat/internvl/model/internvl_chat/configuration_intern_vit.py +120 -0
- src/third_party/InternVL/internvl_chat/internvl/model/internvl_chat/configuration_internvl_chat.py +109 -0
- src/third_party/InternVL/internvl_chat/internvl/model/internvl_chat/modeling_intern_vit.py +450 -0
- src/third_party/InternVL/internvl_chat/internvl/model/internvl_chat/modeling_internvl_chat.py +477 -0
- src/third_party/InternVL/internvl_chat/internvl/model/phi3/configuration_phi3.py +211 -0
- src/third_party/InternVL/internvl_chat/internvl/model/phi3/modeling_phi3.py +1610 -0
- src/third_party/InternVL/internvl_chat/internvl/patch/__init__.py +34 -0
- src/third_party/InternVL/internvl_chat/internvl/patch/internlm2_packed_training_patch.py +74 -0
- src/third_party/InternVL/internvl_chat/internvl/patch/internvit_liger_monkey_patch.py +13 -0
- src/third_party/InternVL/internvl_chat/internvl/patch/llama2_flash_attn_monkey_patch.py +238 -0
- src/third_party/InternVL/internvl_chat/internvl/patch/llama_flash_attn_monkey_patch.py +222 -0
- src/third_party/InternVL/internvl_chat/internvl/patch/llama_packed_training_patch.py +106 -0
- src/third_party/InternVL/internvl_chat/internvl/patch/llama_rmsnorm_monkey_patch.py +23 -0
- src/third_party/InternVL/internvl_chat/internvl/patch/pad_data_collator.py +155 -0
- src/third_party/InternVL/internvl_chat/internvl/patch/phi3_packed_training_patch.py +105 -0
- src/third_party/InternVL/internvl_chat/internvl/patch/qwen2_packed_training_patch.py +106 -0
- src/third_party/InternVL/internvl_chat/internvl/patch/train_dataloader_patch.py +53 -0
- src/third_party/InternVL/internvl_chat/internvl/patch/train_sampler_patch.py +125 -0
- src/third_party/InternVL/internvl_chat/internvl/train/__init__.py +5 -0
- src/third_party/InternVL/internvl_chat/internvl/train/constants.py +21 -0
- src/third_party/InternVL/internvl_chat/internvl/train/dataset.py +866 -0
- src/third_party/InternVL/internvl_chat/internvl/train/dataset_packed.py +634 -0
- src/third_party/InternVL/internvl_chat/internvl/train/internvl_chat_dpo.py +1056 -0
- src/third_party/InternVL/internvl_chat/internvl/train/internvl_chat_finetune.py +1072 -0
- src/third_party/InternVL/internvl_chat/internvl/train/internvl_chat_pretrain.py +1116 -0
- src/third_party/InternVL/internvl_chat/internvl/train/trainer_dpo.py +302 -0
- src/third_party/InternVL/internvl_chat/pyproject.toml +33 -0
- src/third_party/InternVL/internvl_chat/tools/convert_to_int8.py +16 -0
- src/third_party/InternVL/internvl_chat/tools/extract_mlp.py +19 -0
- src/third_party/InternVL/internvl_chat/tools/extract_video_frames.py +120 -0
- src/third_party/InternVL/internvl_chat/tools/extract_vit.py +16 -0
- src/third_party/InternVL/internvl_chat/tools/images_stitching.py +79 -0
- src/third_party/InternVL/internvl_chat/tools/json2jsonl.py +20 -0
- src/third_party/InternVL/internvl_chat/tools/jsonl2jsonl.py +22 -0
- src/third_party/InternVL/internvl_chat/tools/merge_lora.py +31 -0
app.py
CHANGED
@@ -8,10 +8,12 @@ import soundfile
|
|
8 |
import torch
|
9 |
import torch.nn.functional as F
|
10 |
import torchaudio
|
|
|
11 |
from moviepy import VideoFileClip
|
12 |
from pydub import AudioSegment
|
13 |
-
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
14 |
|
|
|
15 |
from src.moviedubber.infer.utils_infer import (
|
16 |
cfg_strength,
|
17 |
chunk_text,
|
@@ -23,8 +25,11 @@ from src.moviedubber.infer_with_mmlm_result import concat_movie_with_audio, get_
|
|
23 |
from src.moviedubber.model.utils import convert_char_to_pinyin
|
24 |
|
25 |
|
|
|
26 |
sys.path.append("src/third_party/BigVGAN")
|
27 |
|
|
|
|
|
28 |
|
29 |
def load_asr_model(model_id="openai/whisper-large-v3-turbo"):
|
30 |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
@@ -45,7 +50,22 @@ def load_asr_model(model_id="openai/whisper-large-v3-turbo"):
|
|
45 |
return pipe
|
46 |
|
47 |
|
48 |
-
device = "cpu"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
ema_model, vocoder, ort_session = load_models(device=device)
|
51 |
asr_pipe = load_asr_model()
|
@@ -54,6 +74,29 @@ videofeature_extractor = VideoFeatureExtractor(device=device)
|
|
54 |
|
55 |
|
56 |
def deepdubber(video_path: str, subtitle_text: str, audio_path: str = None) -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
print(f"Starting deepdubber with video_path: {video_path} and subtitle_text: {subtitle_text}")
|
58 |
gen_clip = videofeature_extractor.extract_features(video_path)
|
59 |
gen_text = subtitle_text
|
@@ -143,29 +186,29 @@ def deepdubber(video_path: str, subtitle_text: str, audio_path: str = None) -> s
|
|
143 |
os.remove(temp_wav_path)
|
144 |
|
145 |
print(f"Deepdubber completed successfully, output path: {concated_video}")
|
146 |
-
return concated_video
|
147 |
|
148 |
|
149 |
def process_video_dubbing(video_path: str, subtitle_text: str, audio_path: str = None) -> str:
|
150 |
-
try:
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
|
155 |
-
|
156 |
-
|
157 |
|
158 |
-
|
159 |
-
|
160 |
|
161 |
-
|
162 |
|
163 |
-
|
164 |
|
165 |
-
except Exception as e:
|
166 |
-
|
167 |
|
168 |
-
|
169 |
|
170 |
|
171 |
def create_ui():
|
@@ -181,10 +224,14 @@ def create_ui():
|
|
181 |
|
182 |
process_btn = gr.Button("Start Dubbing")
|
183 |
|
184 |
-
|
|
|
|
|
185 |
|
186 |
process_btn.click(
|
187 |
-
fn=process_video_dubbing,
|
|
|
|
|
188 |
)
|
189 |
|
190 |
return app
|
|
|
8 |
import torch
|
9 |
import torch.nn.functional as F
|
10 |
import torchaudio
|
11 |
+
from huggingface_hub import hf_hub_download
|
12 |
from moviepy import VideoFileClip
|
13 |
from pydub import AudioSegment
|
14 |
+
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, AutoTokenizer, pipeline
|
15 |
|
16 |
+
from src.internvl.eval import load_video
|
17 |
from src.moviedubber.infer.utils_infer import (
|
18 |
cfg_strength,
|
19 |
chunk_text,
|
|
|
25 |
from src.moviedubber.model.utils import convert_char_to_pinyin
|
26 |
|
27 |
|
28 |
+
sys.path.insert(0, "src/third_party")
|
29 |
sys.path.append("src/third_party/BigVGAN")
|
30 |
|
31 |
+
from InternVL.internvl_chat.internvl.model.internvl_chat.modeling_internvl_chat import InternVLChatModel # type: ignore
|
32 |
+
|
33 |
|
34 |
def load_asr_model(model_id="openai/whisper-large-v3-turbo"):
|
35 |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
|
|
50 |
return pipe
|
51 |
|
52 |
|
53 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
54 |
+
|
55 |
+
mmlm_path = hf_hub_download(repo_id="woak-oa/DeepDubber-V1", filename="mmlm")
|
56 |
+
|
57 |
+
mmlm = InternVLChatModel.from_pretrained(
|
58 |
+
mmlm_path,
|
59 |
+
torch_dtype=torch.bfloat16,
|
60 |
+
low_cpu_mem_usage=True,
|
61 |
+
use_flash_attn=False,
|
62 |
+
)
|
63 |
+
mmlm = mmlm.eval().to(device)
|
64 |
+
|
65 |
+
tokenizer = AutoTokenizer.from_pretrained(mmlm_path, trust_remote_code=True, use_fast=False)
|
66 |
+
|
67 |
+
generation_config = dict(max_new_tokens=1024, do_sample=False)
|
68 |
+
|
69 |
|
70 |
ema_model, vocoder, ort_session = load_models(device=device)
|
71 |
asr_pipe = load_asr_model()
|
|
|
74 |
|
75 |
|
76 |
def deepdubber(video_path: str, subtitle_text: str, audio_path: str = None) -> str:
|
77 |
+
pixel_values, num_patches_list = load_video(video_path, num_segments=8, max_num=1)
|
78 |
+
pixel_values = pixel_values.to(torch.bfloat16).to(device)
|
79 |
+
video_prefix = "".join([f"Frame{i + 1}: <image>\n" for i in range(len(num_patches_list))])
|
80 |
+
question = (
|
81 |
+
video_prefix
|
82 |
+
+ "What is the voice-over category for this video? Options: A. dialogue, B. monologue, C. narration."
|
83 |
+
)
|
84 |
+
response = mmlm.chat(
|
85 |
+
tokenizer,
|
86 |
+
pixel_values,
|
87 |
+
question,
|
88 |
+
generation_config,
|
89 |
+
num_patches_list=num_patches_list,
|
90 |
+
history=None,
|
91 |
+
return_history=False,
|
92 |
+
)
|
93 |
+
|
94 |
+
try:
|
95 |
+
response = response.split("<CONCLUSION>")[1].split("</CONCLUSION>")[0].strip()
|
96 |
+
except Exception as e:
|
97 |
+
print(f"Error: {e}, response: {response}")
|
98 |
+
response = response.strip()[0]
|
99 |
+
|
100 |
print(f"Starting deepdubber with video_path: {video_path} and subtitle_text: {subtitle_text}")
|
101 |
gen_clip = videofeature_extractor.extract_features(video_path)
|
102 |
gen_text = subtitle_text
|
|
|
186 |
os.remove(temp_wav_path)
|
187 |
|
188 |
print(f"Deepdubber completed successfully, output path: {concated_video}")
|
189 |
+
return response, concated_video
|
190 |
|
191 |
|
192 |
def process_video_dubbing(video_path: str, subtitle_text: str, audio_path: str = None) -> str:
|
193 |
+
# try:
|
194 |
+
print(f"Processing video: {video_path}")
|
195 |
+
if not os.path.exists(video_path):
|
196 |
+
raise ValueError("Video file does not exist")
|
197 |
|
198 |
+
if not subtitle_text.strip():
|
199 |
+
raise ValueError("Subtitle text cannot be empty")
|
200 |
|
201 |
+
if audio_path is None:
|
202 |
+
audio_path = "datasets/CoTMovieDubbing/GT.wav"
|
203 |
|
204 |
+
res, output_path = deepdubber(video_path, subtitle_text, audio_path)
|
205 |
|
206 |
+
return res, output_path
|
207 |
|
208 |
+
# except Exception as e:
|
209 |
+
# print(f"Error in process_video_dubbing: {e}")
|
210 |
|
211 |
+
# return None, None
|
212 |
|
213 |
|
214 |
def create_ui():
|
|
|
224 |
|
225 |
process_btn = gr.Button("Start Dubbing")
|
226 |
|
227 |
+
with gr.Row():
|
228 |
+
output_response = gr.Textbox(label="Response", placeholder="Response from MMLM", lines=5)
|
229 |
+
output_video = gr.Video(label="Dubbed Video")
|
230 |
|
231 |
process_btn.click(
|
232 |
+
fn=process_video_dubbing,
|
233 |
+
inputs=[video_input, subtitle_input, audio_input],
|
234 |
+
outputs=[output_response, output_video],
|
235 |
)
|
236 |
|
237 |
return app
|
datasets/Grid/README.md
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
Refer to: [Grid](https://paperswithcode.com/dataset/grid)
|
|
|
|
datasets/V2C/README.md
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
Refer to: [V2C](https://github.com/chenqi008/V2C)
|
|
|
|
datasets/V2C/V2C_Setting2.txt
DELETED
The diff for this file is too large to render.
See raw diff
|
|
datasets/V2C/V2C_Setting3.txt
DELETED
The diff for this file is too large to render.
See raw diff
|
|
src/third_party/InternVL/internvl_chat/README.md
ADDED
@@ -0,0 +1,635 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# InternVL-Chat
|
2 |
+
|
3 |
+
This folder contains the implementation of the InternVL-Chat.
|
4 |
+
|
5 |
+
## 📖 Documents
|
6 |
+
|
7 |
+
### 🌟 **Get Started**
|
8 |
+
|
9 |
+
- **Installation**: 🌱 [Installation Guide](https://internvl.readthedocs.io/en/latest/get_started/installation.html) | 📄 [requirements.txt](./requirements.txt)
|
10 |
+
- **Chat Data Format**: 📝 [Meta File](https://internvl.readthedocs.io/en/latest/get_started/chat_data_format.html#meta-file) | ✏️ [Text](https://internvl.readthedocs.io/en/latest/get_started/chat_data_format.html#pure-text-data) | 🖼️ [Single-Image](https://internvl.readthedocs.io/en/latest/get_started/chat_data_format.html#single-image-data) | 🖼️🖼️ [Multi-Image](https://internvl.readthedocs.io/en/latest/get_started/chat_data_format.html#multi-image-data) | 🎥 [Video](https://internvl.readthedocs.io/en/latest/get_started/chat_data_format.html#video-data)
|
11 |
+
- **Local Chat Demo**: 🤖 [Streamlit Demo](https://internvl.readthedocs.io/en/latest/get_started/local_chat_demo.html#streamlit-demo)
|
12 |
+
- **InternVL-Chat API**: 🌐 [InternVL2-Pro](https://internvl.readthedocs.io/en/latest/get_started/internvl_chat_api.html#official-api-of-internvl2-pro)
|
13 |
+
- **Tutorials**: 🚀 [Enhancing InternVL2 on COCO Caption Using LoRA Fine-Tuning](https://internvl.readthedocs.io/en/latest/tutorials/coco_caption_finetune.html)
|
14 |
+
|
15 |
+
### 🏆 **InternVL Family**
|
16 |
+
|
17 |
+
- **InternVL 2.5**: 📖 [Introduction](https://internvl.readthedocs.io/en/latest/internvl2.5/introduction.html) | ⚡ [Quick Start](https://internvl.readthedocs.io/en/latest/internvl2.5/quick_start.html) | ✨ [Finetune](https://internvl.readthedocs.io/en/latest/internvl2.5/finetune.html) | 📊 [Evaluation](https://internvl.readthedocs.io/en/latest/internvl2.5/evaluation.html) | 📦 [Deployment](https://internvl.readthedocs.io/en/latest/internvl2.5/deployment.html) | 🎯 [Preference Optimization](https://internvl.readthedocs.io/en/latest/internvl2.5/preference_optimization.html)
|
18 |
+
- **InternVL 2.0**: 📖 [Introduction](https://internvl.readthedocs.io/en/latest/internvl2.0/introduction.html) | ⚡ [Quick Start](https://internvl.readthedocs.io/en/latest/internvl2.0/quick_start.html) | ✨ [Finetune](https://internvl.readthedocs.io/en/latest/internvl2.0/finetune.html) | 📊 [Evaluation](https://internvl.readthedocs.io/en/latest/internvl2.0/evaluation.html) | 📦 [Deployment](https://internvl.readthedocs.io/en/latest/internvl2.0/deployment.html) | 🎯 [Preference Optimization](https://internvl.readthedocs.io/en/latest/internvl2.0/preference_optimization.html)
|
19 |
+
- **InternVL 1.5**: 📖 [Introduction](https://internvl.readthedocs.io/en/latest/internvl1.5/introduction.html) | ⚡ [Quick Start](https://internvl.readthedocs.io/en/latest/internvl1.5/quick_start.html) | ✨ [Finetune](https://internvl.readthedocs.io/en/latest/internvl1.5/finetune.html) | 📊 [Evaluation](https://internvl.readthedocs.io/en/latest/internvl1.5/evaluation.html) | 📦 [Deployment](https://internvl.readthedocs.io/en/latest/internvl1.5/deployment.html)
|
20 |
+
- **InternVL 1.2**: 📖 [Introduction](https://internvl.readthedocs.io/en/latest/internvl1.2/introduction.html) | ⚡ [Quick Start](https://internvl.readthedocs.io/en/latest/internvl1.2/quick_start.html) | ✨ [Finetune](https://internvl.readthedocs.io/en/latest/internvl1.2/finetune.html) | 📊 [Evaluation](https://internvl.readthedocs.io/en/latest/internvl1.2/evaluation.html)
|
21 |
+
- **InternVL 1.1**: 📖 [Introduction](https://internvl.readthedocs.io/en/latest/internvl1.1/introduction.html) | ⚡ [Quick Start](https://internvl.readthedocs.io/en/latest/internvl1.1/quick_start.html) | 📊 [Evaluation](https://internvl.readthedocs.io/en/latest/internvl1.1/evaluation.html)
|
22 |
+
|
23 |
+
# Introduction
|
24 |
+
|
25 |
+
We are excited to introduce **InternVL 2.5**, an advanced multimodal large language model (MLLM) series that builds upon InternVL 2.0, maintaining its core model architecture while introducing significant enhancements in training and testing strategies as well as data quality.
|
26 |
+
|
27 |
+

|
28 |
+
|
29 |
+
## InternVL 2.5 Family
|
30 |
+
|
31 |
+
In the following table, we provide an overview of the InternVL 2.5 series.
|
32 |
+
|
33 |
+
| Model Name | Vision Part | Language Part | HF Link |
|
34 |
+
| :-------------: | :-------------------------------------------------------------------------------------: | :----------------------------------------------------------------------------: | :---------------------------------------------------------: |
|
35 |
+
| InternVL2_5-1B | [InternViT-300M-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-300M-448px-V2_5) | [Qwen2.5-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL2_5-1B) |
|
36 |
+
| InternVL2_5-2B | [InternViT-300M-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-300M-448px-V2_5) | [internlm2_5-1_8b-chat](https://huggingface.co/internlm/internlm2_5-1_8b-chat) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL2_5-2B) |
|
37 |
+
| InternVL2_5-4B | [InternViT-300M-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-300M-448px-V2_5) | [Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL2_5-4B) |
|
38 |
+
| InternVL2_5-8B | [InternViT-300M-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-300M-448px-V2_5) | [internlm2_5-7b-chat](https://huggingface.co/internlm/internlm2_5-7b-chat) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL2_5-8B) |
|
39 |
+
| InternVL2_5-26B | [InternViT-6B-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V2_5) | [internlm2_5-20b-chat](https://huggingface.co/internlm/internlm2_5-20b-chat) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL2_5-26B) |
|
40 |
+
| InternVL2_5-38B | [InternViT-6B-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V2_5) | [Qwen2.5-32B-Instruct](https://huggingface.co/Qwen/Qwen2.5-32B-Instruct) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL2_5-38B) |
|
41 |
+
| InternVL2_5-78B | [InternViT-6B-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V2_5) | [Qwen2.5-72B-Instruct](https://huggingface.co/Qwen/Qwen2.5-72B-Instruct) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL2_5-78B) |
|
42 |
+
|
43 |
+
## Model Architecture
|
44 |
+
|
45 |
+
As shown in the following figure, InternVL 2.5 retains the same model architecture as its predecessors, InternVL 1.5 and 2.0, following the "ViT-MLP-LLM" paradigm. In this new version, we integrate a newly incrementally pre-trained InternViT with various pre-trained LLMs, including InternLM 2.5 and Qwen 2.5, using a randomly initialized MLP projector.
|
46 |
+
|
47 |
+

|
48 |
+
|
49 |
+
As in the previous version, we applied a pixel unshuffle operation, reducing the number of visual tokens to one-quarter of the original. Besides, we adopted a similar dynamic resolution strategy as InternVL 1.5, dividing images into tiles of 448×448 pixels. The key difference, starting from InternVL 2.0, is that we additionally introduced support for multi-image and video data.
|
50 |
+
|
51 |
+
## Training Strategy
|
52 |
+
|
53 |
+
### Dynamic High-Resolution for Multimodal Data
|
54 |
+
|
55 |
+
In InternVL 2.0 and 2.5, we extend the dynamic high-resolution training approach, enhancing its capabilities to handle multi-image and video datasets.
|
56 |
+
|
57 |
+

|
58 |
+
|
59 |
+
- For single-image datasets, the total number of tiles `n_max` are allocated to a single image for maximum resolution. Visual tokens are enclosed in `<img>` and `</img>` tags.
|
60 |
+
|
61 |
+
- For multi-image datasets, the total number of tiles `n_max` are distributed across all images in a sample. Each image is labeled with auxiliary tags like `Image-1` and enclosed in `<img>` and `</img>` tags.
|
62 |
+
|
63 |
+
- For videos, each frame is resized to 448×448. Frames are labeled with tags like `Frame-1` and enclosed in `<img>` and `</img>` tags, similar to images.
|
64 |
+
|
65 |
+
### Single Model Training Pipeline
|
66 |
+
|
67 |
+
The training pipeline for a single model in InternVL 2.5 is structured across three stages, designed to enhance the model's visual perception and multimodal capabilities.
|
68 |
+
|
69 |
+

|
70 |
+
|
71 |
+
- **Stage 1: MLP Warmup.** In this stage, only the MLP projector is trained while the vision encoder and language model are frozen. A dynamic high-resolution training strategy is applied for better performance, despite increased cost. This phase ensures robust cross-modal alignment and prepares the model for stable multimodal training.
|
72 |
+
|
73 |
+
- **Stage 1.5: ViT Incremental Learning (Optional).** This stage allows incremental training of the vision encoder and MLP projector using the same data as Stage 1. It enhances the encoder’s ability to handle rare domains like multilingual OCR and mathematical charts. Once trained, the encoder can be reused across LLMs without retraining, making this stage optional unless new domains are introduced.
|
74 |
+
|
75 |
+
- **Stage 2: Full Model Instruction Tuning.** The entire model is trained on high-quality multimodal instruction datasets. Strict data quality controls are enforced to prevent degradation of the LLM, as noisy data can cause issues like repetitive or incorrect outputs. After this stage, the training process is complete.
|
76 |
+
|
77 |
+
### Progressive Scaling Strategy
|
78 |
+
|
79 |
+
We introduce a progressive scaling strategy to align the vision encoder with LLMs efficiently. This approach trains with smaller LLMs first (e.g., 20B) to optimize foundational visual capabilities and cross-modal alignment before transferring the vision encoder to larger LLMs (e.g., 72B) without retraining. This reuse skips intermediate stages for larger models.
|
80 |
+
|
81 |
+

|
82 |
+
|
83 |
+
Compared to Qwen2-VL's 1.4 trillion tokens, InternVL2.5-78B uses only 120 billion tokens—less than one-tenth. This strategy minimizes redundancy, maximizes pre-trained component reuse, and enables efficient training for complex vision-language tasks.
|
84 |
+
|
85 |
+
### Training Enhancements
|
86 |
+
|
87 |
+
To improve real-world adaptability and performance, we introduce two key techniques:
|
88 |
+
|
89 |
+
- **Random JPEG Compression**: Random JPEG compression with quality levels between 75 and 100 is applied as a data augmentation technique. This simulates image degradation from internet sources, enhancing the model's robustness to noisy images.
|
90 |
+
|
91 |
+
- **Loss Reweighting**: To balance the NTP loss across responses of different lengths, we use a reweighting strategy called **square averaging**. This method balances contributions from responses of varying lengths, mitigating biases toward longer or shorter responses.
|
92 |
+
|
93 |
+
## Data Organization
|
94 |
+
|
95 |
+
### Dataset Configuration
|
96 |
+
|
97 |
+
In InternVL 2.0 and 2.5, the organization of the training data is controlled by several key parameters to optimize the balance and distribution of datasets during training.
|
98 |
+
|
99 |
+

|
100 |
+
|
101 |
+
- **Data Augmentation:** JPEG compression is applied conditionally: enabled for image datasets to enhance robustness and disabled for video datasets to maintain consistent frame quality.
|
102 |
+
|
103 |
+
- **Maximum Tile Number:** The parameter `n_max` controls the maximum tiles per dataset. For example, higher values (24–36) are used for multi-image or high-resolution data, lower values (6–12) for standard images, and 1 for videos.
|
104 |
+
|
105 |
+
- **Repeat Factor:** The repeat factor `r` adjusts dataset sampling frequency. Values below 1 reduce a dataset's weight, while values above 1 increase it. This ensures balanced training across tasks and prevents overfitting or underfitting.
|
106 |
+
|
107 |
+
### Data Filtering Pipeline
|
108 |
+
|
109 |
+
During development, we found that LLMs are highly sensitive to data noise, with even small anomalies—like outliers or repetitive data—causing abnormal behavior during inference. Repetitive generation, especially in long-form or CoT reasoning tasks, proved particularly harmful.
|
110 |
+
|
111 |
+

|
112 |
+
|
113 |
+
To address this challenge and support future research, we designed an efficient data filtering pipeline to remove low-quality samples.
|
114 |
+
|
115 |
+

|
116 |
+
|
117 |
+
The pipeline includes two modules, for **pure-text data**, three key strategies are used:
|
118 |
+
|
119 |
+
1. **LLM-Based Quality Scoring**: Each sample is scored (0–10) using a pre-trained LLM with domain-specific prompts. Samples scoring below a threshold (e.g., 7) are removed to ensure high-quality data.
|
120 |
+
2. **Repetition Detection**: Repetitive samples are flagged using LLM-based prompts and manually reviewed. Samples scoring below a stricter threshold (e.g., 3) are excluded to avoid repetitive patterns.
|
121 |
+
3. **Heuristic Rule-Based Filtering**: Anomalies like abnormal sentence lengths or duplicate lines are detected using rules. Flagged samples undergo manual verification to ensure accuracy before removal.
|
122 |
+
|
123 |
+
For **multimodal data**, two strategies are used:
|
124 |
+
|
125 |
+
1. **Repetition Detection**: Repetitive samples in non-academic datasets are flagged and manually reviewed to prevent pattern loops. High-quality datasets are exempt from this process.
|
126 |
+
2. **Heuristic Rule-Based Filtering**: Similar rules are applied to detect visual anomalies, with flagged data verified manually to maintain integrity.
|
127 |
+
|
128 |
+
### Training Data
|
129 |
+
|
130 |
+
As shown in the following figure, from InternVL 1.5 to 2.0 and then to 2.5, the fine-tuning data mixture has undergone iterative improvements in scale, quality, and diversity. For more information about the training data, please refer to our technical report.
|
131 |
+
|
132 |
+

|
133 |
+
|
134 |
+
## Evaluation on Multimodal Capability
|
135 |
+
|
136 |
+
### Multimodal Reasoning and Mathematics
|
137 |
+
|
138 |
+

|
139 |
+
|
140 |
+

|
141 |
+
|
142 |
+
### OCR, Chart, and Document Understanding
|
143 |
+
|
144 |
+

|
145 |
+
|
146 |
+
### Multi-Image & Real-World Comprehension
|
147 |
+
|
148 |
+

|
149 |
+
|
150 |
+
### Comprehensive Multimodal & Hallucination Evaluation
|
151 |
+
|
152 |
+

|
153 |
+
|
154 |
+
### Visual Grounding
|
155 |
+
|
156 |
+

|
157 |
+
|
158 |
+
### Multimodal Multilingual Understanding
|
159 |
+
|
160 |
+

|
161 |
+
|
162 |
+
### Video Understanding
|
163 |
+
|
164 |
+

|
165 |
+
|
166 |
+
## Evaluation on Language Capability
|
167 |
+
|
168 |
+
Training InternVL 2.0 models led to a decline in pure language capabilities. InternVL 2.5 addresses this by collecting more high-quality open-source data and filtering out low-quality data, achieving better preservation of pure language performance.
|
169 |
+
|
170 |
+

|
171 |
+
|
172 |
+
## Quick Start
|
173 |
+
|
174 |
+
We provide an example code to run `InternVL2_5-8B` using `transformers`.
|
175 |
+
|
176 |
+
> Please use transformers>=4.37.2 to ensure the model works normally.
|
177 |
+
|
178 |
+
### Model Loading
|
179 |
+
|
180 |
+
#### 16-bit (bf16 / fp16)
|
181 |
+
|
182 |
+
```python
|
183 |
+
import torch
|
184 |
+
from transformers import AutoTokenizer, AutoModel
|
185 |
+
path = "OpenGVLab/InternVL2_5-8B"
|
186 |
+
model = AutoModel.from_pretrained(
|
187 |
+
path,
|
188 |
+
torch_dtype=torch.bfloat16,
|
189 |
+
low_cpu_mem_usage=True,
|
190 |
+
use_flash_attn=True,
|
191 |
+
trust_remote_code=True).eval().cuda()
|
192 |
+
```
|
193 |
+
|
194 |
+
#### BNB 8-bit Quantization
|
195 |
+
|
196 |
+
```python
|
197 |
+
import torch
|
198 |
+
from transformers import AutoTokenizer, AutoModel
|
199 |
+
path = "OpenGVLab/InternVL2_5-8B"
|
200 |
+
model = AutoModel.from_pretrained(
|
201 |
+
path,
|
202 |
+
torch_dtype=torch.bfloat16,
|
203 |
+
load_in_8bit=True,
|
204 |
+
low_cpu_mem_usage=True,
|
205 |
+
use_flash_attn=True,
|
206 |
+
trust_remote_code=True).eval()
|
207 |
+
```
|
208 |
+
|
209 |
+
#### Multiple GPUs
|
210 |
+
|
211 |
+
The reason for writing the code this way is to avoid errors that occur during multi-GPU inference due to tensors not being on the same device. By ensuring that the first and last layers of the large language model (LLM) are on the same device, we prevent such errors.
|
212 |
+
|
213 |
+
```python
|
214 |
+
import math
|
215 |
+
import torch
|
216 |
+
from transformers import AutoTokenizer, AutoModel
|
217 |
+
|
218 |
+
def split_model(model_name):
|
219 |
+
device_map = {}
|
220 |
+
world_size = torch.cuda.device_count()
|
221 |
+
num_layers = {
|
222 |
+
'InternVL2_5-1B': 24, 'InternVL2_5-2B': 24, 'InternVL2_5-4B': 36, 'InternVL2_5-8B': 32,
|
223 |
+
'InternVL2_5-26B': 48, 'InternVL2_5-38B': 64, 'InternVL2_5-78B': 80}[model_name]
|
224 |
+
# Since the first GPU will be used for ViT, treat it as half a GPU.
|
225 |
+
num_layers_per_gpu = math.ceil(num_layers / (world_size - 0.5))
|
226 |
+
num_layers_per_gpu = [num_layers_per_gpu] * world_size
|
227 |
+
num_layers_per_gpu[0] = math.ceil(num_layers_per_gpu[0] * 0.5)
|
228 |
+
layer_cnt = 0
|
229 |
+
for i, num_layer in enumerate(num_layers_per_gpu):
|
230 |
+
for j in range(num_layer):
|
231 |
+
device_map[f'language_model.model.layers.{layer_cnt}'] = i
|
232 |
+
layer_cnt += 1
|
233 |
+
device_map['vision_model'] = 0
|
234 |
+
device_map['mlp1'] = 0
|
235 |
+
device_map['language_model.model.tok_embeddings'] = 0
|
236 |
+
device_map['language_model.model.embed_tokens'] = 0
|
237 |
+
device_map['language_model.output'] = 0
|
238 |
+
device_map['language_model.model.norm'] = 0
|
239 |
+
device_map['language_model.lm_head'] = 0
|
240 |
+
device_map[f'language_model.model.layers.{num_layers - 1}'] = 0
|
241 |
+
|
242 |
+
return device_map
|
243 |
+
|
244 |
+
path = "OpenGVLab/InternVL2_5-8B"
|
245 |
+
device_map = split_model('InternVL2_5-8B')
|
246 |
+
model = AutoModel.from_pretrained(
|
247 |
+
path,
|
248 |
+
torch_dtype=torch.bfloat16,
|
249 |
+
low_cpu_mem_usage=True,
|
250 |
+
use_flash_attn=True,
|
251 |
+
trust_remote_code=True,
|
252 |
+
device_map=device_map).eval()
|
253 |
+
```
|
254 |
+
|
255 |
+
### Inference with Transformers
|
256 |
+
|
257 |
+
```python
|
258 |
+
import numpy as np
|
259 |
+
import torch
|
260 |
+
import torchvision.transforms as T
|
261 |
+
from decord import VideoReader, cpu
|
262 |
+
from PIL import Image
|
263 |
+
from torchvision.transforms.functional import InterpolationMode
|
264 |
+
from transformers import AutoModel, AutoTokenizer
|
265 |
+
|
266 |
+
IMAGENET_MEAN = (0.485, 0.456, 0.406)
|
267 |
+
IMAGENET_STD = (0.229, 0.224, 0.225)
|
268 |
+
|
269 |
+
def build_transform(input_size):
|
270 |
+
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
|
271 |
+
transform = T.Compose([
|
272 |
+
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
|
273 |
+
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
|
274 |
+
T.ToTensor(),
|
275 |
+
T.Normalize(mean=MEAN, std=STD)
|
276 |
+
])
|
277 |
+
return transform
|
278 |
+
|
279 |
+
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
|
280 |
+
best_ratio_diff = float('inf')
|
281 |
+
best_ratio = (1, 1)
|
282 |
+
area = width * height
|
283 |
+
for ratio in target_ratios:
|
284 |
+
target_aspect_ratio = ratio[0] / ratio[1]
|
285 |
+
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
|
286 |
+
if ratio_diff < best_ratio_diff:
|
287 |
+
best_ratio_diff = ratio_diff
|
288 |
+
best_ratio = ratio
|
289 |
+
elif ratio_diff == best_ratio_diff:
|
290 |
+
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
|
291 |
+
best_ratio = ratio
|
292 |
+
return best_ratio
|
293 |
+
|
294 |
+
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
|
295 |
+
orig_width, orig_height = image.size
|
296 |
+
aspect_ratio = orig_width / orig_height
|
297 |
+
|
298 |
+
# calculate the existing image aspect ratio
|
299 |
+
target_ratios = set(
|
300 |
+
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
|
301 |
+
i * j <= max_num and i * j >= min_num)
|
302 |
+
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
|
303 |
+
|
304 |
+
# find the closest aspect ratio to the target
|
305 |
+
target_aspect_ratio = find_closest_aspect_ratio(
|
306 |
+
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
|
307 |
+
|
308 |
+
# calculate the target width and height
|
309 |
+
target_width = image_size * target_aspect_ratio[0]
|
310 |
+
target_height = image_size * target_aspect_ratio[1]
|
311 |
+
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
|
312 |
+
|
313 |
+
# resize the image
|
314 |
+
resized_img = image.resize((target_width, target_height))
|
315 |
+
processed_images = []
|
316 |
+
for i in range(blocks):
|
317 |
+
box = (
|
318 |
+
(i % (target_width // image_size)) * image_size,
|
319 |
+
(i // (target_width // image_size)) * image_size,
|
320 |
+
((i % (target_width // image_size)) + 1) * image_size,
|
321 |
+
((i // (target_width // image_size)) + 1) * image_size
|
322 |
+
)
|
323 |
+
# split the image
|
324 |
+
split_img = resized_img.crop(box)
|
325 |
+
processed_images.append(split_img)
|
326 |
+
assert len(processed_images) == blocks
|
327 |
+
if use_thumbnail and len(processed_images) != 1:
|
328 |
+
thumbnail_img = image.resize((image_size, image_size))
|
329 |
+
processed_images.append(thumbnail_img)
|
330 |
+
return processed_images
|
331 |
+
|
332 |
+
def load_image(image_file, input_size=448, max_num=12):
|
333 |
+
image = Image.open(image_file).convert('RGB')
|
334 |
+
transform = build_transform(input_size=input_size)
|
335 |
+
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
|
336 |
+
pixel_values = [transform(image) for image in images]
|
337 |
+
pixel_values = torch.stack(pixel_values)
|
338 |
+
return pixel_values
|
339 |
+
|
340 |
+
# If you want to load a model using multiple GPUs, please refer to the `Multiple GPUs` section.
|
341 |
+
path = 'OpenGVLab/InternVL2_5-8B'
|
342 |
+
model = AutoModel.from_pretrained(
|
343 |
+
path,
|
344 |
+
torch_dtype=torch.bfloat16,
|
345 |
+
low_cpu_mem_usage=True,
|
346 |
+
use_flash_attn=True,
|
347 |
+
trust_remote_code=True).eval().cuda()
|
348 |
+
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
|
349 |
+
|
350 |
+
# set the max number of tiles in `max_num`
|
351 |
+
pixel_values = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
|
352 |
+
generation_config = dict(max_new_tokens=1024, do_sample=True)
|
353 |
+
|
354 |
+
# pure-text conversation (纯文本对话)
|
355 |
+
question = 'Hello, who are you?'
|
356 |
+
response, history = model.chat(tokenizer, None, question, generation_config, history=None, return_history=True)
|
357 |
+
print(f'User: {question}\nAssistant: {response}')
|
358 |
+
|
359 |
+
question = 'Can you tell me a story?'
|
360 |
+
response, history = model.chat(tokenizer, None, question, generation_config, history=history, return_history=True)
|
361 |
+
print(f'User: {question}\nAssistant: {response}')
|
362 |
+
|
363 |
+
# single-image single-round conversation (单图单轮对话)
|
364 |
+
question = '<image>\nPlease describe the image shortly.'
|
365 |
+
response = model.chat(tokenizer, pixel_values, question, generation_config)
|
366 |
+
print(f'User: {question}\nAssistant: {response}')
|
367 |
+
|
368 |
+
# single-image multi-round conversation (单图多轮对话)
|
369 |
+
question = '<image>\nPlease describe the image in detail.'
|
370 |
+
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
|
371 |
+
print(f'User: {question}\nAssistant: {response}')
|
372 |
+
|
373 |
+
question = 'Please write a poem according to the image.'
|
374 |
+
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True)
|
375 |
+
print(f'User: {question}\nAssistant: {response}')
|
376 |
+
|
377 |
+
# multi-image multi-round conversation, combined images (多图多轮对话,拼接图像)
|
378 |
+
pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
|
379 |
+
pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
|
380 |
+
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
|
381 |
+
|
382 |
+
question = '<image>\nDescribe the two images in detail.'
|
383 |
+
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
|
384 |
+
history=None, return_history=True)
|
385 |
+
print(f'User: {question}\nAssistant: {response}')
|
386 |
+
|
387 |
+
question = 'What are the similarities and differences between these two images.'
|
388 |
+
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
|
389 |
+
history=history, return_history=True)
|
390 |
+
print(f'User: {question}\nAssistant: {response}')
|
391 |
+
|
392 |
+
# multi-image multi-round conversation, separate images (多图多轮对话,独立图像)
|
393 |
+
pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
|
394 |
+
pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
|
395 |
+
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
|
396 |
+
num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
|
397 |
+
|
398 |
+
question = 'Image-1: <image>\nImage-2: <image>\nDescribe the two images in detail.'
|
399 |
+
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
|
400 |
+
num_patches_list=num_patches_list,
|
401 |
+
history=None, return_history=True)
|
402 |
+
print(f'User: {question}\nAssistant: {response}')
|
403 |
+
|
404 |
+
question = 'What are the similarities and differences between these two images.'
|
405 |
+
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
|
406 |
+
num_patches_list=num_patches_list,
|
407 |
+
history=history, return_history=True)
|
408 |
+
print(f'User: {question}\nAssistant: {response}')
|
409 |
+
|
410 |
+
# batch inference, single image per sample (单图批处理)
|
411 |
+
pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
|
412 |
+
pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
|
413 |
+
num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
|
414 |
+
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
|
415 |
+
|
416 |
+
questions = ['<image>\nDescribe the image in detail.'] * len(num_patches_list)
|
417 |
+
responses = model.batch_chat(tokenizer, pixel_values,
|
418 |
+
num_patches_list=num_patches_list,
|
419 |
+
questions=questions,
|
420 |
+
generation_config=generation_config)
|
421 |
+
for question, response in zip(questions, responses):
|
422 |
+
print(f'User: {question}\nAssistant: {response}')
|
423 |
+
|
424 |
+
# video multi-round conversation (视频多轮对话)
|
425 |
+
def get_index(bound, fps, max_frame, first_idx=0, num_segments=32):
|
426 |
+
if bound:
|
427 |
+
start, end = bound[0], bound[1]
|
428 |
+
else:
|
429 |
+
start, end = -100000, 100000
|
430 |
+
start_idx = max(first_idx, round(start * fps))
|
431 |
+
end_idx = min(round(end * fps), max_frame)
|
432 |
+
seg_size = float(end_idx - start_idx) / num_segments
|
433 |
+
frame_indices = np.array([
|
434 |
+
int(start_idx + (seg_size / 2) + np.round(seg_size * idx))
|
435 |
+
for idx in range(num_segments)
|
436 |
+
])
|
437 |
+
return frame_indices
|
438 |
+
|
439 |
+
def load_video(video_path, bound=None, input_size=448, max_num=1, num_segments=32):
|
440 |
+
vr = VideoReader(video_path, ctx=cpu(0), num_threads=1)
|
441 |
+
max_frame = len(vr) - 1
|
442 |
+
fps = float(vr.get_avg_fps())
|
443 |
+
|
444 |
+
pixel_values_list, num_patches_list = [], []
|
445 |
+
transform = build_transform(input_size=input_size)
|
446 |
+
frame_indices = get_index(bound, fps, max_frame, first_idx=0, num_segments=num_segments)
|
447 |
+
for frame_index in frame_indices:
|
448 |
+
img = Image.fromarray(vr[frame_index].asnumpy()).convert('RGB')
|
449 |
+
img = dynamic_preprocess(img, image_size=input_size, use_thumbnail=True, max_num=max_num)
|
450 |
+
pixel_values = [transform(tile) for tile in img]
|
451 |
+
pixel_values = torch.stack(pixel_values)
|
452 |
+
num_patches_list.append(pixel_values.shape[0])
|
453 |
+
pixel_values_list.append(pixel_values)
|
454 |
+
pixel_values = torch.cat(pixel_values_list)
|
455 |
+
return pixel_values, num_patches_list
|
456 |
+
|
457 |
+
video_path = './examples/red-panda.mp4'
|
458 |
+
pixel_values, num_patches_list = load_video(video_path, num_segments=8, max_num=1)
|
459 |
+
pixel_values = pixel_values.to(torch.bfloat16).cuda()
|
460 |
+
video_prefix = ''.join([f'Frame{i+1}: <image>\n' for i in range(len(num_patches_list))])
|
461 |
+
question = video_prefix + 'What is the red panda doing?'
|
462 |
+
# Frame1: <image>\nFrame2: <image>\n...\nFrame8: <image>\n{question}
|
463 |
+
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
|
464 |
+
num_patches_list=num_patches_list, history=None, return_history=True)
|
465 |
+
print(f'User: {question}\nAssistant: {response}')
|
466 |
+
|
467 |
+
question = 'Describe this video in detail.'
|
468 |
+
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
|
469 |
+
num_patches_list=num_patches_list, history=history, return_history=True)
|
470 |
+
print(f'User: {question}\nAssistant: {response}')
|
471 |
+
```
|
472 |
+
|
473 |
+
#### Streaming Output
|
474 |
+
|
475 |
+
Besides this method, you can also use the following code to get streamed output.
|
476 |
+
|
477 |
+
```python
|
478 |
+
from transformers import TextIteratorStreamer
|
479 |
+
from threading import Thread
|
480 |
+
|
481 |
+
# Initialize the streamer
|
482 |
+
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=10)
|
483 |
+
# Define the generation configuration
|
484 |
+
generation_config = dict(max_new_tokens=1024, do_sample=False, streamer=streamer)
|
485 |
+
# Start the model chat in a separate thread
|
486 |
+
thread = Thread(target=model.chat, kwargs=dict(
|
487 |
+
tokenizer=tokenizer, pixel_values=pixel_values, question=question,
|
488 |
+
history=None, return_history=False, generation_config=generation_config,
|
489 |
+
))
|
490 |
+
thread.start()
|
491 |
+
|
492 |
+
# Initialize an empty string to store the generated text
|
493 |
+
generated_text = ''
|
494 |
+
# Loop through the streamer to get the new text as it is generated
|
495 |
+
for new_text in streamer:
|
496 |
+
if new_text == model.conv_template.sep:
|
497 |
+
break
|
498 |
+
generated_text += new_text
|
499 |
+
print(new_text, end='', flush=True) # Print each new chunk of generated text on the same line
|
500 |
+
```
|
501 |
+
|
502 |
+
## Finetune
|
503 |
+
|
504 |
+
Many repositories now support fine-tuning of the InternVL series models, including [InternVL](https://github.com/OpenGVLab/InternVL), [SWIFT](https://github.com/modelscope/ms-swift), [XTurner](https://github.com/InternLM/xtuner), and others. Please refer to their documentation for more details on fine-tuning.
|
505 |
+
|
506 |
+
## Deployment
|
507 |
+
|
508 |
+
### LMDeploy
|
509 |
+
|
510 |
+
LMDeploy is a toolkit for compressing, deploying, and serving LLMs & VLMs.
|
511 |
+
|
512 |
+
```sh
|
513 |
+
pip install lmdeploy>=0.6.4 --no-deps
|
514 |
+
```
|
515 |
+
|
516 |
+
LMDeploy abstracts the complex inference process of multi-modal Vision-Language Models (VLM) into an easy-to-use pipeline, similar to the Large Language Model (LLM) inference pipeline.
|
517 |
+
|
518 |
+
#### A 'Hello, world' Example
|
519 |
+
|
520 |
+
```python
|
521 |
+
from lmdeploy import pipeline, TurbomindEngineConfig
|
522 |
+
from lmdeploy.vl import load_image
|
523 |
+
|
524 |
+
model = 'OpenGVLab/InternVL2_5-8B'
|
525 |
+
image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg')
|
526 |
+
pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192))
|
527 |
+
response = pipe(('describe this image', image))
|
528 |
+
print(response.text)
|
529 |
+
```
|
530 |
+
|
531 |
+
If `ImportError` occurs while executing this case, please install the required dependency packages as prompted.
|
532 |
+
|
533 |
+
#### Multi-images Inference
|
534 |
+
|
535 |
+
When dealing with multiple images, you can put them all in one list. Keep in mind that multiple images will lead to a higher number of input tokens, and as a result, the size of the context window typically needs to be increased.
|
536 |
+
|
537 |
+
```python
|
538 |
+
from lmdeploy import pipeline, TurbomindEngineConfig
|
539 |
+
from lmdeploy.vl import load_image
|
540 |
+
from lmdeploy.vl.constants import IMAGE_TOKEN
|
541 |
+
|
542 |
+
model = 'OpenGVLab/InternVL2_5-8B'
|
543 |
+
pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192))
|
544 |
+
|
545 |
+
image_urls=[
|
546 |
+
'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg',
|
547 |
+
'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/det.jpg'
|
548 |
+
]
|
549 |
+
|
550 |
+
images = [load_image(img_url) for img_url in image_urls]
|
551 |
+
# Numbering images improves multi-image conversations
|
552 |
+
response = pipe((f'Image-1: {IMAGE_TOKEN}\nImage-2: {IMAGE_TOKEN}\ndescribe these two images', images))
|
553 |
+
print(response.text)
|
554 |
+
```
|
555 |
+
|
556 |
+
#### Batch Prompts Inference
|
557 |
+
|
558 |
+
Conducting inference with batch prompts is quite straightforward; just place them within a list structure:
|
559 |
+
|
560 |
+
```python
|
561 |
+
from lmdeploy import pipeline, TurbomindEngineConfig
|
562 |
+
from lmdeploy.vl import load_image
|
563 |
+
|
564 |
+
model = 'OpenGVLab/InternVL2_5-8B'
|
565 |
+
pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192))
|
566 |
+
|
567 |
+
image_urls=[
|
568 |
+
"https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg",
|
569 |
+
"https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/det.jpg"
|
570 |
+
]
|
571 |
+
prompts = [('describe this image', load_image(img_url)) for img_url in image_urls]
|
572 |
+
response = pipe(prompts)
|
573 |
+
print(response)
|
574 |
+
```
|
575 |
+
|
576 |
+
#### Multi-turn Conversation
|
577 |
+
|
578 |
+
There are two ways to do the multi-turn conversations with the pipeline. One is to construct messages according to the format of OpenAI and use above introduced method, the other is to use the `pipeline.chat` interface.
|
579 |
+
|
580 |
+
```python
|
581 |
+
from lmdeploy import pipeline, TurbomindEngineConfig, GenerationConfig
|
582 |
+
from lmdeploy.vl import load_image
|
583 |
+
|
584 |
+
model = 'OpenGVLab/InternVL2_5-8B'
|
585 |
+
pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192))
|
586 |
+
|
587 |
+
image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg')
|
588 |
+
gen_config = GenerationConfig(top_k=40, top_p=0.8, temperature=0.8)
|
589 |
+
sess = pipe.chat(('describe this image', image), gen_config=gen_config)
|
590 |
+
print(sess.response.text)
|
591 |
+
sess = pipe.chat('What is the woman doing?', session=sess, gen_config=gen_config)
|
592 |
+
print(sess.response.text)
|
593 |
+
```
|
594 |
+
|
595 |
+
#### Service
|
596 |
+
|
597 |
+
LMDeploy's `api_server` enables models to be easily packed into services with a single command. The provided RESTful APIs are compatible with OpenAI's interfaces. Below are an example of service startup:
|
598 |
+
|
599 |
+
```shell
|
600 |
+
lmdeploy serve api_server OpenGVLab/InternVL2_5-8B --server-port 23333
|
601 |
+
```
|
602 |
+
|
603 |
+
To use the OpenAI-style interface, you need to install OpenAI:
|
604 |
+
|
605 |
+
```shell
|
606 |
+
pip install openai
|
607 |
+
```
|
608 |
+
|
609 |
+
Then, use the code below to make the API call:
|
610 |
+
|
611 |
+
```python
|
612 |
+
from openai import OpenAI
|
613 |
+
|
614 |
+
client = OpenAI(api_key='YOUR_API_KEY', base_url='http://0.0.0.0:23333/v1')
|
615 |
+
model_name = client.models.list().data[0].id
|
616 |
+
response = client.chat.completions.create(
|
617 |
+
model=model_name,
|
618 |
+
messages=[{
|
619 |
+
'role':
|
620 |
+
'user',
|
621 |
+
'content': [{
|
622 |
+
'type': 'text',
|
623 |
+
'text': 'describe this image',
|
624 |
+
}, {
|
625 |
+
'type': 'image_url',
|
626 |
+
'image_url': {
|
627 |
+
'url':
|
628 |
+
'https://modelscope.oss-cn-beijing.aliyuncs.com/resource/tiger.jpeg',
|
629 |
+
},
|
630 |
+
}],
|
631 |
+
}],
|
632 |
+
temperature=0.8,
|
633 |
+
top_p=0.8)
|
634 |
+
print(response)
|
635 |
+
```
|
src/third_party/InternVL/internvl_chat/evaluate.sh
ADDED
@@ -0,0 +1,726 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
set -x
|
2 |
+
|
3 |
+
CHECKPOINT=${1}
|
4 |
+
DATASET=${2}
|
5 |
+
CHECKPOINT="$(pwd)/${CHECKPOINT}"
|
6 |
+
export PYTHONPATH="$(pwd):${PYTHONPATH}"
|
7 |
+
echo "CHECKPOINT: ${CHECKPOINT}"
|
8 |
+
|
9 |
+
MASTER_PORT=${MASTER_PORT:-63669}
|
10 |
+
PORT=${PORT:-63665}
|
11 |
+
GPUS=${GPUS:-8}
|
12 |
+
GPUS_PER_NODE=${GPUS_PER_NODE:-8}
|
13 |
+
NODES=$((GPUS / GPUS_PER_NODE))
|
14 |
+
export MASTER_PORT=${MASTER_PORT}
|
15 |
+
export PORT=${PORT}
|
16 |
+
|
17 |
+
# Save original arguments
|
18 |
+
ARGS=("$@")
|
19 |
+
|
20 |
+
# Parse options
|
21 |
+
while [[ $# -gt 0 ]]; do
|
22 |
+
case "$1" in
|
23 |
+
--auto)
|
24 |
+
GPUS=1
|
25 |
+
shift
|
26 |
+
;;
|
27 |
+
*)
|
28 |
+
shift
|
29 |
+
;;
|
30 |
+
esac
|
31 |
+
done
|
32 |
+
echo "GPUS: ${GPUS}"
|
33 |
+
|
34 |
+
if [ ${DATASET} == "mme" ]; then
|
35 |
+
cd eval/mme/
|
36 |
+
DIRNAME=`basename ${CHECKPOINT}`
|
37 |
+
python eval.py --checkpoint ${CHECKPOINT} "${ARGS[@]:2}"
|
38 |
+
python calculation.py --results_dir ${DIRNAME}
|
39 |
+
cd ../../
|
40 |
+
fi
|
41 |
+
|
42 |
+
if [ ${DATASET} == "caption" ]; then
|
43 |
+
torchrun \
|
44 |
+
--nnodes=1 \
|
45 |
+
--node_rank=0 \
|
46 |
+
--master_addr=127.0.0.1 \
|
47 |
+
--nproc_per_node=${GPUS} \
|
48 |
+
--master_port=${MASTER_PORT} \
|
49 |
+
eval/caption/evaluate_caption.py --checkpoint ${CHECKPOINT} "${ARGS[@]:2}"
|
50 |
+
fi
|
51 |
+
|
52 |
+
if [ ${DATASET} == "caption-coco" ]; then
|
53 |
+
torchrun \
|
54 |
+
--nnodes=1 \
|
55 |
+
--node_rank=0 \
|
56 |
+
--master_addr=127.0.0.1 \
|
57 |
+
--nproc_per_node=${GPUS} \
|
58 |
+
--master_port=${MASTER_PORT} \
|
59 |
+
eval/caption/evaluate_caption.py --checkpoint ${CHECKPOINT} --datasets coco "${ARGS[@]:2}"
|
60 |
+
fi
|
61 |
+
|
62 |
+
if [ ${DATASET} == "caption-flickr30k" ]; then
|
63 |
+
torchrun \
|
64 |
+
--nnodes=1 \
|
65 |
+
--node_rank=0 \
|
66 |
+
--master_addr=127.0.0.1 \
|
67 |
+
--nproc_per_node=${GPUS} \
|
68 |
+
--master_port=${MASTER_PORT} \
|
69 |
+
eval/caption/evaluate_caption.py --checkpoint ${CHECKPOINT} --datasets flickr30k "${ARGS[@]:2}"
|
70 |
+
fi
|
71 |
+
|
72 |
+
if [ ${DATASET} == "caption-nocaps" ]; then
|
73 |
+
torchrun \
|
74 |
+
--nnodes=1 \
|
75 |
+
--node_rank=0 \
|
76 |
+
--master_addr=127.0.0.1 \
|
77 |
+
--nproc_per_node=${GPUS} \
|
78 |
+
--master_port=${MASTER_PORT} \
|
79 |
+
eval/caption/evaluate_caption.py --checkpoint ${CHECKPOINT} --datasets nocaps "${ARGS[@]:2}"
|
80 |
+
fi
|
81 |
+
|
82 |
+
if [ ${DATASET} == "vqa" ]; then
|
83 |
+
torchrun \
|
84 |
+
--nnodes=1 \
|
85 |
+
--node_rank=0 \
|
86 |
+
--master_addr=127.0.0.1 \
|
87 |
+
--nproc_per_node=${GPUS} \
|
88 |
+
--master_port=${MASTER_PORT} \
|
89 |
+
eval/vqa/evaluate_vqa.py --checkpoint ${CHECKPOINT} "${ARGS[@]:2}"
|
90 |
+
fi
|
91 |
+
|
92 |
+
if [ ${DATASET} == "vqa-okvqa-val" ]; then
|
93 |
+
torchrun \
|
94 |
+
--nnodes=1 \
|
95 |
+
--node_rank=0 \
|
96 |
+
--master_addr=127.0.0.1 \
|
97 |
+
--nproc_per_node=${GPUS} \
|
98 |
+
--master_port=${MASTER_PORT} \
|
99 |
+
eval/vqa/evaluate_vqa.py --checkpoint ${CHECKPOINT} --datasets okvqa_val "${ARGS[@]:2}"
|
100 |
+
fi
|
101 |
+
|
102 |
+
if [ ${DATASET} == "vqa-textvqa-val" ]; then
|
103 |
+
torchrun \
|
104 |
+
--nnodes=1 \
|
105 |
+
--node_rank=0 \
|
106 |
+
--master_addr=127.0.0.1 \
|
107 |
+
--nproc_per_node=${GPUS} \
|
108 |
+
--master_port=${MASTER_PORT} \
|
109 |
+
eval/vqa/evaluate_vqa.py --checkpoint ${CHECKPOINT} --datasets textvqa_val "${ARGS[@]:2}"
|
110 |
+
fi
|
111 |
+
|
112 |
+
if [ ${DATASET} == "vqa-textvqa-val-ocr" ]; then
|
113 |
+
torchrun \
|
114 |
+
--nnodes=1 \
|
115 |
+
--node_rank=0 \
|
116 |
+
--master_addr=127.0.0.1 \
|
117 |
+
--nproc_per_node=${GPUS} \
|
118 |
+
--master_port=${MASTER_PORT} \
|
119 |
+
eval/vqa/evaluate_vqa.py --checkpoint ${CHECKPOINT} --datasets textvqa_val_ocr "${ARGS[@]:2}"
|
120 |
+
fi
|
121 |
+
|
122 |
+
if [ ${DATASET} == "vqa-vizwiz-val" ]; then
|
123 |
+
torchrun \
|
124 |
+
--nnodes=1 \
|
125 |
+
--node_rank=0 \
|
126 |
+
--master_addr=127.0.0.1 \
|
127 |
+
--nproc_per_node=${GPUS} \
|
128 |
+
--master_port=${MASTER_PORT} \
|
129 |
+
eval/vqa/evaluate_vqa.py --checkpoint ${CHECKPOINT} --datasets vizwiz_val "${ARGS[@]:2}"
|
130 |
+
fi
|
131 |
+
|
132 |
+
if [ ${DATASET} == "vqa-vizwiz-test" ]; then
|
133 |
+
torchrun \
|
134 |
+
--nnodes=1 \
|
135 |
+
--node_rank=0 \
|
136 |
+
--master_addr=127.0.0.1 \
|
137 |
+
--nproc_per_node=${GPUS} \
|
138 |
+
--master_port=${MASTER_PORT} \
|
139 |
+
eval/vqa/evaluate_vqa.py --checkpoint ${CHECKPOINT} --datasets vizwiz_test "${ARGS[@]:2}"
|
140 |
+
fi
|
141 |
+
|
142 |
+
if [ ${DATASET} == "vqa-vqav2-testdev" ]; then
|
143 |
+
torchrun \
|
144 |
+
--nnodes=1 \
|
145 |
+
--node_rank=0 \
|
146 |
+
--master_addr=127.0.0.1 \
|
147 |
+
--nproc_per_node=${GPUS} \
|
148 |
+
--master_port=${MASTER_PORT} \
|
149 |
+
eval/vqa/evaluate_vqa.py --checkpoint ${CHECKPOINT} --datasets vqav2_testdev "${ARGS[@]:2}"
|
150 |
+
fi
|
151 |
+
|
152 |
+
if [ ${DATASET} == "vqa-ai2d-test" ]; then
|
153 |
+
torchrun \
|
154 |
+
--nnodes=1 \
|
155 |
+
--node_rank=0 \
|
156 |
+
--master_addr=127.0.0.1 \
|
157 |
+
--nproc_per_node=${GPUS} \
|
158 |
+
--master_port=${MASTER_PORT} \
|
159 |
+
eval/vqa/evaluate_vqa.py --checkpoint ${CHECKPOINT} --datasets ai2diagram_test "${ARGS[@]:2}"
|
160 |
+
fi
|
161 |
+
|
162 |
+
if [ ${DATASET} == "vqa-vqav2-val" ]; then
|
163 |
+
torchrun \
|
164 |
+
--nnodes=1 \
|
165 |
+
--node_rank=0 \
|
166 |
+
--master_addr=127.0.0.1 \
|
167 |
+
--nproc_per_node=${GPUS} \
|
168 |
+
--master_port=${MASTER_PORT} \
|
169 |
+
eval/vqa/evaluate_vqa.py --checkpoint ${CHECKPOINT} --datasets vqav2_val "${ARGS[@]:2}"
|
170 |
+
fi
|
171 |
+
|
172 |
+
if [ ${DATASET} == "vqa-gqa-testdev" ]; then
|
173 |
+
torchrun \
|
174 |
+
--nnodes=1 \
|
175 |
+
--node_rank=0 \
|
176 |
+
--master_addr=127.0.0.1 \
|
177 |
+
--nproc_per_node=${GPUS} \
|
178 |
+
--master_port=${MASTER_PORT} \
|
179 |
+
eval/vqa/evaluate_vqa.py --checkpoint ${CHECKPOINT} --datasets gqa_testdev_llava "${ARGS[@]:2}"
|
180 |
+
fi
|
181 |
+
|
182 |
+
if [ ${DATASET} == "vqa-docvqa-val" ]; then
|
183 |
+
torchrun \
|
184 |
+
--nnodes=1 \
|
185 |
+
--node_rank=0 \
|
186 |
+
--master_addr=127.0.0.1 \
|
187 |
+
--nproc_per_node=${GPUS} \
|
188 |
+
--master_port=${MASTER_PORT} \
|
189 |
+
eval/vqa/evaluate_vqa.py --checkpoint ${CHECKPOINT} --datasets docvqa_val "${ARGS[@]:2}"
|
190 |
+
fi
|
191 |
+
|
192 |
+
if [ ${DATASET} == "vqa-docvqa-test" ]; then
|
193 |
+
torchrun \
|
194 |
+
--nnodes=1 \
|
195 |
+
--node_rank=0 \
|
196 |
+
--master_addr=127.0.0.1 \
|
197 |
+
--nproc_per_node=${GPUS} \
|
198 |
+
--master_port=${MASTER_PORT} \
|
199 |
+
eval/vqa/evaluate_vqa.py --checkpoint ${CHECKPOINT} --datasets docvqa_test "${ARGS[@]:2}"
|
200 |
+
fi
|
201 |
+
|
202 |
+
if [ ${DATASET} == "vqa-mpdocvqa-val" ]; then
|
203 |
+
torchrun \
|
204 |
+
--nnodes=1 \
|
205 |
+
--node_rank=0 \
|
206 |
+
--master_addr=127.0.0.1 \
|
207 |
+
--nproc_per_node=${GPUS} \
|
208 |
+
--master_port=${MASTER_PORT} \
|
209 |
+
eval/mpdocvqa/evaluate_vqa.py --checkpoint ${CHECKPOINT} --datasets mpdocvqa_val "${ARGS[@]:2}"
|
210 |
+
fi
|
211 |
+
|
212 |
+
if [ ${DATASET} == "vqa-mpdocvqa-test" ]; then
|
213 |
+
torchrun \
|
214 |
+
--nnodes=1 \
|
215 |
+
--node_rank=0 \
|
216 |
+
--master_addr=127.0.0.1 \
|
217 |
+
--nproc_per_node=${GPUS} \
|
218 |
+
--master_port=${MASTER_PORT} \
|
219 |
+
eval/mpdocvqa/evaluate_vqa.py --checkpoint ${CHECKPOINT} --datasets mpdocvqa_test "${ARGS[@]:2}"
|
220 |
+
fi
|
221 |
+
|
222 |
+
if [ ${DATASET} == "vqa-chartqa-test" ]; then
|
223 |
+
torchrun \
|
224 |
+
--nnodes=1 \
|
225 |
+
--node_rank=0 \
|
226 |
+
--master_addr=127.0.0.1 \
|
227 |
+
--nproc_per_node=${GPUS} \
|
228 |
+
--master_port=${MASTER_PORT} \
|
229 |
+
eval/vqa/evaluate_vqa.py --checkpoint ${CHECKPOINT} --datasets chartqa_test_human,chartqa_test_augmented "${ARGS[@]:2}"
|
230 |
+
fi
|
231 |
+
|
232 |
+
if [ ${DATASET} == "vqa-infovqa-val" ]; then
|
233 |
+
torchrun \
|
234 |
+
--nnodes=1 \
|
235 |
+
--node_rank=0 \
|
236 |
+
--master_addr=127.0.0.1 \
|
237 |
+
--nproc_per_node=${GPUS} \
|
238 |
+
--master_port=${MASTER_PORT} \
|
239 |
+
eval/vqa/evaluate_vqa.py --checkpoint ${CHECKPOINT} --datasets infographicsvqa_val "${ARGS[@]:2}"
|
240 |
+
fi
|
241 |
+
|
242 |
+
if [ ${DATASET} == "vqa-infovqa-test" ]; then
|
243 |
+
torchrun \
|
244 |
+
--nnodes=1 \
|
245 |
+
--node_rank=0 \
|
246 |
+
--master_addr=127.0.0.1 \
|
247 |
+
--nproc_per_node=${GPUS} \
|
248 |
+
--master_port=${MASTER_PORT} \
|
249 |
+
eval/vqa/evaluate_vqa.py --checkpoint ${CHECKPOINT} --datasets infographicsvqa_test "${ARGS[@]:2}"
|
250 |
+
fi
|
251 |
+
|
252 |
+
if [ ${DATASET} == "vqa-chartqa-test-human" ]; then
|
253 |
+
torchrun \
|
254 |
+
--nnodes=1 \
|
255 |
+
--node_rank=0 \
|
256 |
+
--master_addr=127.0.0.1 \
|
257 |
+
--nproc_per_node=${GPUS} \
|
258 |
+
--master_port=${MASTER_PORT} \
|
259 |
+
eval/vqa/evaluate_vqa.py --checkpoint ${CHECKPOINT} --datasets chartqa_test_human "${ARGS[@]:2}"
|
260 |
+
fi
|
261 |
+
|
262 |
+
if [ ${DATASET} == "vqa-chartqa-test-augmented" ]; then
|
263 |
+
torchrun \
|
264 |
+
--nnodes=1 \
|
265 |
+
--node_rank=0 \
|
266 |
+
--master_addr=127.0.0.1 \
|
267 |
+
--nproc_per_node=${GPUS} \
|
268 |
+
--master_port=${MASTER_PORT} \
|
269 |
+
eval/vqa/evaluate_vqa.py --checkpoint ${CHECKPOINT} --datasets chartqa_test_augmented "${ARGS[@]:2}"
|
270 |
+
fi
|
271 |
+
|
272 |
+
if [ ${DATASET} == "vqa-ocrvqa-val" ]; then
|
273 |
+
torchrun \
|
274 |
+
--nnodes=1 \
|
275 |
+
--node_rank=0 \
|
276 |
+
--master_addr=127.0.0.1 \
|
277 |
+
--nproc_per_node=${GPUS} \
|
278 |
+
--master_port=${MASTER_PORT} \
|
279 |
+
eval/vqa/evaluate_vqa.py --checkpoint ${CHECKPOINT} --datasets ocrvqa_val "${ARGS[@]:2}"
|
280 |
+
fi
|
281 |
+
|
282 |
+
if [ ${DATASET} == "vqa-ocrvqa-test" ]; then
|
283 |
+
torchrun \
|
284 |
+
--nnodes=1 \
|
285 |
+
--node_rank=0 \
|
286 |
+
--master_addr=127.0.0.1 \
|
287 |
+
--nproc_per_node=${GPUS} \
|
288 |
+
--master_port=${MASTER_PORT} \
|
289 |
+
eval/vqa/evaluate_vqa.py --checkpoint ${CHECKPOINT} --datasets ocrvqa_test "${ARGS[@]:2}"
|
290 |
+
fi
|
291 |
+
|
292 |
+
if [ ${DATASET} == "refcoco" ]; then
|
293 |
+
torchrun \
|
294 |
+
--nnodes=1 \
|
295 |
+
--node_rank=0 \
|
296 |
+
--master_addr=127.0.0.1 \
|
297 |
+
--nproc_per_node=${GPUS} \
|
298 |
+
--master_port=${MASTER_PORT} \
|
299 |
+
eval/refcoco/evaluate_grounding.py --checkpoint ${CHECKPOINT} "${ARGS[@]:2}"
|
300 |
+
fi
|
301 |
+
|
302 |
+
if [ ${DATASET} == "refcoco-val" ]; then
|
303 |
+
torchrun \
|
304 |
+
--nnodes=1 \
|
305 |
+
--node_rank=0 \
|
306 |
+
--master_addr=127.0.0.1 \
|
307 |
+
--nproc_per_node=${GPUS} \
|
308 |
+
--master_port=${MASTER_PORT} \
|
309 |
+
eval/refcoco/evaluate_grounding.py --checkpoint ${CHECKPOINT} --datasets refcoco_val "${ARGS[@]:2}"
|
310 |
+
fi
|
311 |
+
|
312 |
+
if [ ${DATASET} == "refcoco-testA" ]; then
|
313 |
+
torchrun \
|
314 |
+
--nnodes=1 \
|
315 |
+
--node_rank=0 \
|
316 |
+
--master_addr=127.0.0.1 \
|
317 |
+
--nproc_per_node=${GPUS} \
|
318 |
+
--master_port=${MASTER_PORT} \
|
319 |
+
eval/refcoco/evaluate_grounding.py --checkpoint ${CHECKPOINT} --datasets refcoco_testA "${ARGS[@]:2}"
|
320 |
+
fi
|
321 |
+
|
322 |
+
if [ ${DATASET} == "refcoco-testB" ]; then
|
323 |
+
torchrun \
|
324 |
+
--nnodes=1 \
|
325 |
+
--node_rank=0 \
|
326 |
+
--master_addr=127.0.0.1 \
|
327 |
+
--nproc_per_node=${GPUS} \
|
328 |
+
--master_port=${MASTER_PORT} \
|
329 |
+
eval/refcoco/evaluate_grounding.py --checkpoint ${CHECKPOINT} --datasets refcoco_testB "${ARGS[@]:2}"
|
330 |
+
fi
|
331 |
+
|
332 |
+
if [ ${DATASET} == "refcoco+-val" ]; then
|
333 |
+
torchrun \
|
334 |
+
--nnodes=1 \
|
335 |
+
--node_rank=0 \
|
336 |
+
--master_addr=127.0.0.1 \
|
337 |
+
--nproc_per_node=${GPUS} \
|
338 |
+
--master_port=${MASTER_PORT} \
|
339 |
+
eval/refcoco/evaluate_grounding.py --checkpoint ${CHECKPOINT} --datasets refcoco+_val "${ARGS[@]:2}"
|
340 |
+
fi
|
341 |
+
|
342 |
+
if [ ${DATASET} == "refcoco+-testA" ]; then
|
343 |
+
torchrun \
|
344 |
+
--nnodes=1 \
|
345 |
+
--node_rank=0 \
|
346 |
+
--master_addr=127.0.0.1 \
|
347 |
+
--nproc_per_node=${GPUS} \
|
348 |
+
--master_port=${MASTER_PORT} \
|
349 |
+
eval/refcoco/evaluate_grounding.py --checkpoint ${CHECKPOINT} --datasets refcoco+_testA "${ARGS[@]:2}"
|
350 |
+
fi
|
351 |
+
|
352 |
+
if [ ${DATASET} == "refcoco+-testB" ]; then
|
353 |
+
torchrun \
|
354 |
+
--nnodes=1 \
|
355 |
+
--node_rank=0 \
|
356 |
+
--master_addr=127.0.0.1 \
|
357 |
+
--nproc_per_node=${GPUS} \
|
358 |
+
--master_port=${MASTER_PORT} \
|
359 |
+
eval/refcoco/evaluate_grounding.py --checkpoint ${CHECKPOINT} --datasets refcoco+_testB "${ARGS[@]:2}"
|
360 |
+
fi
|
361 |
+
|
362 |
+
if [ ${DATASET} == "refcocog-val" ]; then
|
363 |
+
torchrun \
|
364 |
+
--nnodes=1 \
|
365 |
+
--node_rank=0 \
|
366 |
+
--master_addr=127.0.0.1 \
|
367 |
+
--nproc_per_node=${GPUS} \
|
368 |
+
--master_port=${MASTER_PORT} \
|
369 |
+
eval/refcoco/evaluate_grounding.py --checkpoint ${CHECKPOINT} --datasets refcocog_val "${ARGS[@]:2}"
|
370 |
+
fi
|
371 |
+
|
372 |
+
if [ ${DATASET} == "refcocog-test" ]; then
|
373 |
+
torchrun \
|
374 |
+
--nnodes=1 \
|
375 |
+
--node_rank=0 \
|
376 |
+
--master_addr=127.0.0.1 \
|
377 |
+
--nproc_per_node=${GPUS} \
|
378 |
+
--master_port=${MASTER_PORT} \
|
379 |
+
eval/refcoco/evaluate_grounding.py --checkpoint ${CHECKPOINT} --datasets refcocog_test "${ARGS[@]:2}"
|
380 |
+
fi
|
381 |
+
|
382 |
+
if [ ${DATASET} == "llava-bench" ]; then
|
383 |
+
rm -rf results/llava_bench_results_review.jsonl
|
384 |
+
python eval/llava_bench/evaluate_llava_bench.py --checkpoint ${CHECKPOINT} "${ARGS[@]:2}"
|
385 |
+
python -u eval/llava_bench/eval_gpt_review_bench.py \
|
386 |
+
--question data/llava-bench-in-the-wild/questions.jsonl \
|
387 |
+
--context data/llava-bench-in-the-wild/context.jsonl \
|
388 |
+
--rule eval/llava_bench/rule.json \
|
389 |
+
--answer-list \
|
390 |
+
data/llava-bench-in-the-wild/answers_gpt4.jsonl \
|
391 |
+
results/llava_bench_results.jsonl \
|
392 |
+
--output \
|
393 |
+
results/llava_bench_results_review.jsonl
|
394 |
+
python -u eval/llava_bench/summarize_gpt_review.py -f results/llava_bench_results_review.jsonl
|
395 |
+
fi
|
396 |
+
|
397 |
+
if [ ${DATASET} == "pope" ]; then
|
398 |
+
torchrun \
|
399 |
+
--nnodes=1 \
|
400 |
+
--node_rank=0 \
|
401 |
+
--master_addr=127.0.0.1 \
|
402 |
+
--nproc_per_node=${GPUS} \
|
403 |
+
--master_port=${MASTER_PORT} \
|
404 |
+
eval/pope/evaluate_pope.py --checkpoint ${CHECKPOINT} --datasets pope "${ARGS[@]:2}"
|
405 |
+
fi
|
406 |
+
|
407 |
+
if [ ${DATASET} == "tiny_lvlm" ]; then
|
408 |
+
torchrun \
|
409 |
+
--nnodes=1 \
|
410 |
+
--node_rank=0 \
|
411 |
+
--master_addr=127.0.0.1 \
|
412 |
+
--nproc_per_node=${GPUS} \
|
413 |
+
--master_port=${MASTER_PORT} \
|
414 |
+
eval/tiny_lvlm/evaluate_lvlm.py --checkpoint ${CHECKPOINT} --datasets updated_datasets "${ARGS[@]:2}"
|
415 |
+
fi
|
416 |
+
|
417 |
+
if [ ${DATASET} == "mmvet" ]; then
|
418 |
+
python eval/mmvet/evaluate_mmvet.py --checkpoint ${CHECKPOINT} --datasets mmvet "${ARGS[@]:2}"
|
419 |
+
fi
|
420 |
+
|
421 |
+
if [ ${DATASET} == "mmvetv2" ]; then
|
422 |
+
torchrun \
|
423 |
+
--nnodes=1 \
|
424 |
+
--node_rank=0 \
|
425 |
+
--master_addr=127.0.0.1 \
|
426 |
+
--nproc_per_node=${GPUS} \
|
427 |
+
--master_port=${MASTER_PORT} \
|
428 |
+
eval/mmvetv2/evaluate_mmvet_v2.py --checkpoint ${CHECKPOINT} --datasets mmvet-v2 "${ARGS[@]:2}"
|
429 |
+
fi
|
430 |
+
|
431 |
+
if [ ${DATASET} == "mmbench-dev-en" ]; then
|
432 |
+
torchrun \
|
433 |
+
--nnodes=1 \
|
434 |
+
--node_rank=0 \
|
435 |
+
--master_addr=127.0.0.1 \
|
436 |
+
--nproc_per_node=${GPUS} \
|
437 |
+
--master_port=${MASTER_PORT} \
|
438 |
+
eval/mmbench/evaluate_mmbench.py --checkpoint ${CHECKPOINT} --datasets mmbench_dev_20230712 "${ARGS[@]:2}"
|
439 |
+
fi
|
440 |
+
|
441 |
+
if [ ${DATASET} == "mmbench-dev-cn" ]; then
|
442 |
+
torchrun \
|
443 |
+
--nnodes=1 \
|
444 |
+
--node_rank=0 \
|
445 |
+
--master_addr=127.0.0.1 \
|
446 |
+
--nproc_per_node=${GPUS} \
|
447 |
+
--master_port=${MASTER_PORT} \
|
448 |
+
eval/mmbench/evaluate_mmbench.py --checkpoint ${CHECKPOINT} --datasets mmbench_dev_cn_20231003 "${ARGS[@]:2}"
|
449 |
+
fi
|
450 |
+
|
451 |
+
if [ ${DATASET} == "mmbench-test-en" ]; then
|
452 |
+
torchrun \
|
453 |
+
--nnodes=1 \
|
454 |
+
--node_rank=0 \
|
455 |
+
--master_addr=127.0.0.1 \
|
456 |
+
--nproc_per_node=${GPUS} \
|
457 |
+
--master_port=${MASTER_PORT} \
|
458 |
+
eval/mmbench/evaluate_mmbench.py --checkpoint ${CHECKPOINT} --datasets mmbench_test_en_20231003 "${ARGS[@]:2}"
|
459 |
+
fi
|
460 |
+
|
461 |
+
if [ ${DATASET} == "mmbench-test-cn" ]; then
|
462 |
+
torchrun \
|
463 |
+
--nnodes=1 \
|
464 |
+
--node_rank=0 \
|
465 |
+
--master_addr=127.0.0.1 \
|
466 |
+
--nproc_per_node=${GPUS} \
|
467 |
+
--master_port=${MASTER_PORT} \
|
468 |
+
eval/mmbench/evaluate_mmbench.py --checkpoint ${CHECKPOINT} --datasets mmbench_test_cn_20231003 "${ARGS[@]:2}"
|
469 |
+
fi
|
470 |
+
|
471 |
+
if [ ${DATASET} == "ccbench-dev" ]; then
|
472 |
+
torchrun \
|
473 |
+
--nnodes=1 \
|
474 |
+
--node_rank=0 \
|
475 |
+
--master_addr=127.0.0.1 \
|
476 |
+
--nproc_per_node=${GPUS} \
|
477 |
+
--master_port=${MASTER_PORT} \
|
478 |
+
eval/mmbench/evaluate_mmbench.py --checkpoint ${CHECKPOINT} --datasets ccbench_dev_cn "${ARGS[@]:2}"
|
479 |
+
fi
|
480 |
+
|
481 |
+
if [ ${DATASET} == "scienceqa" ]; then
|
482 |
+
torchrun \
|
483 |
+
--nnodes=1 \
|
484 |
+
--node_rank=0 \
|
485 |
+
--master_addr=127.0.0.1 \
|
486 |
+
--nproc_per_node=${GPUS} \
|
487 |
+
--master_port=${MASTER_PORT} \
|
488 |
+
eval/scienceqa/evaluate_scienceqa.py --checkpoint ${CHECKPOINT} --datasets sqa_test "${ARGS[@]:2}"
|
489 |
+
fi
|
490 |
+
|
491 |
+
if [ ${DATASET} == "mantis" ]; then
|
492 |
+
torchrun \
|
493 |
+
--nnodes=1 \
|
494 |
+
--node_rank=0 \
|
495 |
+
--master_addr=127.0.0.1 \
|
496 |
+
--nproc_per_node=${GPUS} \
|
497 |
+
--master_port=${MASTER_PORT} \
|
498 |
+
eval/mantis_eval/evaluate_mantis.py --checkpoint ${CHECKPOINT} --datasets Mantis-Eval "${ARGS[@]:2}"
|
499 |
+
fi
|
500 |
+
|
501 |
+
if [ ${DATASET} == "mirb" ]; then
|
502 |
+
torchrun \
|
503 |
+
--nnodes=1 \
|
504 |
+
--node_rank=0 \
|
505 |
+
--master_addr=127.0.0.1 \
|
506 |
+
--nproc_per_node=${GPUS} \
|
507 |
+
--master_port=${MASTER_PORT} \
|
508 |
+
eval/mirb/evaluate_mirb.py --checkpoint ${CHECKPOINT} --datasets MIRB "${ARGS[@]:2}"
|
509 |
+
fi
|
510 |
+
|
511 |
+
if [ ${DATASET} == "m3cot" ]; then
|
512 |
+
torchrun \
|
513 |
+
--nnodes=1 \
|
514 |
+
--node_rank=0 \
|
515 |
+
--master_addr=127.0.0.1 \
|
516 |
+
--nproc_per_node=${GPUS} \
|
517 |
+
--master_port=${MASTER_PORT} \
|
518 |
+
eval/scienceqa/evaluate_scienceqa.py --checkpoint ${CHECKPOINT} --datasets m3cot_test "${ARGS[@]:2}"
|
519 |
+
fi
|
520 |
+
|
521 |
+
if [ ${DATASET} == "mmmu-dev" ]; then
|
522 |
+
torchrun \
|
523 |
+
--nnodes=1 \
|
524 |
+
--node_rank=0 \
|
525 |
+
--master_addr=127.0.0.1 \
|
526 |
+
--nproc_per_node=${GPUS} \
|
527 |
+
--master_port=${MASTER_PORT} \
|
528 |
+
eval/mmmu/evaluate_mmmu.py --checkpoint ${CHECKPOINT} --datasets MMMU_dev "${ARGS[@]:2}"
|
529 |
+
fi
|
530 |
+
|
531 |
+
if [ ${DATASET} == "mmmu-val" ]; then
|
532 |
+
torchrun \
|
533 |
+
--nnodes=1 \
|
534 |
+
--node_rank=0 \
|
535 |
+
--master_addr=127.0.0.1 \
|
536 |
+
--nproc_per_node=${GPUS} \
|
537 |
+
--master_port=${MASTER_PORT} \
|
538 |
+
eval/mmmu/evaluate_mmmu.py --checkpoint ${CHECKPOINT} --datasets MMMU_validation "${ARGS[@]:2}"
|
539 |
+
fi
|
540 |
+
|
541 |
+
if [ ${DATASET} == "mmmu-test" ]; then
|
542 |
+
torchrun \
|
543 |
+
--nnodes=1 \
|
544 |
+
--node_rank=0 \
|
545 |
+
--master_addr=127.0.0.1 \
|
546 |
+
--nproc_per_node=${GPUS} \
|
547 |
+
--master_port=${MASTER_PORT} \
|
548 |
+
eval/mmmu/evaluate_mmmu.py --checkpoint ${CHECKPOINT} --datasets MMMU_test "${ARGS[@]:2}"
|
549 |
+
fi
|
550 |
+
|
551 |
+
if [ ${DATASET} == "mmmu-dev-cot" ]; then
|
552 |
+
torchrun \
|
553 |
+
--nnodes=1 \
|
554 |
+
--node_rank=0 \
|
555 |
+
--master_addr=127.0.0.1 \
|
556 |
+
--nproc_per_node=${GPUS} \
|
557 |
+
--master_port=${MASTER_PORT} \
|
558 |
+
eval/mmmu/evaluate_mmmu_cot.py --checkpoint ${CHECKPOINT} --datasets MMMU_dev "${ARGS[@]:2}"
|
559 |
+
fi
|
560 |
+
|
561 |
+
if [ ${DATASET} == "mmmu-val-cot" ]; then
|
562 |
+
torchrun \
|
563 |
+
--nnodes=1 \
|
564 |
+
--node_rank=0 \
|
565 |
+
--master_addr=127.0.0.1 \
|
566 |
+
--nproc_per_node=${GPUS} \
|
567 |
+
--master_port=${MASTER_PORT} \
|
568 |
+
eval/mmmu/evaluate_mmmu_cot.py --checkpoint ${CHECKPOINT} --datasets MMMU_validation "${ARGS[@]:2}"
|
569 |
+
fi
|
570 |
+
|
571 |
+
if [ ${DATASET} == "mmmu-test-cot" ]; then
|
572 |
+
torchrun \
|
573 |
+
--nnodes=1 \
|
574 |
+
--node_rank=0 \
|
575 |
+
--master_addr=127.0.0.1 \
|
576 |
+
--nproc_per_node=${GPUS} \
|
577 |
+
--master_port=${MASTER_PORT} \
|
578 |
+
eval/mmmu/evaluate_mmmu_cot.py --checkpoint ${CHECKPOINT} --datasets MMMU_test "${ARGS[@]:2}"
|
579 |
+
fi
|
580 |
+
|
581 |
+
if [ ${DATASET} == "mmvp" ]; then
|
582 |
+
torchrun \
|
583 |
+
--nnodes=1 \
|
584 |
+
--node_rank=0 \
|
585 |
+
--master_addr=127.0.0.1 \
|
586 |
+
--nproc_per_node=${GPUS} \
|
587 |
+
--master_port=${MASTER_PORT} \
|
588 |
+
eval/mmvp/evaluate_mmvp.py --checkpoint ${CHECKPOINT} --datasets MMVP "${ARGS[@]:2}"
|
589 |
+
fi
|
590 |
+
|
591 |
+
if [ ${DATASET} == "mathvista-testmini" ]; then
|
592 |
+
torchrun \
|
593 |
+
--nnodes=1 \
|
594 |
+
--node_rank=0 \
|
595 |
+
--master_addr=127.0.0.1 \
|
596 |
+
--nproc_per_node=${GPUS} \
|
597 |
+
--master_port=${MASTER_PORT} \
|
598 |
+
eval/mathvista/evaluate_mathvista.py --checkpoint ${CHECKPOINT} --datasets MathVista_testmini "${ARGS[@]:2}"
|
599 |
+
fi
|
600 |
+
|
601 |
+
if [ ${DATASET} == "mathvista-test" ]; then
|
602 |
+
torchrun \
|
603 |
+
--nnodes=1 \
|
604 |
+
--node_rank=0 \
|
605 |
+
--master_addr=127.0.0.1 \
|
606 |
+
--nproc_per_node=${GPUS} \
|
607 |
+
--master_port=${MASTER_PORT} \
|
608 |
+
eval/mathvista/evaluate_mathvista.py --checkpoint ${CHECKPOINT} --datasets MathVista_test "${ARGS[@]:2}"
|
609 |
+
fi
|
610 |
+
|
611 |
+
if [ ${DATASET} == "seed" ]; then
|
612 |
+
torchrun \
|
613 |
+
--nnodes=1 \
|
614 |
+
--node_rank=0 \
|
615 |
+
--master_addr=127.0.0.1 \
|
616 |
+
--nproc_per_node=${GPUS} \
|
617 |
+
--master_port=${MASTER_PORT} \
|
618 |
+
eval/seed/evaluate_seed.py --checkpoint ${CHECKPOINT} --datasets SEEDv1 "${ARGS[@]:2}"
|
619 |
+
fi
|
620 |
+
|
621 |
+
if [ ${DATASET} == "mvbench" ]; then
|
622 |
+
torchrun \
|
623 |
+
--nnodes=1 \
|
624 |
+
--node_rank=0 \
|
625 |
+
--master_addr=127.0.0.1 \
|
626 |
+
--nproc_per_node=${GPUS} \
|
627 |
+
--master_port=${MASTER_PORT} \
|
628 |
+
eval/mvbench/evaluate_mvbench.py --checkpoint ${CHECKPOINT} --num_segments 16 "${ARGS[@]:2}"
|
629 |
+
fi
|
630 |
+
|
631 |
+
if [ ${DATASET} == "mmiu" ]; then
|
632 |
+
torchrun \
|
633 |
+
--nnodes=1 \
|
634 |
+
--node_rank=0 \
|
635 |
+
--master_addr=127.0.0.1 \
|
636 |
+
--nproc_per_node=${GPUS} \
|
637 |
+
--master_port=${MASTER_PORT} \
|
638 |
+
eval/mmiu/evaluate_mmiu.py --checkpoint ${CHECKPOINT} "${ARGS[@]:2}"
|
639 |
+
fi
|
640 |
+
|
641 |
+
if [ ${DATASET} == "mmhal" ]; then
|
642 |
+
torchrun \
|
643 |
+
--nnodes=1 \
|
644 |
+
--node_rank=0 \
|
645 |
+
--master_addr=127.0.0.1 \
|
646 |
+
--nproc_per_node=${GPUS} \
|
647 |
+
--master_port=${MASTER_PORT} \
|
648 |
+
eval/mmhal/evaluate_mmhal.py --checkpoint ${CHECKPOINT} "${ARGS[@]:2}"
|
649 |
+
fi
|
650 |
+
|
651 |
+
if [ ${DATASET} == "mmmu-pro" ]; then
|
652 |
+
python -u eval/mmmu_pro/evaluate_mmmu_pro.py --model ${CHECKPOINT} --mode direct --setting "standard (10 options)" "${ARGS[@]:2}"
|
653 |
+
python -u eval/mmmu_pro/evaluate_mmmu_pro.py --model ${CHECKPOINT} --mode cot --setting "standard (10 options)" "${ARGS[@]:2}"
|
654 |
+
python -u eval/mmmu_pro/evaluate_mmmu_pro.py --model ${CHECKPOINT} --mode direct --setting vision "${ARGS[@]:2}"
|
655 |
+
python -u eval/mmmu_pro/evaluate_mmmu_pro.py --model ${CHECKPOINT} --mode cot --setting vision "${ARGS[@]:2}"
|
656 |
+
fi
|
657 |
+
|
658 |
+
if [ ${DATASET} == "mmmu-pro-std10" ]; then
|
659 |
+
python -u eval/mmmu_pro/evaluate_mmmu_pro.py --model ${CHECKPOINT} --mode direct --setting "standard (10 options)" "${ARGS[@]:2}"
|
660 |
+
python -u eval/mmmu_pro/evaluate_mmmu_pro.py --model ${CHECKPOINT} --mode cot --setting "standard (10 options)" "${ARGS[@]:2}"
|
661 |
+
fi
|
662 |
+
|
663 |
+
if [ ${DATASET} == "mmmu-pro-vision" ]; then
|
664 |
+
python -u eval/mmmu_pro/evaluate_mmmu_pro.py --model ${CHECKPOINT} --mode direct --setting vision "${ARGS[@]:2}"
|
665 |
+
python -u eval/mmmu_pro/evaluate_mmmu_pro.py --model ${CHECKPOINT} --mode cot --setting vision "${ARGS[@]:2}"
|
666 |
+
fi
|
667 |
+
|
668 |
+
if [ ${DATASET} == "drivelm" ]; then
|
669 |
+
torchrun \
|
670 |
+
--nnodes=1 \
|
671 |
+
--node_rank=0 \
|
672 |
+
--master_addr=127.0.0.1 \
|
673 |
+
--nproc_per_node=${GPUS} \
|
674 |
+
--master_port=${MASTER_PORT} \
|
675 |
+
eval/domain_specific/drivelm/evaluate.py --checkpoint ${CHECKPOINT} --datasets DriveLM_val --dynamic --max-num 12
|
676 |
+
fi
|
677 |
+
|
678 |
+
if [ ${DATASET} == "mme—realworld" ]; then
|
679 |
+
torchrun \
|
680 |
+
--nnodes=1 \
|
681 |
+
--node_rank=0 \
|
682 |
+
--master_addr=127.0.0.1 \
|
683 |
+
--nproc_per_node=${GPUS} \
|
684 |
+
--master_port=${MASTER_PORT} \
|
685 |
+
eval/domain_specific/mme_rw/evaluate.py --checkpoint ${CHECKPOINT} --datasets MME_RealWorld "${ARGS[@]:2}"
|
686 |
+
fi
|
687 |
+
|
688 |
+
if [ ${DATASET} == "dior-rsvg" ]; then
|
689 |
+
torchrun \
|
690 |
+
--nnodes=1 \
|
691 |
+
--node_rank=0 \
|
692 |
+
--master_addr=127.0.0.1 \
|
693 |
+
--nproc_per_node=${GPUS} \
|
694 |
+
--master_port=${MASTER_PORT} \
|
695 |
+
eval/domain_specific/rs_det/evaluate.py --checkpoint ${CHECKPOINT} --datasets DIOR_RSVG "${ARGS[@]:2}"
|
696 |
+
fi
|
697 |
+
|
698 |
+
if [ ${DATASET} == "rsvqa-lr" ]; then
|
699 |
+
torchrun \
|
700 |
+
--nnodes=1 \
|
701 |
+
--node_rank=0 \
|
702 |
+
--master_addr=127.0.0.1 \
|
703 |
+
--nproc_per_node=${GPUS} \
|
704 |
+
--master_port=${MASTER_PORT} \
|
705 |
+
eval/domain_specific/rs_vqa/evaluate.py --checkpoint ${CHECKPOINT} --datasets RSVQA_H_TEST2 "${ARGS[@]:2}"
|
706 |
+
fi
|
707 |
+
|
708 |
+
if [ ${DATASET} == "rsvqa-hr-test1" ]; then
|
709 |
+
torchrun \
|
710 |
+
--nnodes=1 \
|
711 |
+
--node_rank=0 \
|
712 |
+
--master_addr=127.0.0.1 \
|
713 |
+
--nproc_per_node=${GPUS} \
|
714 |
+
--master_port=${MASTER_PORT} \
|
715 |
+
eval/domain_specific/rs_vqa/evaluate.py --checkpoint ${CHECKPOINT} --datasets RSVQA_H_TEST1 "${ARGS[@]:2}"
|
716 |
+
fi
|
717 |
+
|
718 |
+
if [ ${DATASET} == "rsvqa-hr-test2" ]; then
|
719 |
+
torchrun \
|
720 |
+
--nnodes=1 \
|
721 |
+
--node_rank=0 \
|
722 |
+
--master_addr=127.0.0.1 \
|
723 |
+
--nproc_per_node=${GPUS} \
|
724 |
+
--master_port=${MASTER_PORT} \
|
725 |
+
eval/domain_specific/rs_vqa/evaluate.py --checkpoint ${CHECKPOINT} --datasets RSVQA_L "${ARGS[@]:2}"
|
726 |
+
fi
|
src/third_party/InternVL/internvl_chat/internvl/conversation.py
ADDED
@@ -0,0 +1,402 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Conversation prompt templates.
|
3 |
+
|
4 |
+
We kindly request that you import fastchat instead of copying this file if you wish to use it.
|
5 |
+
If you have changes in mind, please contribute back so the community can benefit collectively and continue to maintain these valuable templates.
|
6 |
+
"""
|
7 |
+
|
8 |
+
import dataclasses
|
9 |
+
from enum import IntEnum, auto
|
10 |
+
from typing import Any, Dict, List, Tuple, Union
|
11 |
+
|
12 |
+
|
13 |
+
class SeparatorStyle(IntEnum):
|
14 |
+
"""Separator styles."""
|
15 |
+
|
16 |
+
ADD_COLON_SINGLE = auto()
|
17 |
+
ADD_COLON_TWO = auto()
|
18 |
+
ADD_COLON_SPACE_SINGLE = auto()
|
19 |
+
NO_COLON_SINGLE = auto()
|
20 |
+
NO_COLON_TWO = auto()
|
21 |
+
ADD_NEW_LINE_SINGLE = auto()
|
22 |
+
LLAMA2 = auto()
|
23 |
+
CHATGLM = auto()
|
24 |
+
CHATML = auto()
|
25 |
+
CHATINTERN = auto()
|
26 |
+
DOLLY = auto()
|
27 |
+
RWKV = auto()
|
28 |
+
PHOENIX = auto()
|
29 |
+
ROBIN = auto()
|
30 |
+
FALCON_CHAT = auto()
|
31 |
+
CHATGLM3 = auto()
|
32 |
+
INTERNVL_ZH = auto()
|
33 |
+
MPT = auto()
|
34 |
+
|
35 |
+
|
36 |
+
@dataclasses.dataclass
|
37 |
+
class Conversation:
|
38 |
+
"""A class that manages prompt templates and keeps all conversation history."""
|
39 |
+
|
40 |
+
# The name of this template
|
41 |
+
name: str
|
42 |
+
# The template of the system prompt
|
43 |
+
system_template: str = '{system_message}'
|
44 |
+
# The system message
|
45 |
+
system_message: str = ''
|
46 |
+
# The names of two roles
|
47 |
+
roles: Tuple[str] = ('USER', 'ASSISTANT')
|
48 |
+
# All messages. Each item is (role, message).
|
49 |
+
messages: List[List[str]] = ()
|
50 |
+
# The number of few shot examples
|
51 |
+
offset: int = 0
|
52 |
+
# The separator style and configurations
|
53 |
+
sep_style: SeparatorStyle = SeparatorStyle.ADD_COLON_SINGLE
|
54 |
+
sep: str = '\n'
|
55 |
+
sep2: str = None
|
56 |
+
# Stop criteria (the default one is EOS token)
|
57 |
+
stop_str: Union[str, List[str]] = None
|
58 |
+
# Stops generation if meeting any token in this list
|
59 |
+
stop_token_ids: List[int] = None
|
60 |
+
|
61 |
+
def get_prompt(self) -> str:
|
62 |
+
"""Get the prompt for generation."""
|
63 |
+
system_prompt = self.system_template.format(system_message=self.system_message)
|
64 |
+
if self.sep_style == SeparatorStyle.ADD_COLON_SINGLE:
|
65 |
+
ret = system_prompt + self.sep
|
66 |
+
for role, message in self.messages:
|
67 |
+
if message:
|
68 |
+
ret += role + ': ' + message + self.sep
|
69 |
+
else:
|
70 |
+
ret += role + ':'
|
71 |
+
return ret
|
72 |
+
elif self.sep_style == SeparatorStyle.ADD_COLON_TWO:
|
73 |
+
seps = [self.sep, self.sep2]
|
74 |
+
ret = system_prompt + seps[0]
|
75 |
+
for i, (role, message) in enumerate(self.messages):
|
76 |
+
if message:
|
77 |
+
ret += role + ': ' + message + seps[i % 2]
|
78 |
+
else:
|
79 |
+
ret += role + ':'
|
80 |
+
return ret
|
81 |
+
elif self.sep_style == SeparatorStyle.ADD_COLON_SPACE_SINGLE:
|
82 |
+
ret = system_prompt + self.sep
|
83 |
+
for role, message in self.messages:
|
84 |
+
if message:
|
85 |
+
ret += role + ': ' + message + self.sep
|
86 |
+
else:
|
87 |
+
ret += role + ': ' # must be end with a space
|
88 |
+
return ret
|
89 |
+
elif self.sep_style == SeparatorStyle.ADD_NEW_LINE_SINGLE:
|
90 |
+
ret = '' if system_prompt == '' else system_prompt + self.sep
|
91 |
+
for role, message in self.messages:
|
92 |
+
if message:
|
93 |
+
ret += role + '\n' + message + self.sep
|
94 |
+
else:
|
95 |
+
ret += role + '\n'
|
96 |
+
return ret
|
97 |
+
elif self.sep_style == SeparatorStyle.NO_COLON_SINGLE:
|
98 |
+
ret = system_prompt
|
99 |
+
for role, message in self.messages:
|
100 |
+
if message:
|
101 |
+
ret += role + message + self.sep
|
102 |
+
else:
|
103 |
+
ret += role
|
104 |
+
return ret
|
105 |
+
elif self.sep_style == SeparatorStyle.NO_COLON_TWO:
|
106 |
+
seps = [self.sep, self.sep2]
|
107 |
+
ret = system_prompt
|
108 |
+
for i, (role, message) in enumerate(self.messages):
|
109 |
+
if message:
|
110 |
+
ret += role + message + seps[i % 2]
|
111 |
+
else:
|
112 |
+
ret += role
|
113 |
+
return ret
|
114 |
+
elif self.sep_style == SeparatorStyle.RWKV:
|
115 |
+
ret = system_prompt
|
116 |
+
for i, (role, message) in enumerate(self.messages):
|
117 |
+
if message:
|
118 |
+
ret += (
|
119 |
+
role
|
120 |
+
+ ': '
|
121 |
+
+ message.replace('\r\n', '\n').replace('\n\n', '\n')
|
122 |
+
)
|
123 |
+
ret += '\n\n'
|
124 |
+
else:
|
125 |
+
ret += role + ':'
|
126 |
+
return ret
|
127 |
+
elif self.sep_style == SeparatorStyle.LLAMA2:
|
128 |
+
seps = [self.sep, self.sep2]
|
129 |
+
if self.system_message:
|
130 |
+
ret = system_prompt
|
131 |
+
else:
|
132 |
+
ret = '[INST] '
|
133 |
+
for i, (role, message) in enumerate(self.messages):
|
134 |
+
tag = self.roles[i % 2]
|
135 |
+
if message:
|
136 |
+
if i == 0:
|
137 |
+
ret += message + ' '
|
138 |
+
else:
|
139 |
+
ret += tag + ' ' + message + seps[i % 2]
|
140 |
+
else:
|
141 |
+
ret += tag
|
142 |
+
return ret
|
143 |
+
elif self.sep_style == SeparatorStyle.CHATGLM:
|
144 |
+
# source: https://huggingface.co/THUDM/chatglm-6b/blob/1d240ba371910e9282298d4592532d7f0f3e9f3e/modeling_chatglm.py#L1302-L1308
|
145 |
+
# source2: https://huggingface.co/THUDM/chatglm2-6b/blob/e186c891cf64310ac66ef10a87e6635fa6c2a579/modeling_chatglm.py#L926
|
146 |
+
round_add_n = 1 if self.name == 'chatglm2' else 0
|
147 |
+
if system_prompt:
|
148 |
+
ret = system_prompt + self.sep
|
149 |
+
else:
|
150 |
+
ret = ''
|
151 |
+
|
152 |
+
for i, (role, message) in enumerate(self.messages):
|
153 |
+
if i % 2 == 0:
|
154 |
+
ret += f'[Round {i//2 + round_add_n}]{self.sep}'
|
155 |
+
|
156 |
+
if message:
|
157 |
+
ret += f'{role}:{message}{self.sep}'
|
158 |
+
else:
|
159 |
+
ret += f'{role}:'
|
160 |
+
return ret
|
161 |
+
elif self.sep_style == SeparatorStyle.CHATML:
|
162 |
+
ret = '' if system_prompt == '' else system_prompt + self.sep + '\n'
|
163 |
+
for role, message in self.messages:
|
164 |
+
if message:
|
165 |
+
ret += role + '\n' + message + self.sep + '\n'
|
166 |
+
else:
|
167 |
+
ret += role + '\n'
|
168 |
+
return ret
|
169 |
+
elif self.sep_style == SeparatorStyle.CHATGLM3:
|
170 |
+
ret = ''
|
171 |
+
if self.system_message:
|
172 |
+
ret += system_prompt
|
173 |
+
for role, message in self.messages:
|
174 |
+
if message:
|
175 |
+
ret += role + '\n' + ' ' + message
|
176 |
+
else:
|
177 |
+
ret += role
|
178 |
+
return ret
|
179 |
+
elif self.sep_style == SeparatorStyle.CHATINTERN:
|
180 |
+
# source: https://huggingface.co/internlm/internlm-chat-7b-8k/blob/bd546fa984b4b0b86958f56bf37f94aa75ab8831/modeling_internlm.py#L771
|
181 |
+
seps = [self.sep, self.sep2]
|
182 |
+
ret = system_prompt
|
183 |
+
for i, (role, message) in enumerate(self.messages):
|
184 |
+
# if i % 2 == 0:
|
185 |
+
# ret += "<s>"
|
186 |
+
if message:
|
187 |
+
ret += role + ':' + message + seps[i % 2] + '\n'
|
188 |
+
else:
|
189 |
+
ret += role + ':'
|
190 |
+
return ret
|
191 |
+
elif self.sep_style == SeparatorStyle.DOLLY:
|
192 |
+
seps = [self.sep, self.sep2]
|
193 |
+
ret = system_prompt
|
194 |
+
for i, (role, message) in enumerate(self.messages):
|
195 |
+
if message:
|
196 |
+
ret += role + ':\n' + message + seps[i % 2]
|
197 |
+
if i % 2 == 1:
|
198 |
+
ret += '\n\n'
|
199 |
+
else:
|
200 |
+
ret += role + ':\n'
|
201 |
+
return ret
|
202 |
+
elif self.sep_style == SeparatorStyle.PHOENIX:
|
203 |
+
ret = system_prompt
|
204 |
+
for role, message in self.messages:
|
205 |
+
if message:
|
206 |
+
ret += role + ': ' + '<s>' + message + '</s>'
|
207 |
+
else:
|
208 |
+
ret += role + ': ' + '<s>'
|
209 |
+
return ret
|
210 |
+
elif self.sep_style == SeparatorStyle.ROBIN:
|
211 |
+
ret = system_prompt + self.sep
|
212 |
+
for role, message in self.messages:
|
213 |
+
if message:
|
214 |
+
ret += role + ':\n' + message + self.sep
|
215 |
+
else:
|
216 |
+
ret += role + ':\n'
|
217 |
+
return ret
|
218 |
+
elif self.sep_style == SeparatorStyle.FALCON_CHAT:
|
219 |
+
ret = ''
|
220 |
+
if self.system_message:
|
221 |
+
ret += system_prompt + self.sep
|
222 |
+
for role, message in self.messages:
|
223 |
+
if message:
|
224 |
+
ret += role + ': ' + message + self.sep
|
225 |
+
else:
|
226 |
+
ret += role + ':'
|
227 |
+
|
228 |
+
return ret
|
229 |
+
elif self.sep_style == SeparatorStyle.INTERNVL_ZH:
|
230 |
+
seps = [self.sep2, self.sep]
|
231 |
+
ret = self.system_message + seps[0]
|
232 |
+
for i, (role, message) in enumerate(self.messages):
|
233 |
+
if message:
|
234 |
+
ret += role + ': ' + message + seps[i % 2]
|
235 |
+
else:
|
236 |
+
ret += role + ':'
|
237 |
+
return ret
|
238 |
+
elif self.sep_style == SeparatorStyle.MPT:
|
239 |
+
ret = system_prompt + self.sep
|
240 |
+
for role, message in self.messages:
|
241 |
+
if message:
|
242 |
+
if type(message) is tuple:
|
243 |
+
message, _, _ = message
|
244 |
+
ret += role + message + self.sep
|
245 |
+
else:
|
246 |
+
ret += role
|
247 |
+
return ret
|
248 |
+
else:
|
249 |
+
raise ValueError(f'Invalid style: {self.sep_style}')
|
250 |
+
|
251 |
+
def set_system_message(self, system_message: str):
|
252 |
+
"""Set the system message."""
|
253 |
+
self.system_message = system_message
|
254 |
+
|
255 |
+
def append_message(self, role: str, message: str):
|
256 |
+
"""Append a new message."""
|
257 |
+
self.messages.append([role, message])
|
258 |
+
|
259 |
+
def update_last_message(self, message: str):
|
260 |
+
"""Update the last output.
|
261 |
+
|
262 |
+
The last message is typically set to be None when constructing the prompt,
|
263 |
+
so we need to update it in-place after getting the response from a model.
|
264 |
+
"""
|
265 |
+
self.messages[-1][1] = message
|
266 |
+
|
267 |
+
def to_gradio_chatbot(self):
|
268 |
+
"""Convert the conversation to gradio chatbot format."""
|
269 |
+
ret = []
|
270 |
+
for i, (role, msg) in enumerate(self.messages[self.offset :]):
|
271 |
+
if i % 2 == 0:
|
272 |
+
ret.append([msg, None])
|
273 |
+
else:
|
274 |
+
ret[-1][-1] = msg
|
275 |
+
return ret
|
276 |
+
|
277 |
+
def to_openai_api_messages(self):
|
278 |
+
"""Convert the conversation to OpenAI chat completion format."""
|
279 |
+
ret = [{'role': 'system', 'content': self.system_message}]
|
280 |
+
|
281 |
+
for i, (_, msg) in enumerate(self.messages[self.offset :]):
|
282 |
+
if i % 2 == 0:
|
283 |
+
ret.append({'role': 'user', 'content': msg})
|
284 |
+
else:
|
285 |
+
if msg is not None:
|
286 |
+
ret.append({'role': 'assistant', 'content': msg})
|
287 |
+
return ret
|
288 |
+
|
289 |
+
def copy(self):
|
290 |
+
return Conversation(
|
291 |
+
name=self.name,
|
292 |
+
system_template=self.system_template,
|
293 |
+
system_message=self.system_message,
|
294 |
+
roles=self.roles,
|
295 |
+
messages=[[x, y] for x, y in self.messages],
|
296 |
+
offset=self.offset,
|
297 |
+
sep_style=self.sep_style,
|
298 |
+
sep=self.sep,
|
299 |
+
sep2=self.sep2,
|
300 |
+
stop_str=self.stop_str,
|
301 |
+
stop_token_ids=self.stop_token_ids,
|
302 |
+
)
|
303 |
+
|
304 |
+
def dict(self):
|
305 |
+
return {
|
306 |
+
'template_name': self.name,
|
307 |
+
'system_message': self.system_message,
|
308 |
+
'roles': self.roles,
|
309 |
+
'messages': self.messages,
|
310 |
+
'offset': self.offset,
|
311 |
+
}
|
312 |
+
|
313 |
+
|
314 |
+
# A global registry for all conversation templates
|
315 |
+
conv_templates: Dict[str, Conversation] = {}
|
316 |
+
|
317 |
+
|
318 |
+
def register_conv_template(template: Conversation, override: bool = False):
|
319 |
+
"""Register a new conversation template."""
|
320 |
+
if not override:
|
321 |
+
assert (
|
322 |
+
template.name not in conv_templates
|
323 |
+
), f'{template.name} has been registered.'
|
324 |
+
|
325 |
+
conv_templates[template.name] = template
|
326 |
+
|
327 |
+
|
328 |
+
def get_conv_template(name: str) -> Conversation:
|
329 |
+
"""Get a conversation template."""
|
330 |
+
return conv_templates[name].copy()
|
331 |
+
|
332 |
+
|
333 |
+
# InternVL-Chat-V1-1 template
|
334 |
+
register_conv_template(
|
335 |
+
Conversation(
|
336 |
+
name='internvl_zh',
|
337 |
+
system_template='',
|
338 |
+
roles=('<human>', '<bot>'),
|
339 |
+
sep_style=SeparatorStyle.INTERNVL_ZH,
|
340 |
+
sep='</s>',
|
341 |
+
sep2=' ',
|
342 |
+
)
|
343 |
+
)
|
344 |
+
|
345 |
+
|
346 |
+
# Both Hermes-2 and internlm2-chat are chatml-format conversation templates. The difference
|
347 |
+
# is that during training, the preprocessing function for the Hermes-2 template doesn't add
|
348 |
+
# <s> at the beginning of the tokenized sequence, while the internlm2-chat template does.
|
349 |
+
# Therefore, they are completely equivalent during inference.
|
350 |
+
register_conv_template(
|
351 |
+
Conversation(
|
352 |
+
name='Hermes-2',
|
353 |
+
system_template='<|im_start|>system\n{system_message}',
|
354 |
+
# note: The new system prompt was not used here to avoid changes in benchmark performance.
|
355 |
+
# system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
|
356 |
+
system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
|
357 |
+
roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
|
358 |
+
sep_style=SeparatorStyle.MPT,
|
359 |
+
sep='<|im_end|>',
|
360 |
+
stop_str='<|endoftext|>',
|
361 |
+
)
|
362 |
+
)
|
363 |
+
|
364 |
+
|
365 |
+
register_conv_template(
|
366 |
+
Conversation(
|
367 |
+
name='internlm2-chat',
|
368 |
+
system_template='<|im_start|>system\n{system_message}',
|
369 |
+
# note: The new system prompt was not used here to avoid changes in benchmark performance.
|
370 |
+
# system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
|
371 |
+
system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
|
372 |
+
roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
|
373 |
+
sep_style=SeparatorStyle.MPT,
|
374 |
+
sep='<|im_end|>',
|
375 |
+
)
|
376 |
+
)
|
377 |
+
|
378 |
+
|
379 |
+
register_conv_template(
|
380 |
+
Conversation(
|
381 |
+
name='phi3-chat',
|
382 |
+
system_template='<|system|>\n{system_message}',
|
383 |
+
# note: The new system prompt was not used here to avoid changes in benchmark performance.
|
384 |
+
# system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
|
385 |
+
system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
|
386 |
+
roles=('<|user|>\n', '<|assistant|>\n'),
|
387 |
+
sep_style=SeparatorStyle.MPT,
|
388 |
+
sep='<|end|>',
|
389 |
+
)
|
390 |
+
)
|
391 |
+
|
392 |
+
|
393 |
+
register_conv_template(
|
394 |
+
Conversation(
|
395 |
+
name='internvl2_5',
|
396 |
+
system_template='<|im_start|>system\n{system_message}',
|
397 |
+
system_message='你是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
|
398 |
+
roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
|
399 |
+
sep_style=SeparatorStyle.MPT,
|
400 |
+
sep='<|im_end|>\n',
|
401 |
+
)
|
402 |
+
)
|
src/third_party/InternVL/internvl_chat/internvl/dist_utils.py
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import socket
|
3 |
+
import subprocess
|
4 |
+
from datetime import timedelta
|
5 |
+
|
6 |
+
import deepspeed
|
7 |
+
import torch
|
8 |
+
import torch.multiprocessing as mp
|
9 |
+
from torch import distributed as dist
|
10 |
+
|
11 |
+
timeout = timedelta(minutes=60)
|
12 |
+
|
13 |
+
|
14 |
+
def _find_free_port():
|
15 |
+
# Copied from https://github.com/facebookresearch/detectron2/blob/main/detectron2/engine/launch.py # noqa: E501
|
16 |
+
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
|
17 |
+
# Binding to port 0 will cause the OS to find an available port for us
|
18 |
+
sock.bind(('', 0))
|
19 |
+
port = sock.getsockname()[1]
|
20 |
+
sock.close()
|
21 |
+
# NOTE: there is still a chance the port could be taken by other processes.
|
22 |
+
return port
|
23 |
+
|
24 |
+
|
25 |
+
def _is_free_port(port):
|
26 |
+
ips = socket.gethostbyname_ex(socket.gethostname())[-1]
|
27 |
+
ips.append('localhost')
|
28 |
+
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
|
29 |
+
return all(s.connect_ex((ip, port)) != 0 for ip in ips)
|
30 |
+
|
31 |
+
|
32 |
+
def init_dist(launcher, backend='nccl', **kwargs):
|
33 |
+
if mp.get_start_method(allow_none=True) is None:
|
34 |
+
mp.set_start_method('spawn')
|
35 |
+
if launcher == 'pytorch':
|
36 |
+
_init_dist_pytorch(backend, **kwargs)
|
37 |
+
elif launcher == 'mpi':
|
38 |
+
_init_dist_mpi(backend, **kwargs)
|
39 |
+
elif launcher == 'slurm':
|
40 |
+
_init_dist_slurm(backend, **kwargs)
|
41 |
+
else:
|
42 |
+
raise ValueError(f'Invalid launcher type: {launcher}')
|
43 |
+
|
44 |
+
|
45 |
+
def _init_dist_pytorch(backend, **kwargs):
|
46 |
+
# TODO: use local_rank instead of rank % num_gpus
|
47 |
+
rank = int(os.environ['RANK'])
|
48 |
+
num_gpus = torch.cuda.device_count()
|
49 |
+
torch.cuda.set_device(rank % num_gpus)
|
50 |
+
# dist.init_process_group(backend=backend, **kwargs)
|
51 |
+
deepspeed.init_distributed(dist_backend=backend)
|
52 |
+
|
53 |
+
|
54 |
+
def _init_dist_mpi(backend, **kwargs):
|
55 |
+
local_rank = int(os.environ['OMPI_COMM_WORLD_LOCAL_RANK'])
|
56 |
+
torch.cuda.set_device(local_rank)
|
57 |
+
if 'MASTER_PORT' not in os.environ:
|
58 |
+
# 29500 is torch.distributed default port
|
59 |
+
os.environ['MASTER_PORT'] = '29500'
|
60 |
+
if 'MASTER_ADDR' not in os.environ:
|
61 |
+
raise KeyError('The environment variable MASTER_ADDR is not set')
|
62 |
+
os.environ['WORLD_SIZE'] = os.environ['OMPI_COMM_WORLD_SIZE']
|
63 |
+
os.environ['RANK'] = os.environ['OMPI_COMM_WORLD_RANK']
|
64 |
+
dist.init_process_group(backend=backend, **kwargs)
|
65 |
+
|
66 |
+
|
67 |
+
def _init_dist_slurm(backend, port=None):
|
68 |
+
"""Initialize slurm distributed training environment.
|
69 |
+
|
70 |
+
If argument ``port`` is not specified, then the master port will be system
|
71 |
+
environment variable ``MASTER_PORT``. If ``MASTER_PORT`` is not in system
|
72 |
+
environment variable, then a default port ``29500`` will be used.
|
73 |
+
|
74 |
+
Args:
|
75 |
+
backend (str): Backend of torch.distributed.
|
76 |
+
port (int, optional): Master port. Defaults to None.
|
77 |
+
"""
|
78 |
+
proc_id = int(os.environ['SLURM_PROCID'])
|
79 |
+
ntasks = int(os.environ['SLURM_NTASKS'])
|
80 |
+
node_list = os.environ['SLURM_NODELIST']
|
81 |
+
num_gpus = torch.cuda.device_count()
|
82 |
+
torch.cuda.set_device(proc_id % num_gpus)
|
83 |
+
addr = subprocess.getoutput(
|
84 |
+
f'scontrol show hostname {node_list} | head -n1')
|
85 |
+
# specify master port
|
86 |
+
if port is not None:
|
87 |
+
os.environ['MASTER_PORT'] = str(port)
|
88 |
+
elif 'MASTER_PORT' in os.environ:
|
89 |
+
pass # use MASTER_PORT in the environment variable
|
90 |
+
else:
|
91 |
+
# if torch.distributed default port(29500) is available
|
92 |
+
# then use it, else find a free port
|
93 |
+
if _is_free_port(29500):
|
94 |
+
os.environ['MASTER_PORT'] = '29500'
|
95 |
+
else:
|
96 |
+
os.environ['MASTER_PORT'] = str(_find_free_port())
|
97 |
+
# use MASTER_ADDR in the environment variable if it already exists
|
98 |
+
if 'MASTER_ADDR' not in os.environ:
|
99 |
+
os.environ['MASTER_ADDR'] = addr
|
100 |
+
os.environ['WORLD_SIZE'] = str(ntasks)
|
101 |
+
os.environ['LOCAL_RANK'] = str(proc_id % num_gpus)
|
102 |
+
os.environ['RANK'] = str(proc_id)
|
103 |
+
# dist.init_process_group(backend=backend, timeout=timeout)
|
104 |
+
deepspeed.init_distributed(dist_backend=backend)
|
src/third_party/InternVL/internvl_chat/internvl/model/__init__.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# InternVL
|
3 |
+
# Copyright (c) 2024 OpenGVLab
|
4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
5 |
+
# --------------------------------------------------------
|
6 |
+
|
7 |
+
import math
|
8 |
+
|
9 |
+
import torch
|
10 |
+
from internvl.model.internvl_chat import InternVLChatConfig, InternVLChatModel
|
11 |
+
from transformers import AutoTokenizer
|
12 |
+
|
13 |
+
|
14 |
+
def split_model(num_layers, vit_alpha=0.5):
|
15 |
+
device_map = {}
|
16 |
+
world_size = torch.cuda.device_count()
|
17 |
+
# Since the first GPU will be used for ViT, treat it as half a GPU.
|
18 |
+
num_layers_per_gpu = math.ceil(num_layers / (world_size - vit_alpha))
|
19 |
+
num_layers_per_gpu = [num_layers_per_gpu] * world_size
|
20 |
+
num_layers_per_gpu[0] = math.ceil(num_layers_per_gpu[0] * (1 - vit_alpha))
|
21 |
+
layer_cnt = 0
|
22 |
+
for i, num_layer in enumerate(num_layers_per_gpu):
|
23 |
+
for j in range(num_layer):
|
24 |
+
device_map[f'language_model.model.layers.{layer_cnt}'] = i
|
25 |
+
layer_cnt += 1
|
26 |
+
device_map['vision_model'] = 0
|
27 |
+
device_map['mlp1'] = 0
|
28 |
+
device_map['language_model.model.tok_embeddings'] = 0
|
29 |
+
device_map['language_model.model.embed_tokens'] = 0
|
30 |
+
device_map['language_model.output'] = 0
|
31 |
+
device_map['language_model.model.norm'] = 0
|
32 |
+
device_map['language_model.lm_head'] = 0
|
33 |
+
device_map[f'language_model.model.layers.{num_layers - 1}'] = 0
|
34 |
+
device_map['language_model.model.rotary_emb'] = 0
|
35 |
+
|
36 |
+
return device_map
|
37 |
+
|
38 |
+
|
39 |
+
def load_model_and_tokenizer(args):
|
40 |
+
if args.auto:
|
41 |
+
config = InternVLChatConfig.from_pretrained(args.checkpoint)
|
42 |
+
num_hidden_layers = config.llm_config.num_hidden_layers
|
43 |
+
device_map = split_model(num_hidden_layers)
|
44 |
+
kwargs = {'device_map': device_map} if args.auto else {}
|
45 |
+
tokenizer = AutoTokenizer.from_pretrained(args.checkpoint, trust_remote_code=True, use_fast=False)
|
46 |
+
model = InternVLChatModel.from_pretrained(
|
47 |
+
args.checkpoint, low_cpu_mem_usage=True, torch_dtype=torch.bfloat16,
|
48 |
+
load_in_8bit=args.load_in_8bit, load_in_4bit=args.load_in_4bit, **kwargs).eval()
|
49 |
+
if not args.load_in_8bit and not args.load_in_4bit and not args.auto:
|
50 |
+
model = model.cuda()
|
51 |
+
return model, tokenizer
|
src/third_party/InternVL/internvl_chat/internvl/model/internlm2/configuration_internlm2.py
ADDED
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
|
2 |
+
#
|
3 |
+
# This code is based on transformers/src/transformers/models/llama/configuration_llama.py
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
""" InternLM2 model configuration"""
|
17 |
+
|
18 |
+
from transformers.configuration_utils import PretrainedConfig
|
19 |
+
from transformers.utils import logging
|
20 |
+
|
21 |
+
logger = logging.get_logger(__name__)
|
22 |
+
|
23 |
+
INTERNLM2_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
|
24 |
+
|
25 |
+
|
26 |
+
# Modified from transformers.model.llama.configuration_llama.LlamaConfig
|
27 |
+
class InternLM2Config(PretrainedConfig):
|
28 |
+
r"""
|
29 |
+
This is the configuration class to store the configuration of a [`InternLM2Model`]. It is used to instantiate
|
30 |
+
an InternLM2 model according to the specified arguments, defining the model architecture. Instantiating a
|
31 |
+
configuration with the defaults will yield a similar configuration to that of the InternLM2-7B.
|
32 |
+
|
33 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
34 |
+
documentation from [`PretrainedConfig`] for more information.
|
35 |
+
|
36 |
+
|
37 |
+
Args:
|
38 |
+
vocab_size (`int`, *optional*, defaults to 32000):
|
39 |
+
Vocabulary size of the InternLM2 model. Defines the number of different tokens that can be represented by the
|
40 |
+
`inputs_ids` passed when calling [`InternLM2Model`]
|
41 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
42 |
+
Dimension of the hidden representations.
|
43 |
+
intermediate_size (`int`, *optional*, defaults to 11008):
|
44 |
+
Dimension of the MLP representations.
|
45 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
46 |
+
Number of hidden layers in the Transformer encoder.
|
47 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
48 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
49 |
+
num_key_value_heads (`int`, *optional*):
|
50 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
51 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
52 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
53 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
54 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
55 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
56 |
+
`num_attention_heads`.
|
57 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
58 |
+
The non-linear activation function (function or string) in the decoder.
|
59 |
+
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
60 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
61 |
+
just in case (e.g., 512 or 1024 or 2048).
|
62 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
63 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
64 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-12):
|
65 |
+
The epsilon used by the rms normalization layers.
|
66 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
67 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
68 |
+
relevant if `config.is_decoder=True`.
|
69 |
+
tie_word_embeddings(`bool`, *optional*, defaults to `False`):
|
70 |
+
Whether to tie weight embeddings
|
71 |
+
Example:
|
72 |
+
|
73 |
+
"""
|
74 |
+
model_type = 'internlm2'
|
75 |
+
_auto_class = 'AutoConfig'
|
76 |
+
|
77 |
+
def __init__( # pylint: disable=W0102
|
78 |
+
self,
|
79 |
+
vocab_size=103168,
|
80 |
+
hidden_size=4096,
|
81 |
+
intermediate_size=11008,
|
82 |
+
num_hidden_layers=32,
|
83 |
+
num_attention_heads=32,
|
84 |
+
num_key_value_heads=None,
|
85 |
+
hidden_act='silu',
|
86 |
+
max_position_embeddings=2048,
|
87 |
+
initializer_range=0.02,
|
88 |
+
rms_norm_eps=1e-6,
|
89 |
+
use_cache=True,
|
90 |
+
pad_token_id=0,
|
91 |
+
bos_token_id=1,
|
92 |
+
eos_token_id=2,
|
93 |
+
tie_word_embeddings=False,
|
94 |
+
bias=True,
|
95 |
+
rope_theta=10000,
|
96 |
+
rope_scaling=None,
|
97 |
+
attn_implementation='eager',
|
98 |
+
**kwargs,
|
99 |
+
):
|
100 |
+
self.vocab_size = vocab_size
|
101 |
+
self.max_position_embeddings = max_position_embeddings
|
102 |
+
self.hidden_size = hidden_size
|
103 |
+
self.intermediate_size = intermediate_size
|
104 |
+
self.num_hidden_layers = num_hidden_layers
|
105 |
+
self.num_attention_heads = num_attention_heads
|
106 |
+
self.bias = bias
|
107 |
+
|
108 |
+
if num_key_value_heads is None:
|
109 |
+
num_key_value_heads = num_attention_heads
|
110 |
+
self.num_key_value_heads = num_key_value_heads
|
111 |
+
|
112 |
+
self.hidden_act = hidden_act
|
113 |
+
self.initializer_range = initializer_range
|
114 |
+
self.rms_norm_eps = rms_norm_eps
|
115 |
+
self.use_cache = use_cache
|
116 |
+
self.rope_theta = rope_theta
|
117 |
+
self.rope_scaling = rope_scaling
|
118 |
+
self._rope_scaling_validation()
|
119 |
+
|
120 |
+
self.attn_implementation = attn_implementation
|
121 |
+
if self.attn_implementation is None:
|
122 |
+
self.attn_implementation = 'eager'
|
123 |
+
super().__init__(
|
124 |
+
pad_token_id=pad_token_id,
|
125 |
+
bos_token_id=bos_token_id,
|
126 |
+
eos_token_id=eos_token_id,
|
127 |
+
tie_word_embeddings=tie_word_embeddings,
|
128 |
+
**kwargs,
|
129 |
+
)
|
130 |
+
|
131 |
+
def _rope_scaling_validation(self):
|
132 |
+
"""
|
133 |
+
Validate the `rope_scaling` configuration.
|
134 |
+
"""
|
135 |
+
if self.rope_scaling is None:
|
136 |
+
return
|
137 |
+
|
138 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
|
139 |
+
raise ValueError(
|
140 |
+
'`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, '
|
141 |
+
f'got {self.rope_scaling}'
|
142 |
+
)
|
143 |
+
rope_scaling_type = self.rope_scaling.get('type', None)
|
144 |
+
rope_scaling_factor = self.rope_scaling.get('factor', None)
|
145 |
+
if rope_scaling_type is None or rope_scaling_type not in ['linear', 'dynamic']:
|
146 |
+
raise ValueError(
|
147 |
+
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
|
148 |
+
)
|
149 |
+
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor < 1.0:
|
150 |
+
raise ValueError(f"`rope_scaling`'s factor field must be a float >= 1, got {rope_scaling_factor}")
|
src/third_party/InternVL/internvl_chat/internvl/model/internlm2/modeling_internlm2.py
ADDED
@@ -0,0 +1,1429 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
|
2 |
+
#
|
3 |
+
# This code is based on transformers/src/transformers/models/llama/modeling_llama.py
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
""" PyTorch InternLM2 model."""
|
17 |
+
import math
|
18 |
+
import queue
|
19 |
+
import threading
|
20 |
+
import warnings
|
21 |
+
from typing import List, Optional, Tuple, Union
|
22 |
+
|
23 |
+
import torch
|
24 |
+
import torch.nn.functional as F
|
25 |
+
import torch.utils.checkpoint
|
26 |
+
from einops import rearrange
|
27 |
+
from torch import nn
|
28 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
29 |
+
from transformers.activations import ACT2FN
|
30 |
+
from transformers.modeling_outputs import (BaseModelOutputWithPast,
|
31 |
+
CausalLMOutputWithPast,
|
32 |
+
SequenceClassifierOutputWithPast)
|
33 |
+
from transformers.modeling_utils import PreTrainedModel
|
34 |
+
from transformers.utils import (add_start_docstrings,
|
35 |
+
add_start_docstrings_to_model_forward, logging,
|
36 |
+
replace_return_docstrings)
|
37 |
+
|
38 |
+
try:
|
39 |
+
from transformers.generation.streamers import BaseStreamer
|
40 |
+
except: # noqa # pylint: disable=bare-except
|
41 |
+
BaseStreamer = None
|
42 |
+
|
43 |
+
from .configuration_internlm2 import InternLM2Config
|
44 |
+
|
45 |
+
logger = logging.get_logger(__name__)
|
46 |
+
|
47 |
+
_CONFIG_FOR_DOC = 'InternLM2Config'
|
48 |
+
|
49 |
+
flash_attn_func, flash_attn_varlen_func = None, None
|
50 |
+
pad_input, index_first_axis, unpad_input = None, None, None
|
51 |
+
try:
|
52 |
+
from flash_attn import flash_attn_func as _flash_attn_func
|
53 |
+
from flash_attn import flash_attn_varlen_func as _flash_attn_varlen_func
|
54 |
+
from flash_attn.bert_padding import index_first_axis as _index_first_axis
|
55 |
+
from flash_attn.bert_padding import pad_input as _pad_input
|
56 |
+
from flash_attn.bert_padding import unpad_input as _unpad_input
|
57 |
+
|
58 |
+
flash_attn_func, flash_attn_varlen_func = _flash_attn_func, _flash_attn_varlen_func
|
59 |
+
pad_input, index_first_axis, unpad_input = _pad_input, _index_first_axis, _unpad_input
|
60 |
+
has_flash_attn = True
|
61 |
+
except:
|
62 |
+
has_flash_attn = False
|
63 |
+
|
64 |
+
|
65 |
+
def _import_flash_attn():
|
66 |
+
global flash_attn_func, flash_attn_varlen_func
|
67 |
+
global pad_input, index_first_axis, unpad_input
|
68 |
+
try:
|
69 |
+
from flash_attn import flash_attn_func as _flash_attn_func
|
70 |
+
from flash_attn import \
|
71 |
+
flash_attn_varlen_func as _flash_attn_varlen_func
|
72 |
+
from flash_attn.bert_padding import \
|
73 |
+
index_first_axis as _index_first_axis
|
74 |
+
from flash_attn.bert_padding import pad_input as _pad_input
|
75 |
+
from flash_attn.bert_padding import unpad_input as _unpad_input
|
76 |
+
flash_attn_func, flash_attn_varlen_func = _flash_attn_func, _flash_attn_varlen_func
|
77 |
+
pad_input, index_first_axis, unpad_input = _pad_input, _index_first_axis, _unpad_input
|
78 |
+
except ImportError:
|
79 |
+
raise ImportError('flash_attn is not installed.')
|
80 |
+
|
81 |
+
|
82 |
+
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
83 |
+
def _get_unpad_data(attention_mask):
|
84 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
85 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
86 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
87 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
|
88 |
+
return (
|
89 |
+
indices,
|
90 |
+
cu_seqlens,
|
91 |
+
max_seqlen_in_batch,
|
92 |
+
)
|
93 |
+
|
94 |
+
|
95 |
+
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
|
96 |
+
def _make_causal_mask(
|
97 |
+
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
|
98 |
+
):
|
99 |
+
"""
|
100 |
+
Make causal mask used for bi-directional self-attention.
|
101 |
+
"""
|
102 |
+
bsz, tgt_len = input_ids_shape
|
103 |
+
mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
|
104 |
+
mask_cond = torch.arange(mask.size(-1), device=device)
|
105 |
+
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
|
106 |
+
mask = mask.to(dtype)
|
107 |
+
|
108 |
+
if past_key_values_length > 0:
|
109 |
+
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
|
110 |
+
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
|
111 |
+
|
112 |
+
|
113 |
+
# Copied from transformers.models.bart.modeling_bart._expand_mask
|
114 |
+
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
115 |
+
"""
|
116 |
+
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
117 |
+
"""
|
118 |
+
bsz, src_len = mask.size()
|
119 |
+
tgt_len = tgt_len if tgt_len is not None else src_len
|
120 |
+
|
121 |
+
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
122 |
+
|
123 |
+
inverted_mask = 1.0 - expanded_mask
|
124 |
+
|
125 |
+
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
|
126 |
+
|
127 |
+
|
128 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->InternLM2
|
129 |
+
class InternLM2RMSNorm(nn.Module):
|
130 |
+
def __init__(self, hidden_size, eps=1e-6):
|
131 |
+
"""
|
132 |
+
InternLM2RMSNorm is equivalent to T5LayerNorm
|
133 |
+
"""
|
134 |
+
super().__init__()
|
135 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
136 |
+
self.variance_epsilon = eps
|
137 |
+
|
138 |
+
def forward(self, hidden_states):
|
139 |
+
input_dtype = hidden_states.dtype
|
140 |
+
hidden_states = hidden_states.to(torch.float32)
|
141 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
142 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
143 |
+
return self.weight * hidden_states.to(input_dtype)
|
144 |
+
|
145 |
+
|
146 |
+
try:
|
147 |
+
from functools import partial
|
148 |
+
|
149 |
+
from apex.normalization import FusedRMSNorm
|
150 |
+
InternLM2RMSNorm = partial(FusedRMSNorm, eps=1e-6) # noqa
|
151 |
+
print('Discovered apex.normalization.FusedRMSNorm - will use it instead of InternLM2RMSNorm')
|
152 |
+
except ImportError:
|
153 |
+
# using the normal LlamaRMSNorm
|
154 |
+
pass
|
155 |
+
except Exception:
|
156 |
+
print('discovered apex but it failed to load, falling back to InternLM2RMSNorm')
|
157 |
+
pass
|
158 |
+
|
159 |
+
|
160 |
+
# Copied from transformers.model.llama.modeling_llama.LlamaRotaryEmbedding with Llama->InternLM2
|
161 |
+
class InternLM2RotaryEmbedding(nn.Module):
|
162 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
163 |
+
super().__init__()
|
164 |
+
|
165 |
+
self.dim = dim
|
166 |
+
self.max_position_embeddings = max_position_embeddings
|
167 |
+
self.base = base
|
168 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
169 |
+
self.register_buffer('inv_freq', inv_freq, persistent=False)
|
170 |
+
|
171 |
+
# Build here to make `torch.jit.trace` work.
|
172 |
+
self._set_cos_sin_cache(
|
173 |
+
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
|
174 |
+
)
|
175 |
+
|
176 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
177 |
+
self.max_seq_len_cached = seq_len
|
178 |
+
t = torch.arange(self.max_seq_len_cached, device=device).to(dtype=self.inv_freq.dtype)
|
179 |
+
|
180 |
+
freqs = torch.einsum('i,j->ij', t, self.inv_freq)
|
181 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
182 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
183 |
+
self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False)
|
184 |
+
self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False)
|
185 |
+
|
186 |
+
def forward(self, x, seq_len=None):
|
187 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
188 |
+
if seq_len > self.max_seq_len_cached:
|
189 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=torch.float32)
|
190 |
+
|
191 |
+
return (
|
192 |
+
self.cos_cached[:seq_len].to(dtype=x.dtype),
|
193 |
+
self.sin_cached[:seq_len].to(dtype=x.dtype),
|
194 |
+
)
|
195 |
+
|
196 |
+
|
197 |
+
# Copied from transformers.model.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->InternLM2
|
198 |
+
class InternLM2LinearScalingRotaryEmbedding(InternLM2RotaryEmbedding):
|
199 |
+
"""InternLM2RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
|
200 |
+
|
201 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
202 |
+
self.scaling_factor = scaling_factor
|
203 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
204 |
+
|
205 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
206 |
+
self.max_seq_len_cached = seq_len
|
207 |
+
t = torch.arange(self.max_seq_len_cached, device=device).to(dtype=self.inv_freq.dtype)
|
208 |
+
t = t / self.scaling_factor
|
209 |
+
|
210 |
+
freqs = torch.einsum('i,j->ij', t, self.inv_freq)
|
211 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
212 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
213 |
+
self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False)
|
214 |
+
self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False)
|
215 |
+
|
216 |
+
|
217 |
+
# Copied from transformers.model.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->InternLM2
|
218 |
+
class InternLM2DynamicNTKScalingRotaryEmbedding(InternLM2RotaryEmbedding):
|
219 |
+
"""InternLM2RotaryEmbedding extended with Dynamic NTK scaling.
|
220 |
+
Credits to the Reddit users /u/bloc97 and /u/emozilla.
|
221 |
+
"""
|
222 |
+
|
223 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
224 |
+
self.scaling_factor = scaling_factor
|
225 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
226 |
+
|
227 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
228 |
+
self.max_seq_len_cached = seq_len
|
229 |
+
|
230 |
+
if seq_len > self.max_position_embeddings:
|
231 |
+
base = self.base * (
|
232 |
+
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
|
233 |
+
) ** (self.dim / (self.dim - 2))
|
234 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
235 |
+
self.register_buffer('inv_freq', inv_freq, persistent=False)
|
236 |
+
|
237 |
+
t = torch.arange(self.max_seq_len_cached, device=device).to(dtype=self.inv_freq.dtype)
|
238 |
+
|
239 |
+
freqs = torch.einsum('i,j->ij', t, self.inv_freq)
|
240 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
241 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
242 |
+
self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False)
|
243 |
+
self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False)
|
244 |
+
|
245 |
+
|
246 |
+
# Copied from transformers.model.llama.modeling_llama.rotate_half
|
247 |
+
def rotate_half(x):
|
248 |
+
"""Rotates half the hidden dims of the input."""
|
249 |
+
x1 = x[..., : x.shape[-1] // 2]
|
250 |
+
x2 = x[..., x.shape[-1] // 2:]
|
251 |
+
return torch.cat((-x2, x1), dim=-1)
|
252 |
+
|
253 |
+
|
254 |
+
# Copied from transformers.model.llama.modeling_llama.apply_rotary_pos_emb
|
255 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
|
256 |
+
"""Applies Rotary Position Embedding to the query and key tensors."""
|
257 |
+
cos = cos[position_ids].unsqueeze(unsqueeze_dim)
|
258 |
+
sin = sin[position_ids].unsqueeze(unsqueeze_dim)
|
259 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
260 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
261 |
+
return q_embed, k_embed
|
262 |
+
|
263 |
+
|
264 |
+
class InternLM2MLP(nn.Module):
|
265 |
+
def __init__(self, config):
|
266 |
+
super().__init__()
|
267 |
+
self.config = config
|
268 |
+
self.hidden_size = config.hidden_size
|
269 |
+
self.intermediate_size = config.intermediate_size
|
270 |
+
self.w1 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
271 |
+
self.w3 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
272 |
+
self.w2 = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
273 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
274 |
+
|
275 |
+
def forward(self, x):
|
276 |
+
down_proj = self.w2(self.act_fn(self.w1(x)) * self.w3(x))
|
277 |
+
|
278 |
+
return down_proj
|
279 |
+
|
280 |
+
|
281 |
+
# Copied from transformers.model.llama.modeling_llama.repeat_kv
|
282 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
283 |
+
"""
|
284 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
285 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
286 |
+
"""
|
287 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
288 |
+
if n_rep == 1:
|
289 |
+
return hidden_states
|
290 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
291 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
292 |
+
|
293 |
+
|
294 |
+
# Modified from transformers.model.llama.modeling_llama.LlamaAttention
|
295 |
+
class InternLM2Attention(nn.Module):
|
296 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
297 |
+
|
298 |
+
def __init__(self, config: InternLM2Config):
|
299 |
+
super().__init__()
|
300 |
+
self.config = config
|
301 |
+
self.hidden_size = config.hidden_size
|
302 |
+
self.num_heads = config.num_attention_heads
|
303 |
+
self.head_dim = self.hidden_size // self.num_heads
|
304 |
+
self.num_key_value_heads = config.num_key_value_heads
|
305 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
306 |
+
self.max_position_embeddings = config.max_position_embeddings
|
307 |
+
self.is_causal = True
|
308 |
+
|
309 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
310 |
+
raise ValueError(
|
311 |
+
f'hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}'
|
312 |
+
f' and `num_heads`: {self.num_heads}).'
|
313 |
+
)
|
314 |
+
|
315 |
+
self.wqkv = nn.Linear(
|
316 |
+
self.hidden_size,
|
317 |
+
(self.num_heads + 2 * self.num_key_value_heads) * self.head_dim,
|
318 |
+
bias=config.bias,
|
319 |
+
)
|
320 |
+
|
321 |
+
self.wo = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.bias)
|
322 |
+
self._init_rope()
|
323 |
+
|
324 |
+
def _init_rope(self):
|
325 |
+
if self.config.rope_scaling is None:
|
326 |
+
self.rotary_emb = InternLM2RotaryEmbedding(
|
327 |
+
self.head_dim,
|
328 |
+
max_position_embeddings=self.max_position_embeddings,
|
329 |
+
base=self.config.rope_theta,
|
330 |
+
)
|
331 |
+
else:
|
332 |
+
scaling_type = self.config.rope_scaling['type']
|
333 |
+
scaling_factor = self.config.rope_scaling['factor']
|
334 |
+
if scaling_type == 'dynamic':
|
335 |
+
self.rotary_emb = InternLM2DynamicNTKScalingRotaryEmbedding(
|
336 |
+
self.head_dim,
|
337 |
+
max_position_embeddings=self.max_position_embeddings,
|
338 |
+
base=self.config.rope_theta,
|
339 |
+
scaling_factor=scaling_factor,
|
340 |
+
)
|
341 |
+
elif scaling_type == 'linear':
|
342 |
+
self.rotary_emb = InternLM2LinearScalingRotaryEmbedding(
|
343 |
+
self.head_dim,
|
344 |
+
max_position_embeddings=self.max_position_embeddings,
|
345 |
+
base=self.config.rope_theta,
|
346 |
+
scaling_factor=scaling_factor,
|
347 |
+
)
|
348 |
+
else:
|
349 |
+
raise ValueError("Currently we only support rotary embedding's type being 'dynamic' or 'linear'.")
|
350 |
+
return self.rotary_emb
|
351 |
+
|
352 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
353 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
354 |
+
|
355 |
+
def forward(
|
356 |
+
self,
|
357 |
+
hidden_states: torch.Tensor,
|
358 |
+
attention_mask: Optional[torch.Tensor] = None,
|
359 |
+
position_ids: Optional[torch.LongTensor] = None,
|
360 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
361 |
+
output_attentions: bool = False,
|
362 |
+
use_cache: bool = False,
|
363 |
+
**kwargs,
|
364 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
365 |
+
if 'padding_mask' in kwargs:
|
366 |
+
warnings.warn(
|
367 |
+
'Passing `padding_mask` is deprecated and will be removed in v4.37. '
|
368 |
+
'Please make sure use `attention_mask` instead.`'
|
369 |
+
)
|
370 |
+
|
371 |
+
bsz, q_len, _ = hidden_states.size()
|
372 |
+
|
373 |
+
qkv_states = self.wqkv(hidden_states)
|
374 |
+
|
375 |
+
qkv_states = rearrange(
|
376 |
+
qkv_states,
|
377 |
+
'b q (h gs d) -> b q h gs d',
|
378 |
+
gs=2 + self.num_key_value_groups,
|
379 |
+
d=self.head_dim,
|
380 |
+
)
|
381 |
+
|
382 |
+
query_states = qkv_states[..., : self.num_key_value_groups, :]
|
383 |
+
query_states = rearrange(query_states, 'b q h gs d -> b q (h gs) d')
|
384 |
+
key_states = qkv_states[..., -2, :]
|
385 |
+
value_states = qkv_states[..., -1, :]
|
386 |
+
|
387 |
+
query_states = query_states.transpose(1, 2)
|
388 |
+
key_states = key_states.transpose(1, 2)
|
389 |
+
value_states = value_states.transpose(1, 2)
|
390 |
+
|
391 |
+
kv_seq_len = key_states.shape[-2]
|
392 |
+
if past_key_value is not None:
|
393 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
394 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
395 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
396 |
+
|
397 |
+
if past_key_value is not None:
|
398 |
+
# reuse k, v, self_attention
|
399 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
400 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
401 |
+
|
402 |
+
past_key_value = (key_states, value_states) if use_cache else None
|
403 |
+
|
404 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
405 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
406 |
+
|
407 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
408 |
+
|
409 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
410 |
+
raise ValueError(
|
411 |
+
f'Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is'
|
412 |
+
f' {attn_weights.size()}'
|
413 |
+
)
|
414 |
+
|
415 |
+
if attention_mask is not None:
|
416 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
417 |
+
raise ValueError(
|
418 |
+
f'Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}'
|
419 |
+
)
|
420 |
+
attn_weights = attn_weights + attention_mask
|
421 |
+
|
422 |
+
# upcast attention to fp32
|
423 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
424 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
425 |
+
|
426 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
427 |
+
raise ValueError(
|
428 |
+
f'`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is'
|
429 |
+
f' {attn_output.size()}'
|
430 |
+
)
|
431 |
+
|
432 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
433 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
434 |
+
|
435 |
+
attn_output = self.wo(attn_output)
|
436 |
+
|
437 |
+
if not output_attentions:
|
438 |
+
attn_weights = None
|
439 |
+
|
440 |
+
return attn_output, attn_weights, past_key_value
|
441 |
+
|
442 |
+
|
443 |
+
# Modified from transformers.model.llama.modeling_llama.InternLM2FlashAttention2
|
444 |
+
class InternLM2FlashAttention2(InternLM2Attention):
|
445 |
+
"""
|
446 |
+
InternLM2 flash attention module. This module inherits from `InternLM2Attention` as the weights of the module stays
|
447 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
448 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
449 |
+
"""
|
450 |
+
|
451 |
+
def forward(
|
452 |
+
self,
|
453 |
+
hidden_states: torch.Tensor,
|
454 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
455 |
+
position_ids: Optional[torch.LongTensor] = None,
|
456 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
457 |
+
output_attentions: bool = False,
|
458 |
+
use_cache: bool = False,
|
459 |
+
**kwargs,
|
460 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
461 |
+
# InternLM2FlashAttention2 attention does not support output_attentions
|
462 |
+
if 'padding_mask' in kwargs:
|
463 |
+
warnings.warn(
|
464 |
+
'Passing `padding_mask` is deprecated and will be removed in v4.37. '
|
465 |
+
'Please make sure use `attention_mask` instead.`'
|
466 |
+
)
|
467 |
+
|
468 |
+
# overwrite attention_mask with padding_mask
|
469 |
+
attention_mask = kwargs.pop('padding_mask')
|
470 |
+
|
471 |
+
output_attentions = False
|
472 |
+
|
473 |
+
bsz, q_len, _ = hidden_states.size()
|
474 |
+
|
475 |
+
qkv_states = self.wqkv(hidden_states)
|
476 |
+
|
477 |
+
qkv_states = rearrange(
|
478 |
+
qkv_states,
|
479 |
+
'b q (h gs d) -> b q h gs d',
|
480 |
+
gs=2 + self.num_key_value_groups,
|
481 |
+
d=self.head_dim,
|
482 |
+
)
|
483 |
+
|
484 |
+
query_states = qkv_states[..., : self.num_key_value_groups, :]
|
485 |
+
query_states = rearrange(query_states, 'b q h gs d -> b q (h gs) d')
|
486 |
+
key_states = qkv_states[..., -2, :]
|
487 |
+
value_states = qkv_states[..., -1, :]
|
488 |
+
|
489 |
+
query_states = query_states.transpose(1, 2)
|
490 |
+
key_states = key_states.transpose(1, 2)
|
491 |
+
value_states = value_states.transpose(1, 2)
|
492 |
+
|
493 |
+
kv_seq_len = key_states.shape[-2]
|
494 |
+
if past_key_value is not None:
|
495 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
496 |
+
|
497 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
498 |
+
|
499 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
500 |
+
|
501 |
+
if past_key_value is not None:
|
502 |
+
# reuse k, v, self_attention
|
503 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
504 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
505 |
+
|
506 |
+
past_key_value = (key_states, value_states) if use_cache else None
|
507 |
+
|
508 |
+
query_states = query_states.transpose(1, 2)
|
509 |
+
key_states = key_states.transpose(1, 2)
|
510 |
+
value_states = value_states.transpose(1, 2)
|
511 |
+
|
512 |
+
attn_output = self._flash_attention_forward(
|
513 |
+
query_states, key_states, value_states, attention_mask, q_len
|
514 |
+
)
|
515 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
516 |
+
attn_output = self.wo(attn_output)
|
517 |
+
|
518 |
+
if not output_attentions:
|
519 |
+
attn_weights = None
|
520 |
+
|
521 |
+
return attn_output, attn_weights, past_key_value
|
522 |
+
|
523 |
+
def _flash_attention_forward(
|
524 |
+
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
|
525 |
+
):
|
526 |
+
"""
|
527 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
528 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
529 |
+
|
530 |
+
Args:
|
531 |
+
query_states (`torch.Tensor`):
|
532 |
+
Input query states to be passed to Flash Attention API
|
533 |
+
key_states (`torch.Tensor`):
|
534 |
+
Input key states to be passed to Flash Attention API
|
535 |
+
value_states (`torch.Tensor`):
|
536 |
+
Input value states to be passed to Flash Attention API
|
537 |
+
attention_mask (`torch.Tensor`):
|
538 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
539 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
540 |
+
dropout (`int`, *optional*):
|
541 |
+
Attention dropout
|
542 |
+
softmax_scale (`float`, *optional*):
|
543 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
544 |
+
"""
|
545 |
+
# Contains at least one padding token in the sequence
|
546 |
+
causal = self.is_causal and query_length != 1
|
547 |
+
if attention_mask is not None:
|
548 |
+
batch_size = query_states.shape[0]
|
549 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._unpad_input(
|
550 |
+
query_states, key_states, value_states, attention_mask, query_length
|
551 |
+
)
|
552 |
+
|
553 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
554 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
555 |
+
|
556 |
+
attn_output_unpad = flash_attn_varlen_func(
|
557 |
+
query_states,
|
558 |
+
key_states,
|
559 |
+
value_states,
|
560 |
+
cu_seqlens_q=cu_seqlens_q,
|
561 |
+
cu_seqlens_k=cu_seqlens_k,
|
562 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
563 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
564 |
+
dropout_p=dropout,
|
565 |
+
softmax_scale=softmax_scale,
|
566 |
+
causal=causal,
|
567 |
+
)
|
568 |
+
|
569 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
570 |
+
else:
|
571 |
+
attn_output = flash_attn_func(
|
572 |
+
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
|
573 |
+
)
|
574 |
+
|
575 |
+
return attn_output
|
576 |
+
|
577 |
+
def _unpad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
578 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
579 |
+
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
580 |
+
|
581 |
+
key_layer = index_first_axis(
|
582 |
+
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
583 |
+
)
|
584 |
+
value_layer = index_first_axis(
|
585 |
+
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
586 |
+
)
|
587 |
+
|
588 |
+
if query_length == kv_seq_len:
|
589 |
+
query_layer = index_first_axis(
|
590 |
+
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
|
591 |
+
)
|
592 |
+
cu_seqlens_q = cu_seqlens_k
|
593 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
594 |
+
indices_q = indices_k
|
595 |
+
elif query_length == 1:
|
596 |
+
max_seqlen_in_batch_q = 1
|
597 |
+
cu_seqlens_q = torch.arange(
|
598 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
599 |
+
) # There is a memcpy here, that is very bad.
|
600 |
+
indices_q = cu_seqlens_q[:-1]
|
601 |
+
query_layer = query_layer.squeeze(1)
|
602 |
+
else:
|
603 |
+
# The -q_len: slice assumes left padding.
|
604 |
+
attention_mask = attention_mask[:, -query_length:]
|
605 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
606 |
+
|
607 |
+
return (
|
608 |
+
query_layer,
|
609 |
+
key_layer,
|
610 |
+
value_layer,
|
611 |
+
indices_q.to(torch.int64),
|
612 |
+
(cu_seqlens_q, cu_seqlens_k),
|
613 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
614 |
+
)
|
615 |
+
|
616 |
+
|
617 |
+
INTERNLM2_ATTENTION_CLASSES = {
|
618 |
+
'eager': InternLM2Attention,
|
619 |
+
'flash_attention_2': InternLM2FlashAttention2,
|
620 |
+
}
|
621 |
+
|
622 |
+
|
623 |
+
# Modified from transformers.model.llama.modeling_llama.LlamaDecoderLayer
|
624 |
+
class InternLM2DecoderLayer(nn.Module):
|
625 |
+
def __init__(self, config: InternLM2Config):
|
626 |
+
super().__init__()
|
627 |
+
self.hidden_size = config.hidden_size
|
628 |
+
|
629 |
+
self.attention = INTERNLM2_ATTENTION_CLASSES[config.attn_implementation](config=config)
|
630 |
+
|
631 |
+
self.feed_forward = InternLM2MLP(config)
|
632 |
+
self.attention_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
633 |
+
self.ffn_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
634 |
+
|
635 |
+
def forward(
|
636 |
+
self,
|
637 |
+
hidden_states: torch.Tensor,
|
638 |
+
attention_mask: Optional[torch.Tensor] = None,
|
639 |
+
position_ids: Optional[torch.LongTensor] = None,
|
640 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
641 |
+
output_attentions: Optional[bool] = False,
|
642 |
+
use_cache: Optional[bool] = False,
|
643 |
+
**kwargs,
|
644 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
645 |
+
"""
|
646 |
+
Args:
|
647 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
648 |
+
attention_mask (`torch.FloatTensor`, *optional*):
|
649 |
+
attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
|
650 |
+
query_sequence_length, key_sequence_length)` if default attention is used.
|
651 |
+
output_attentions (`bool`, *optional*):
|
652 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
653 |
+
returned tensors for more detail.
|
654 |
+
use_cache (`bool`, *optional*):
|
655 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
656 |
+
(see `past_key_values`).
|
657 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
658 |
+
"""
|
659 |
+
if 'padding_mask' in kwargs:
|
660 |
+
warnings.warn(
|
661 |
+
'Passing `padding_mask` is deprecated and will be removed in v4.37. '
|
662 |
+
'Please make sure use `attention_mask` instead.`'
|
663 |
+
)
|
664 |
+
|
665 |
+
residual = hidden_states
|
666 |
+
|
667 |
+
hidden_states = self.attention_norm(hidden_states)
|
668 |
+
|
669 |
+
# Self Attention
|
670 |
+
hidden_states, self_attn_weights, present_key_value = self.attention(
|
671 |
+
hidden_states=hidden_states,
|
672 |
+
attention_mask=attention_mask,
|
673 |
+
position_ids=position_ids,
|
674 |
+
past_key_value=past_key_value,
|
675 |
+
output_attentions=output_attentions,
|
676 |
+
use_cache=use_cache,
|
677 |
+
**kwargs,
|
678 |
+
)
|
679 |
+
hidden_states = residual + hidden_states
|
680 |
+
|
681 |
+
# Fully Connected
|
682 |
+
residual = hidden_states
|
683 |
+
hidden_states = self.ffn_norm(hidden_states)
|
684 |
+
hidden_states = self.feed_forward(hidden_states)
|
685 |
+
hidden_states = residual + hidden_states
|
686 |
+
|
687 |
+
outputs = (hidden_states,)
|
688 |
+
|
689 |
+
if output_attentions:
|
690 |
+
outputs += (self_attn_weights,)
|
691 |
+
|
692 |
+
if use_cache:
|
693 |
+
outputs += (present_key_value,)
|
694 |
+
|
695 |
+
return outputs
|
696 |
+
|
697 |
+
|
698 |
+
InternLM2_START_DOCSTRING = r"""
|
699 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
700 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
701 |
+
etc.)
|
702 |
+
|
703 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
704 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
705 |
+
and behavior.
|
706 |
+
|
707 |
+
Parameters:
|
708 |
+
config ([`InternLM2Config`]):
|
709 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
710 |
+
load the weights associated with the model, only the configuration. Check out the
|
711 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
712 |
+
"""
|
713 |
+
|
714 |
+
|
715 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaPreTrainedModel with Llama->InternLM2
|
716 |
+
@add_start_docstrings(
|
717 |
+
'The bare InternLM2 Model outputting raw hidden-states without any specific head on top.',
|
718 |
+
InternLM2_START_DOCSTRING,
|
719 |
+
)
|
720 |
+
class InternLM2PreTrainedModel(PreTrainedModel):
|
721 |
+
config_class = InternLM2Config
|
722 |
+
base_model_prefix = 'model'
|
723 |
+
supports_gradient_checkpointing = True
|
724 |
+
_no_split_modules = ['InternLM2DecoderLayer']
|
725 |
+
_skip_keys_device_placement = 'past_key_values'
|
726 |
+
_supports_flash_attn_2 = True
|
727 |
+
|
728 |
+
def _init_weights(self, module):
|
729 |
+
std = self.config.initializer_range
|
730 |
+
if isinstance(module, nn.Linear):
|
731 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
732 |
+
if module.bias is not None:
|
733 |
+
module.bias.data.zero_()
|
734 |
+
elif isinstance(module, nn.Embedding):
|
735 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
736 |
+
if module.padding_idx is not None:
|
737 |
+
module.weight.data[module.padding_idx].zero_()
|
738 |
+
|
739 |
+
|
740 |
+
InternLM2_INPUTS_DOCSTRING = r"""
|
741 |
+
Args:
|
742 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
743 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
744 |
+
it.
|
745 |
+
|
746 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
747 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
748 |
+
|
749 |
+
[What are input IDs?](../glossary#input-ids)
|
750 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
751 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
752 |
+
|
753 |
+
- 1 for tokens that are **not masked**,
|
754 |
+
- 0 for tokens that are **masked**.
|
755 |
+
|
756 |
+
[What are attention masks?](../glossary#attention-mask)
|
757 |
+
|
758 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
759 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
760 |
+
|
761 |
+
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
762 |
+
`past_key_values`).
|
763 |
+
|
764 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
765 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
766 |
+
information on the default strategy.
|
767 |
+
|
768 |
+
- 1 indicates the head is **not masked**,
|
769 |
+
- 0 indicates the head is **masked**.
|
770 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
771 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
772 |
+
config.n_positions - 1]`.
|
773 |
+
|
774 |
+
[What are position IDs?](../glossary#position-ids)
|
775 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or
|
776 |
+
when `config.use_cache=True`):
|
777 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
778 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
|
779 |
+
`(batch_size, num_heads, decoder_sequence_length, embed_size_per_head)`.
|
780 |
+
|
781 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
782 |
+
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
783 |
+
|
784 |
+
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
785 |
+
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
786 |
+
of shape `(batch_size, sequence_length)`.
|
787 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
788 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
789 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
790 |
+
model's internal embedding lookup matrix.
|
791 |
+
use_cache (`bool`, *optional*):
|
792 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
793 |
+
`past_key_values`).
|
794 |
+
output_attentions (`bool`, *optional*):
|
795 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
796 |
+
tensors for more detail.
|
797 |
+
output_hidden_states (`bool`, *optional*):
|
798 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
799 |
+
more detail.
|
800 |
+
return_dict (`bool`, *optional*):
|
801 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
802 |
+
"""
|
803 |
+
|
804 |
+
|
805 |
+
# Modified from transformers.model.llama.modeling_llama.LlamaModel
|
806 |
+
@add_start_docstrings(
|
807 |
+
'The bare InternLM2 Model outputting raw hidden-states without any specific head on top.',
|
808 |
+
InternLM2_START_DOCSTRING,
|
809 |
+
)
|
810 |
+
class InternLM2Model(InternLM2PreTrainedModel):
|
811 |
+
"""
|
812 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`InternLM2DecoderLayer`]
|
813 |
+
|
814 |
+
Args:
|
815 |
+
config: InternLM2Config
|
816 |
+
"""
|
817 |
+
|
818 |
+
_auto_class = 'AutoModel'
|
819 |
+
|
820 |
+
def __init__(self, config: InternLM2Config):
|
821 |
+
super().__init__(config)
|
822 |
+
self.padding_idx = config.pad_token_id
|
823 |
+
self.vocab_size = config.vocab_size
|
824 |
+
self.config = config
|
825 |
+
if not has_flash_attn:
|
826 |
+
self.config.attn_implementation = 'eager'
|
827 |
+
print('Warning: Flash attention is not available, using eager attention instead.')
|
828 |
+
|
829 |
+
self.tok_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
830 |
+
|
831 |
+
self.layers = nn.ModuleList([InternLM2DecoderLayer(config) for _ in range(config.num_hidden_layers)])
|
832 |
+
self.norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
833 |
+
|
834 |
+
self.gradient_checkpointing = False
|
835 |
+
# Initialize weights and apply final processing
|
836 |
+
self.post_init()
|
837 |
+
|
838 |
+
def get_input_embeddings(self):
|
839 |
+
return self.tok_embeddings
|
840 |
+
|
841 |
+
def set_input_embeddings(self, value):
|
842 |
+
self.tok_embeddings = value
|
843 |
+
|
844 |
+
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
|
845 |
+
# create causal mask
|
846 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
847 |
+
combined_attention_mask = None
|
848 |
+
if input_shape[-1] > 1:
|
849 |
+
combined_attention_mask = _make_causal_mask(
|
850 |
+
input_shape,
|
851 |
+
inputs_embeds.dtype,
|
852 |
+
device=inputs_embeds.device,
|
853 |
+
past_key_values_length=past_key_values_length,
|
854 |
+
)
|
855 |
+
|
856 |
+
if attention_mask is not None:
|
857 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
858 |
+
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
|
859 |
+
inputs_embeds.device
|
860 |
+
)
|
861 |
+
combined_attention_mask = (
|
862 |
+
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
|
863 |
+
)
|
864 |
+
|
865 |
+
return combined_attention_mask
|
866 |
+
|
867 |
+
@add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
|
868 |
+
def forward(
|
869 |
+
self,
|
870 |
+
input_ids: torch.LongTensor = None,
|
871 |
+
attention_mask: Optional[torch.Tensor] = None,
|
872 |
+
position_ids: Optional[torch.LongTensor] = None,
|
873 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
874 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
875 |
+
use_cache: Optional[bool] = None,
|
876 |
+
output_attentions: Optional[bool] = None,
|
877 |
+
output_hidden_states: Optional[bool] = None,
|
878 |
+
return_dict: Optional[bool] = None,
|
879 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
880 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
881 |
+
output_hidden_states = (
|
882 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
883 |
+
)
|
884 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
885 |
+
|
886 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
887 |
+
|
888 |
+
if self.config.attn_implementation == 'flash_attention_2':
|
889 |
+
_import_flash_attn()
|
890 |
+
|
891 |
+
# retrieve input_ids and inputs_embeds
|
892 |
+
if input_ids is not None and inputs_embeds is not None:
|
893 |
+
raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time')
|
894 |
+
elif input_ids is not None:
|
895 |
+
batch_size, seq_length = input_ids.shape[:2]
|
896 |
+
elif inputs_embeds is not None:
|
897 |
+
batch_size, seq_length = inputs_embeds.shape[:2]
|
898 |
+
else:
|
899 |
+
raise ValueError('You have to specify either input_ids or inputs_embeds')
|
900 |
+
|
901 |
+
seq_length_with_past = seq_length
|
902 |
+
past_key_values_length = 0
|
903 |
+
if past_key_values is not None:
|
904 |
+
past_key_values_length = past_key_values[0][0].shape[2]
|
905 |
+
seq_length_with_past = seq_length_with_past + past_key_values_length
|
906 |
+
|
907 |
+
if position_ids is None:
|
908 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
909 |
+
position_ids = torch.arange(
|
910 |
+
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
911 |
+
)
|
912 |
+
position_ids = position_ids.unsqueeze(0)
|
913 |
+
|
914 |
+
if inputs_embeds is None:
|
915 |
+
inputs_embeds = self.tok_embeddings(input_ids)
|
916 |
+
|
917 |
+
if self.config.attn_implementation == 'flash_attention_2':
|
918 |
+
# 2d mask is passed through the layers
|
919 |
+
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
920 |
+
else:
|
921 |
+
if attention_mask is None:
|
922 |
+
attention_mask = torch.ones(
|
923 |
+
(batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
|
924 |
+
)
|
925 |
+
attention_mask = self._prepare_decoder_attention_mask(
|
926 |
+
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
|
927 |
+
)
|
928 |
+
|
929 |
+
# embed positions
|
930 |
+
hidden_states = inputs_embeds
|
931 |
+
|
932 |
+
if self.gradient_checkpointing and self.training:
|
933 |
+
if use_cache:
|
934 |
+
logger.warning_once(
|
935 |
+
'`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...'
|
936 |
+
)
|
937 |
+
use_cache = False
|
938 |
+
|
939 |
+
# decoder layers
|
940 |
+
all_hidden_states = () if output_hidden_states else None
|
941 |
+
all_self_attns = () if output_attentions else None
|
942 |
+
next_decoder_cache = () if use_cache else None
|
943 |
+
|
944 |
+
for idx, decoder_layer in enumerate(self.layers):
|
945 |
+
if output_hidden_states:
|
946 |
+
all_hidden_states += (hidden_states,)
|
947 |
+
|
948 |
+
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
949 |
+
|
950 |
+
if self.gradient_checkpointing and self.training:
|
951 |
+
|
952 |
+
def create_custom_forward(module):
|
953 |
+
def custom_forward(*inputs):
|
954 |
+
# None for past_key_value
|
955 |
+
return module(*inputs, output_attentions, None)
|
956 |
+
|
957 |
+
return custom_forward
|
958 |
+
|
959 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
960 |
+
create_custom_forward(decoder_layer),
|
961 |
+
hidden_states,
|
962 |
+
attention_mask,
|
963 |
+
position_ids,
|
964 |
+
None,
|
965 |
+
)
|
966 |
+
else:
|
967 |
+
layer_outputs = decoder_layer(
|
968 |
+
hidden_states,
|
969 |
+
attention_mask=attention_mask,
|
970 |
+
position_ids=position_ids,
|
971 |
+
past_key_value=past_key_value,
|
972 |
+
output_attentions=output_attentions,
|
973 |
+
use_cache=use_cache,
|
974 |
+
)
|
975 |
+
|
976 |
+
hidden_states = layer_outputs[0]
|
977 |
+
|
978 |
+
if use_cache:
|
979 |
+
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
|
980 |
+
|
981 |
+
if output_attentions:
|
982 |
+
all_self_attns += (layer_outputs[1],)
|
983 |
+
|
984 |
+
hidden_states = self.norm(hidden_states)
|
985 |
+
|
986 |
+
# add hidden states from the last decoder layer
|
987 |
+
if output_hidden_states:
|
988 |
+
all_hidden_states += (hidden_states,)
|
989 |
+
|
990 |
+
next_cache = next_decoder_cache if use_cache else None
|
991 |
+
if not return_dict:
|
992 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
993 |
+
return BaseModelOutputWithPast(
|
994 |
+
last_hidden_state=hidden_states,
|
995 |
+
past_key_values=next_cache,
|
996 |
+
hidden_states=all_hidden_states,
|
997 |
+
attentions=all_self_attns,
|
998 |
+
)
|
999 |
+
|
1000 |
+
|
1001 |
+
# Modified from transformers.model.llama.modeling_llama.LlamaForCausalLM
|
1002 |
+
class InternLM2ForCausalLM(InternLM2PreTrainedModel):
|
1003 |
+
_auto_class = 'AutoModelForCausalLM'
|
1004 |
+
|
1005 |
+
_tied_weights_keys = ['output.weight']
|
1006 |
+
|
1007 |
+
def __init__(self, config):
|
1008 |
+
super().__init__(config)
|
1009 |
+
self.model = InternLM2Model(config)
|
1010 |
+
self.vocab_size = config.vocab_size
|
1011 |
+
self.output = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1012 |
+
|
1013 |
+
# Initialize weights and apply final processing
|
1014 |
+
self.post_init()
|
1015 |
+
|
1016 |
+
def get_input_embeddings(self):
|
1017 |
+
return self.model.tok_embeddings
|
1018 |
+
|
1019 |
+
def set_input_embeddings(self, value):
|
1020 |
+
self.model.tok_embeddings = value
|
1021 |
+
|
1022 |
+
def get_output_embeddings(self):
|
1023 |
+
return self.output
|
1024 |
+
|
1025 |
+
def set_output_embeddings(self, new_embeddings):
|
1026 |
+
self.output = new_embeddings
|
1027 |
+
|
1028 |
+
def set_decoder(self, decoder):
|
1029 |
+
self.model = decoder
|
1030 |
+
|
1031 |
+
def get_decoder(self):
|
1032 |
+
return self.model
|
1033 |
+
|
1034 |
+
@add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
|
1035 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
1036 |
+
def forward(
|
1037 |
+
self,
|
1038 |
+
input_ids: torch.LongTensor = None,
|
1039 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1040 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1041 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1042 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1043 |
+
labels: Optional[torch.LongTensor] = None,
|
1044 |
+
use_cache: Optional[bool] = None,
|
1045 |
+
output_attentions: Optional[bool] = None,
|
1046 |
+
output_hidden_states: Optional[bool] = None,
|
1047 |
+
return_dict: Optional[bool] = None,
|
1048 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
1049 |
+
r"""
|
1050 |
+
Args:
|
1051 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1052 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
1053 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1054 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
1055 |
+
|
1056 |
+
Returns:
|
1057 |
+
|
1058 |
+
Example:
|
1059 |
+
|
1060 |
+
```python
|
1061 |
+
>>> from transformers import AutoTokenizer, InternLM2ForCausalLM
|
1062 |
+
|
1063 |
+
>>> model = InternLM2ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
1064 |
+
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
1065 |
+
|
1066 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
1067 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
1068 |
+
|
1069 |
+
>>> # Generate
|
1070 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
1071 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
1072 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
1073 |
+
```"""
|
1074 |
+
|
1075 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1076 |
+
output_hidden_states = (
|
1077 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1078 |
+
)
|
1079 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1080 |
+
|
1081 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
1082 |
+
outputs = self.model(
|
1083 |
+
input_ids=input_ids,
|
1084 |
+
attention_mask=attention_mask,
|
1085 |
+
position_ids=position_ids,
|
1086 |
+
past_key_values=past_key_values,
|
1087 |
+
inputs_embeds=inputs_embeds,
|
1088 |
+
use_cache=use_cache,
|
1089 |
+
output_attentions=output_attentions,
|
1090 |
+
output_hidden_states=output_hidden_states,
|
1091 |
+
return_dict=return_dict,
|
1092 |
+
)
|
1093 |
+
|
1094 |
+
hidden_states = outputs[0]
|
1095 |
+
logits = self.output(hidden_states)
|
1096 |
+
logits = logits.float()
|
1097 |
+
|
1098 |
+
loss = None
|
1099 |
+
if labels is not None:
|
1100 |
+
# Shift so that tokens < n predict n
|
1101 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
1102 |
+
shift_labels = labels[..., 1:].contiguous()
|
1103 |
+
# Flatten the tokens
|
1104 |
+
loss_fct = CrossEntropyLoss()
|
1105 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
1106 |
+
shift_labels = shift_labels.view(-1)
|
1107 |
+
# Enable model parallelism
|
1108 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
1109 |
+
loss = loss_fct(shift_logits, shift_labels)
|
1110 |
+
|
1111 |
+
if not return_dict:
|
1112 |
+
output = (logits,) + outputs[1:]
|
1113 |
+
return (loss,) + output if loss is not None else output
|
1114 |
+
|
1115 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
1116 |
+
output = CausalLMOutputWithPast(
|
1117 |
+
loss=loss,
|
1118 |
+
logits=logits,
|
1119 |
+
past_key_values=outputs.past_key_values,
|
1120 |
+
hidden_states=outputs.hidden_states,
|
1121 |
+
attentions=outputs.attentions,
|
1122 |
+
)
|
1123 |
+
output['logits'] = output['logits'].to(device)
|
1124 |
+
return output
|
1125 |
+
|
1126 |
+
def prepare_inputs_for_generation(
|
1127 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
1128 |
+
):
|
1129 |
+
if past_key_values is not None:
|
1130 |
+
past_length = past_key_values[0][0].shape[2]
|
1131 |
+
|
1132 |
+
# Some generation methods already pass only the last input ID
|
1133 |
+
if input_ids.shape[1] > past_length:
|
1134 |
+
remove_prefix_length = past_length
|
1135 |
+
else:
|
1136 |
+
# Default to old behavior: keep only final ID
|
1137 |
+
remove_prefix_length = input_ids.shape[1] - 1
|
1138 |
+
|
1139 |
+
input_ids = input_ids[:, remove_prefix_length:]
|
1140 |
+
|
1141 |
+
position_ids = kwargs.get('position_ids', None)
|
1142 |
+
if attention_mask is not None and position_ids is None:
|
1143 |
+
# create position_ids on the fly for batch generation
|
1144 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
1145 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
1146 |
+
if past_key_values:
|
1147 |
+
position_ids = position_ids[:, -input_ids.shape[1]:]
|
1148 |
+
|
1149 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1150 |
+
if inputs_embeds is not None and past_key_values is None:
|
1151 |
+
model_inputs = {'inputs_embeds': inputs_embeds}
|
1152 |
+
else:
|
1153 |
+
model_inputs = {'input_ids': input_ids}
|
1154 |
+
|
1155 |
+
model_inputs.update(
|
1156 |
+
{
|
1157 |
+
'position_ids': position_ids,
|
1158 |
+
'past_key_values': past_key_values,
|
1159 |
+
'use_cache': kwargs.get('use_cache'),
|
1160 |
+
'attention_mask': attention_mask,
|
1161 |
+
}
|
1162 |
+
)
|
1163 |
+
return model_inputs
|
1164 |
+
|
1165 |
+
@staticmethod
|
1166 |
+
def _reorder_cache(past_key_values, beam_idx):
|
1167 |
+
reordered_past = ()
|
1168 |
+
for layer_past in past_key_values:
|
1169 |
+
reordered_past += (
|
1170 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
1171 |
+
)
|
1172 |
+
return reordered_past
|
1173 |
+
|
1174 |
+
def build_inputs(self, tokenizer, query: str, history: List[Tuple[str, str]] = [], meta_instruction=''):
|
1175 |
+
if tokenizer.add_bos_token:
|
1176 |
+
prompt = ''
|
1177 |
+
else:
|
1178 |
+
prompt = tokenizer.bos_token
|
1179 |
+
if meta_instruction:
|
1180 |
+
prompt += f"""<|im_start|>system\n{meta_instruction}<|im_end|>\n"""
|
1181 |
+
for record in history:
|
1182 |
+
prompt += f"""<|im_start|>user\n{record[0]}<|im_end|>\n<|im_start|>assistant\n{record[1]}<|im_end|>\n"""
|
1183 |
+
prompt += f"""<|im_start|>user\n{query}<|im_end|>\n<|im_start|>assistant\n"""
|
1184 |
+
return tokenizer([prompt], return_tensors='pt')
|
1185 |
+
|
1186 |
+
@torch.no_grad()
|
1187 |
+
def chat(
|
1188 |
+
self,
|
1189 |
+
tokenizer,
|
1190 |
+
query: str,
|
1191 |
+
history: List[Tuple[str, str]] = [],
|
1192 |
+
streamer: Optional[BaseStreamer] = None,
|
1193 |
+
max_new_tokens: int = 1024,
|
1194 |
+
do_sample: bool = True,
|
1195 |
+
temperature: float = 0.8,
|
1196 |
+
top_p: float = 0.8,
|
1197 |
+
meta_instruction: str = 'You are an AI assistant whose name is InternLM (书生·浦语).\n'
|
1198 |
+
'- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.\n'
|
1199 |
+
'- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文.',
|
1200 |
+
**kwargs,
|
1201 |
+
):
|
1202 |
+
inputs = self.build_inputs(tokenizer, query, history, meta_instruction)
|
1203 |
+
inputs = {k: v.to(self.device) for k, v in inputs.items() if torch.is_tensor(v)}
|
1204 |
+
# also add end-of-assistant token in eos token id to avoid unnecessary generation
|
1205 |
+
eos_token_id = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids(['<|im_end|>'])[0]]
|
1206 |
+
outputs = self.generate(
|
1207 |
+
**inputs,
|
1208 |
+
streamer=streamer,
|
1209 |
+
max_new_tokens=max_new_tokens,
|
1210 |
+
do_sample=do_sample,
|
1211 |
+
temperature=temperature,
|
1212 |
+
top_p=top_p,
|
1213 |
+
eos_token_id=eos_token_id,
|
1214 |
+
**kwargs,
|
1215 |
+
)
|
1216 |
+
outputs = outputs[0].cpu().tolist()[len(inputs['input_ids'][0]):]
|
1217 |
+
response = tokenizer.decode(outputs, skip_special_tokens=True)
|
1218 |
+
response = response.split('<|im_end|>')[0]
|
1219 |
+
history = history + [(query, response)]
|
1220 |
+
return response, history
|
1221 |
+
|
1222 |
+
@torch.no_grad()
|
1223 |
+
def stream_chat(
|
1224 |
+
self,
|
1225 |
+
tokenizer,
|
1226 |
+
query: str,
|
1227 |
+
history: List[Tuple[str, str]] = [],
|
1228 |
+
max_new_tokens: int = 1024,
|
1229 |
+
do_sample: bool = True,
|
1230 |
+
temperature: float = 0.8,
|
1231 |
+
top_p: float = 0.8,
|
1232 |
+
**kwargs,
|
1233 |
+
):
|
1234 |
+
"""
|
1235 |
+
Return a generator in format: (response, history)
|
1236 |
+
Eg.
|
1237 |
+
('你好,有什么可以帮助您的吗', [('你好', '你好,有什么可以帮助您的吗')])
|
1238 |
+
('你好,有什么可以帮助您的吗?', [('你好', '你好,有什么可以帮助您的吗?')])
|
1239 |
+
"""
|
1240 |
+
if BaseStreamer is None:
|
1241 |
+
raise ModuleNotFoundError(
|
1242 |
+
'The version of `transformers` is too low. Please make sure '
|
1243 |
+
'that you have installed `transformers>=4.28.0`.'
|
1244 |
+
)
|
1245 |
+
|
1246 |
+
response_queue = queue.Queue(maxsize=20)
|
1247 |
+
|
1248 |
+
class ChatStreamer(BaseStreamer):
|
1249 |
+
def __init__(self, tokenizer) -> None:
|
1250 |
+
super().__init__()
|
1251 |
+
self.tokenizer = tokenizer
|
1252 |
+
self.queue = response_queue
|
1253 |
+
self.query = query
|
1254 |
+
self.history = history
|
1255 |
+
self.response = ''
|
1256 |
+
self.cache = []
|
1257 |
+
self.received_inputs = False
|
1258 |
+
self.queue.put((self.response, history + [(self.query, self.response)]))
|
1259 |
+
|
1260 |
+
def put(self, value):
|
1261 |
+
if len(value.shape) > 1 and value.shape[0] > 1:
|
1262 |
+
raise ValueError('ChatStreamer only supports batch size 1')
|
1263 |
+
elif len(value.shape) > 1:
|
1264 |
+
value = value[0]
|
1265 |
+
|
1266 |
+
if not self.received_inputs:
|
1267 |
+
# The first received value is input_ids, ignore here
|
1268 |
+
self.received_inputs = True
|
1269 |
+
return
|
1270 |
+
|
1271 |
+
self.cache.extend(value.tolist())
|
1272 |
+
token = self.tokenizer.decode(self.cache, skip_special_tokens=True)
|
1273 |
+
if token.strip() != '<|im_end|>':
|
1274 |
+
self.response = self.response + token
|
1275 |
+
history = self.history + [(self.query, self.response)]
|
1276 |
+
self.queue.put((self.response, history))
|
1277 |
+
self.cache = []
|
1278 |
+
else:
|
1279 |
+
self.end()
|
1280 |
+
|
1281 |
+
def end(self):
|
1282 |
+
self.queue.put(None)
|
1283 |
+
|
1284 |
+
def stream_producer():
|
1285 |
+
return self.chat(
|
1286 |
+
tokenizer=tokenizer,
|
1287 |
+
query=query,
|
1288 |
+
streamer=ChatStreamer(tokenizer=tokenizer),
|
1289 |
+
history=history,
|
1290 |
+
max_new_tokens=max_new_tokens,
|
1291 |
+
do_sample=do_sample,
|
1292 |
+
temperature=temperature,
|
1293 |
+
top_p=top_p,
|
1294 |
+
**kwargs,
|
1295 |
+
)
|
1296 |
+
|
1297 |
+
def consumer():
|
1298 |
+
producer = threading.Thread(target=stream_producer)
|
1299 |
+
producer.start()
|
1300 |
+
while True:
|
1301 |
+
res = response_queue.get()
|
1302 |
+
if res is None:
|
1303 |
+
return
|
1304 |
+
yield res
|
1305 |
+
|
1306 |
+
return consumer()
|
1307 |
+
|
1308 |
+
|
1309 |
+
# Copied from transformers.model.llama.modeling_llama.LlamaForSequenceClassification with Llama->InternLM2
|
1310 |
+
@add_start_docstrings(
|
1311 |
+
"""
|
1312 |
+
The InternLM2 Model transformer with a sequence classification head on top (linear layer).
|
1313 |
+
|
1314 |
+
[`InternLM2ForSequenceClassification`] uses the last token in order to do the classification,
|
1315 |
+
as other causal models (e.g. GPT-2) do.
|
1316 |
+
|
1317 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
1318 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
1319 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
1320 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
1321 |
+
each row of the batch).
|
1322 |
+
""",
|
1323 |
+
InternLM2_START_DOCSTRING,
|
1324 |
+
)
|
1325 |
+
class InternLM2ForSequenceClassification(InternLM2PreTrainedModel):
|
1326 |
+
def __init__(self, config):
|
1327 |
+
super().__init__(config)
|
1328 |
+
self.num_labels = config.num_labels
|
1329 |
+
self.model = InternLM2Model(config)
|
1330 |
+
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
1331 |
+
|
1332 |
+
# Initialize weights and apply final processing
|
1333 |
+
self.post_init()
|
1334 |
+
|
1335 |
+
def get_input_embeddings(self):
|
1336 |
+
return self.model.tok_embeddings
|
1337 |
+
|
1338 |
+
def set_input_embeddings(self, value):
|
1339 |
+
self.model.tok_embeddings = value
|
1340 |
+
|
1341 |
+
@add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
|
1342 |
+
def forward(
|
1343 |
+
self,
|
1344 |
+
input_ids: torch.LongTensor = None,
|
1345 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1346 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1347 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1348 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1349 |
+
labels: Optional[torch.LongTensor] = None,
|
1350 |
+
use_cache: Optional[bool] = None,
|
1351 |
+
output_attentions: Optional[bool] = None,
|
1352 |
+
output_hidden_states: Optional[bool] = None,
|
1353 |
+
return_dict: Optional[bool] = None,
|
1354 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
1355 |
+
r"""
|
1356 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1357 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1358 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1359 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1360 |
+
"""
|
1361 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1362 |
+
|
1363 |
+
transformer_outputs = self.model(
|
1364 |
+
input_ids,
|
1365 |
+
attention_mask=attention_mask,
|
1366 |
+
position_ids=position_ids,
|
1367 |
+
past_key_values=past_key_values,
|
1368 |
+
inputs_embeds=inputs_embeds,
|
1369 |
+
use_cache=use_cache,
|
1370 |
+
output_attentions=output_attentions,
|
1371 |
+
output_hidden_states=output_hidden_states,
|
1372 |
+
return_dict=return_dict,
|
1373 |
+
)
|
1374 |
+
hidden_states = transformer_outputs[0]
|
1375 |
+
logits = self.score(hidden_states)
|
1376 |
+
|
1377 |
+
if input_ids is not None:
|
1378 |
+
batch_size = input_ids.shape[0]
|
1379 |
+
else:
|
1380 |
+
batch_size = inputs_embeds.shape[0]
|
1381 |
+
|
1382 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
1383 |
+
raise ValueError('Cannot handle batch sizes > 1 if no padding token is defined.')
|
1384 |
+
if self.config.pad_token_id is None:
|
1385 |
+
sequence_lengths = -1
|
1386 |
+
else:
|
1387 |
+
if input_ids is not None:
|
1388 |
+
sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1).to(
|
1389 |
+
logits.device
|
1390 |
+
)
|
1391 |
+
else:
|
1392 |
+
sequence_lengths = -1
|
1393 |
+
|
1394 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
1395 |
+
|
1396 |
+
loss = None
|
1397 |
+
if labels is not None:
|
1398 |
+
labels = labels.to(logits.device)
|
1399 |
+
if self.config.problem_type is None:
|
1400 |
+
if self.num_labels == 1:
|
1401 |
+
self.config.problem_type = 'regression'
|
1402 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1403 |
+
self.config.problem_type = 'single_label_classification'
|
1404 |
+
else:
|
1405 |
+
self.config.problem_type = 'multi_label_classification'
|
1406 |
+
|
1407 |
+
if self.config.problem_type == 'regression':
|
1408 |
+
loss_fct = MSELoss()
|
1409 |
+
if self.num_labels == 1:
|
1410 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
1411 |
+
else:
|
1412 |
+
loss = loss_fct(pooled_logits, labels)
|
1413 |
+
elif self.config.problem_type == 'single_label_classification':
|
1414 |
+
loss_fct = CrossEntropyLoss()
|
1415 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
1416 |
+
elif self.config.problem_type == 'multi_label_classification':
|
1417 |
+
loss_fct = BCEWithLogitsLoss()
|
1418 |
+
loss = loss_fct(pooled_logits, labels)
|
1419 |
+
if not return_dict:
|
1420 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
1421 |
+
return ((loss,) + output) if loss is not None else output
|
1422 |
+
|
1423 |
+
return SequenceClassifierOutputWithPast(
|
1424 |
+
loss=loss,
|
1425 |
+
logits=pooled_logits,
|
1426 |
+
past_key_values=transformer_outputs.past_key_values,
|
1427 |
+
hidden_states=transformer_outputs.hidden_states,
|
1428 |
+
attentions=transformer_outputs.attentions,
|
1429 |
+
)
|
src/third_party/InternVL/internvl_chat/internvl/model/internlm2/tokenization_internlm2.py
ADDED
@@ -0,0 +1,235 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
|
2 |
+
#
|
3 |
+
# This code is based on transformers/src/transformers/models/llama/tokenization_llama.py
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
|
17 |
+
"""Tokenization classes for InternLM."""
|
18 |
+
import os
|
19 |
+
from shutil import copyfile
|
20 |
+
from typing import Any, Dict, List, Optional, Tuple
|
21 |
+
|
22 |
+
import sentencepiece as spm
|
23 |
+
from transformers.tokenization_utils import PreTrainedTokenizer
|
24 |
+
from transformers.utils import logging
|
25 |
+
|
26 |
+
logger = logging.get_logger(__name__)
|
27 |
+
|
28 |
+
VOCAB_FILES_NAMES = {'vocab_file': './tokenizer.model'}
|
29 |
+
|
30 |
+
PRETRAINED_VOCAB_FILES_MAP = {}
|
31 |
+
|
32 |
+
|
33 |
+
# Modified from transformers.model.llama.tokenization_llama.LlamaTokenizer
|
34 |
+
class InternLM2Tokenizer(PreTrainedTokenizer):
|
35 |
+
"""
|
36 |
+
Construct a InternLM2 tokenizer. Based on byte-level Byte-Pair-Encoding.
|
37 |
+
|
38 |
+
Args:
|
39 |
+
vocab_file (`str`):
|
40 |
+
Path to the vocabulary file.
|
41 |
+
"""
|
42 |
+
|
43 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
44 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
45 |
+
model_input_names = ['input_ids', 'attention_mask']
|
46 |
+
_auto_class = 'AutoTokenizer'
|
47 |
+
|
48 |
+
def __init__(
|
49 |
+
self,
|
50 |
+
vocab_file,
|
51 |
+
unk_token='<unk>',
|
52 |
+
bos_token='<s>',
|
53 |
+
eos_token='</s>',
|
54 |
+
pad_token='</s>',
|
55 |
+
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
56 |
+
add_bos_token=True,
|
57 |
+
add_eos_token=False,
|
58 |
+
decode_with_prefix_space=False,
|
59 |
+
clean_up_tokenization_spaces=False,
|
60 |
+
**kwargs,
|
61 |
+
):
|
62 |
+
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
63 |
+
self.vocab_file = vocab_file
|
64 |
+
self.add_bos_token = add_bos_token
|
65 |
+
self.add_eos_token = add_eos_token
|
66 |
+
self.decode_with_prefix_space = decode_with_prefix_space
|
67 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
68 |
+
self.sp_model.Load(vocab_file)
|
69 |
+
self._no_prefix_space_tokens = None
|
70 |
+
super().__init__(
|
71 |
+
bos_token=bos_token,
|
72 |
+
eos_token=eos_token,
|
73 |
+
unk_token=unk_token,
|
74 |
+
pad_token=pad_token,
|
75 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
76 |
+
**kwargs,
|
77 |
+
)
|
78 |
+
|
79 |
+
@property
|
80 |
+
def no_prefix_space_tokens(self):
|
81 |
+
if self._no_prefix_space_tokens is None:
|
82 |
+
vocab = self.convert_ids_to_tokens(list(range(self.vocab_size)))
|
83 |
+
self._no_prefix_space_tokens = {i for i, tok in enumerate(vocab) if not tok.startswith('▁')}
|
84 |
+
return self._no_prefix_space_tokens
|
85 |
+
|
86 |
+
@property
|
87 |
+
def vocab_size(self):
|
88 |
+
"""Returns vocab size"""
|
89 |
+
return self.sp_model.get_piece_size()
|
90 |
+
|
91 |
+
@property
|
92 |
+
def bos_token_id(self) -> Optional[int]:
|
93 |
+
return self.sp_model.bos_id()
|
94 |
+
|
95 |
+
@property
|
96 |
+
def eos_token_id(self) -> Optional[int]:
|
97 |
+
return self.sp_model.eos_id()
|
98 |
+
|
99 |
+
def get_vocab(self):
|
100 |
+
"""Returns vocab as a dict"""
|
101 |
+
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
102 |
+
vocab.update(self.added_tokens_encoder)
|
103 |
+
return vocab
|
104 |
+
|
105 |
+
def _tokenize(self, text):
|
106 |
+
"""Returns a tokenized string."""
|
107 |
+
return self.sp_model.encode(text, out_type=str)
|
108 |
+
|
109 |
+
def _convert_token_to_id(self, token):
|
110 |
+
"""Converts a token (str) in an id using the vocab."""
|
111 |
+
return self.sp_model.piece_to_id(token)
|
112 |
+
|
113 |
+
def _convert_id_to_token(self, index):
|
114 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
115 |
+
token = self.sp_model.IdToPiece(index)
|
116 |
+
return token
|
117 |
+
|
118 |
+
def _maybe_add_prefix_space(self, tokens, decoded):
|
119 |
+
if tokens and tokens[0] not in self.no_prefix_space_tokens:
|
120 |
+
return ' ' + decoded
|
121 |
+
else:
|
122 |
+
return decoded
|
123 |
+
|
124 |
+
def convert_tokens_to_string(self, tokens):
|
125 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
126 |
+
current_sub_tokens = []
|
127 |
+
out_string = ''
|
128 |
+
prev_is_special = False
|
129 |
+
for token in tokens:
|
130 |
+
# make sure that special tokens are not decoded using sentencepiece model
|
131 |
+
if token in self.all_special_tokens:
|
132 |
+
if not prev_is_special:
|
133 |
+
out_string += ' '
|
134 |
+
out_string += self.sp_model.decode(current_sub_tokens) + token
|
135 |
+
prev_is_special = True
|
136 |
+
current_sub_tokens = []
|
137 |
+
else:
|
138 |
+
current_sub_tokens.append(token)
|
139 |
+
prev_is_special = False
|
140 |
+
out_string += self.sp_model.decode(current_sub_tokens)
|
141 |
+
out_string = self.clean_up_tokenization(out_string)
|
142 |
+
out_string = self._maybe_add_prefix_space(tokens=tokens, decoded=out_string)
|
143 |
+
return out_string[1:]
|
144 |
+
|
145 |
+
def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
146 |
+
"""
|
147 |
+
Save the vocabulary and special tokens file to a directory.
|
148 |
+
|
149 |
+
Args:
|
150 |
+
save_directory (`str`):
|
151 |
+
The directory in which to save the vocabulary.
|
152 |
+
|
153 |
+
Returns:
|
154 |
+
`Tuple(str)`: Paths to the files saved.
|
155 |
+
"""
|
156 |
+
if not os.path.isdir(save_directory):
|
157 |
+
logger.error(f'Vocabulary path ({save_directory}) should be a directory')
|
158 |
+
return
|
159 |
+
out_vocab_file = os.path.join(
|
160 |
+
save_directory, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']
|
161 |
+
)
|
162 |
+
|
163 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
164 |
+
copyfile(self.vocab_file, out_vocab_file)
|
165 |
+
elif not os.path.isfile(self.vocab_file):
|
166 |
+
with open(out_vocab_file, 'wb') as fi:
|
167 |
+
content_spiece_model = self.sp_model.serialized_model_proto()
|
168 |
+
fi.write(content_spiece_model)
|
169 |
+
|
170 |
+
return (out_vocab_file,)
|
171 |
+
|
172 |
+
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
173 |
+
if self.add_bos_token:
|
174 |
+
bos_token_ids = [self.bos_token_id]
|
175 |
+
else:
|
176 |
+
bos_token_ids = []
|
177 |
+
|
178 |
+
output = bos_token_ids + token_ids_0
|
179 |
+
|
180 |
+
if token_ids_1 is not None:
|
181 |
+
output = output + token_ids_1
|
182 |
+
|
183 |
+
if self.add_eos_token:
|
184 |
+
output = output + [self.eos_token_id]
|
185 |
+
|
186 |
+
return output
|
187 |
+
|
188 |
+
def get_special_tokens_mask(
|
189 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
190 |
+
) -> List[int]:
|
191 |
+
"""
|
192 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
193 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
194 |
+
|
195 |
+
Args:
|
196 |
+
token_ids_0 (`List[int]`):
|
197 |
+
List of IDs.
|
198 |
+
token_ids_1 (`List[int]`, *optional*):
|
199 |
+
Optional second list of IDs for sequence pairs.
|
200 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
201 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
202 |
+
|
203 |
+
Returns:
|
204 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
205 |
+
"""
|
206 |
+
if already_has_special_tokens:
|
207 |
+
return super().get_special_tokens_mask(
|
208 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
209 |
+
)
|
210 |
+
|
211 |
+
if token_ids_1 is None:
|
212 |
+
return [1] + ([0] * len(token_ids_0)) + [1]
|
213 |
+
return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
|
214 |
+
|
215 |
+
def create_token_type_ids_from_sequences(
|
216 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
217 |
+
) -> List[int]:
|
218 |
+
"""
|
219 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task. T5 does not make
|
220 |
+
use of token type ids, therefore a list of zeros is returned.
|
221 |
+
|
222 |
+
Args:
|
223 |
+
token_ids_0 (`List[int]`):
|
224 |
+
List of IDs.
|
225 |
+
token_ids_1 (`List[int]`, *optional*):
|
226 |
+
Optional second list of IDs for sequence pairs.
|
227 |
+
|
228 |
+
Returns:
|
229 |
+
`List[int]`: List of zeros.
|
230 |
+
"""
|
231 |
+
eos = [self.eos_token_id]
|
232 |
+
|
233 |
+
if token_ids_1 is None:
|
234 |
+
return len(token_ids_0 + eos) * [0]
|
235 |
+
return len(token_ids_0 + eos + token_ids_1 + eos) * [0]
|
src/third_party/InternVL/internvl_chat/internvl/model/internlm2/tokenization_internlm2_fast.py
ADDED
@@ -0,0 +1,211 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
|
2 |
+
#
|
3 |
+
# This code is based on transformers/src/transformers/models/llama/tokenization_llama_fast.py
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
|
17 |
+
"""Tokenization Fast class for InternLM."""
|
18 |
+
import os
|
19 |
+
from shutil import copyfile
|
20 |
+
from typing import Any, Dict, Optional, Tuple
|
21 |
+
|
22 |
+
from tokenizers import Tokenizer, decoders, normalizers, processors
|
23 |
+
from tokenizers.models import BPE
|
24 |
+
from transformers.convert_slow_tokenizer import (SLOW_TO_FAST_CONVERTERS,
|
25 |
+
SentencePieceExtractor,
|
26 |
+
SpmConverter)
|
27 |
+
from transformers.tokenization_utils_fast import PreTrainedTokenizerFast
|
28 |
+
from transformers.utils import logging
|
29 |
+
|
30 |
+
from .tokenization_internlm2 import InternLM2Tokenizer
|
31 |
+
|
32 |
+
logger = logging.get_logger(__name__)
|
33 |
+
|
34 |
+
VOCAB_FILES_NAMES = {'vocab_file': './tokenizer.model'}
|
35 |
+
|
36 |
+
|
37 |
+
# Modified from transformers.convert_slow_tokenizer.LlamaConverter
|
38 |
+
class InternLM2Converter(SpmConverter):
|
39 |
+
handle_byte_fallback = True
|
40 |
+
|
41 |
+
def vocab(self, proto):
|
42 |
+
vocab = [
|
43 |
+
('<unk>', 0.0),
|
44 |
+
('<s>', 0.0),
|
45 |
+
('</s>', 0.0),
|
46 |
+
]
|
47 |
+
vocab += [(piece.piece, piece.score) for piece in proto.pieces[3:]]
|
48 |
+
return vocab
|
49 |
+
|
50 |
+
def unk_id(self, proto):
|
51 |
+
unk_id = 0
|
52 |
+
return unk_id
|
53 |
+
|
54 |
+
def decoder(self, replacement, add_prefix_space):
|
55 |
+
return decoders.Sequence(
|
56 |
+
[
|
57 |
+
decoders.Replace('▁', ' '),
|
58 |
+
decoders.ByteFallback(),
|
59 |
+
decoders.Fuse(),
|
60 |
+
decoders.Strip(content=' ', left=1),
|
61 |
+
]
|
62 |
+
)
|
63 |
+
|
64 |
+
def tokenizer(self, proto):
|
65 |
+
model_type = proto.trainer_spec.model_type
|
66 |
+
vocab_scores = self.vocab(proto)
|
67 |
+
# special tokens
|
68 |
+
added_tokens = self.original_tokenizer.added_tokens_decoder
|
69 |
+
for i in range(len(vocab_scores)):
|
70 |
+
piece, score = vocab_scores[i]
|
71 |
+
if i in added_tokens:
|
72 |
+
vocab_scores[i] = (added_tokens[i].content, score)
|
73 |
+
if model_type == 1:
|
74 |
+
raise RuntimeError('InternLM2 is supposed to be a BPE model!')
|
75 |
+
|
76 |
+
elif model_type == 2:
|
77 |
+
_, merges = SentencePieceExtractor(self.original_tokenizer.vocab_file).extract(vocab_scores)
|
78 |
+
bpe_vocab = {word: i for i, (word, _score) in enumerate(vocab_scores)}
|
79 |
+
tokenizer = Tokenizer(
|
80 |
+
BPE(bpe_vocab, merges, unk_token=proto.trainer_spec.unk_piece, fuse_unk=True, byte_fallback=True)
|
81 |
+
)
|
82 |
+
tokenizer.add_special_tokens(
|
83 |
+
[ added_token for index, added_token in added_tokens.items()]
|
84 |
+
)
|
85 |
+
else:
|
86 |
+
raise Exception(
|
87 |
+
"You're trying to run a `Unigram` model but you're file was trained with a different algorithm"
|
88 |
+
)
|
89 |
+
|
90 |
+
return tokenizer
|
91 |
+
|
92 |
+
def normalizer(self, proto):
|
93 |
+
normalizers_list = []
|
94 |
+
if proto.normalizer_spec.add_dummy_prefix:
|
95 |
+
normalizers_list.append(normalizers.Prepend(prepend='▁'))
|
96 |
+
normalizers_list.append(normalizers.Replace(pattern=' ', content='▁'))
|
97 |
+
return normalizers.Sequence(normalizers_list)
|
98 |
+
|
99 |
+
def pre_tokenizer(self, replacement, add_prefix_space):
|
100 |
+
return None
|
101 |
+
|
102 |
+
|
103 |
+
SLOW_TO_FAST_CONVERTERS['InternLM2Tokenizer'] = InternLM2Converter
|
104 |
+
|
105 |
+
|
106 |
+
# Modified from transformers.model.llama.tokenization_llama_fast.LlamaTokenizerFast -> InternLM2TokenizerFast
|
107 |
+
class InternLM2TokenizerFast(PreTrainedTokenizerFast):
|
108 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
109 |
+
slow_tokenizer_class = InternLM2Tokenizer
|
110 |
+
padding_side = 'left'
|
111 |
+
model_input_names = ['input_ids', 'attention_mask']
|
112 |
+
_auto_class = 'AutoTokenizer'
|
113 |
+
|
114 |
+
def __init__(
|
115 |
+
self,
|
116 |
+
vocab_file,
|
117 |
+
unk_token='<unk>',
|
118 |
+
bos_token='<s>',
|
119 |
+
eos_token='</s>',
|
120 |
+
pad_token='</s>',
|
121 |
+
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
122 |
+
add_bos_token=True,
|
123 |
+
add_eos_token=False,
|
124 |
+
decode_with_prefix_space=False,
|
125 |
+
clean_up_tokenization_spaces=False,
|
126 |
+
**kwargs,
|
127 |
+
):
|
128 |
+
super().__init__(
|
129 |
+
vocab_file=vocab_file,
|
130 |
+
unk_token=unk_token,
|
131 |
+
bos_token=bos_token,
|
132 |
+
eos_token=eos_token,
|
133 |
+
pad_token=pad_token,
|
134 |
+
sp_model_kwargs=sp_model_kwargs,
|
135 |
+
add_bos_token=add_bos_token,
|
136 |
+
add_eos_token=add_eos_token,
|
137 |
+
decode_with_prefix_space=decode_with_prefix_space,
|
138 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
139 |
+
**kwargs,
|
140 |
+
)
|
141 |
+
self._add_bos_token = add_bos_token
|
142 |
+
self._add_eos_token = add_eos_token
|
143 |
+
self.update_post_processor()
|
144 |
+
self.vocab_file = vocab_file
|
145 |
+
|
146 |
+
@property
|
147 |
+
def can_save_slow_tokenizer(self) -> bool:
|
148 |
+
return os.path.isfile(self.vocab_file) if self.vocab_file else False
|
149 |
+
|
150 |
+
def update_post_processor(self):
|
151 |
+
"""
|
152 |
+
Updates the underlying post processor with the current `bos_token` and `eos_token`.
|
153 |
+
"""
|
154 |
+
bos = self.bos_token
|
155 |
+
bos_token_id = self.bos_token_id
|
156 |
+
if bos is None and self.add_bos_token:
|
157 |
+
raise ValueError('add_bos_token = True but bos_token = None')
|
158 |
+
|
159 |
+
eos = self.eos_token
|
160 |
+
eos_token_id = self.eos_token_id
|
161 |
+
if eos is None and self.add_eos_token:
|
162 |
+
raise ValueError('add_eos_token = True but eos_token = None')
|
163 |
+
|
164 |
+
single = f"{(bos+':0 ') if self.add_bos_token else ''}$A:0{(' '+eos+':0') if self.add_eos_token else ''}"
|
165 |
+
pair = f"{single}{(' '+bos+':1') if self.add_bos_token else ''} $B:1{(' '+eos+':1') if self.add_eos_token else ''}"
|
166 |
+
|
167 |
+
special_tokens = []
|
168 |
+
if self.add_bos_token:
|
169 |
+
special_tokens.append((bos, bos_token_id))
|
170 |
+
if self.add_eos_token:
|
171 |
+
special_tokens.append((eos, eos_token_id))
|
172 |
+
self._tokenizer.post_processor = processors.TemplateProcessing(
|
173 |
+
single=single, pair=pair, special_tokens=special_tokens
|
174 |
+
)
|
175 |
+
|
176 |
+
@property
|
177 |
+
def add_eos_token(self):
|
178 |
+
return self._add_eos_token
|
179 |
+
|
180 |
+
@property
|
181 |
+
def add_bos_token(self):
|
182 |
+
return self._add_bos_token
|
183 |
+
|
184 |
+
@add_eos_token.setter
|
185 |
+
def add_eos_token(self, value):
|
186 |
+
self._add_eos_token = value
|
187 |
+
self.update_post_processor()
|
188 |
+
|
189 |
+
@add_bos_token.setter
|
190 |
+
def add_bos_token(self, value):
|
191 |
+
self._add_bos_token = value
|
192 |
+
self.update_post_processor()
|
193 |
+
|
194 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
195 |
+
if not self.can_save_slow_tokenizer:
|
196 |
+
raise ValueError(
|
197 |
+
'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '
|
198 |
+
'tokenizer.'
|
199 |
+
)
|
200 |
+
|
201 |
+
if not os.path.isdir(save_directory):
|
202 |
+
logger.error(f'Vocabulary path ({save_directory}) should be a directory')
|
203 |
+
return
|
204 |
+
out_vocab_file = os.path.join(
|
205 |
+
save_directory, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']
|
206 |
+
)
|
207 |
+
|
208 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
|
209 |
+
copyfile(self.vocab_file, out_vocab_file)
|
210 |
+
|
211 |
+
return (out_vocab_file,)
|
src/third_party/InternVL/internvl_chat/internvl/model/internvl_chat/__init__.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# InternVL
|
3 |
+
# Copyright (c) 2024 OpenGVLab
|
4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
5 |
+
# --------------------------------------------------------
|
6 |
+
|
7 |
+
from .configuration_intern_vit import InternVisionConfig
|
8 |
+
from .configuration_internvl_chat import InternVLChatConfig
|
9 |
+
from .modeling_intern_vit import InternVisionModel
|
10 |
+
from .modeling_internvl_chat import InternVLChatModel
|
11 |
+
|
12 |
+
__all__ = ['InternVisionConfig', 'InternVisionModel',
|
13 |
+
'InternVLChatConfig', 'InternVLChatModel']
|
src/third_party/InternVL/internvl_chat/internvl/model/internvl_chat/configuration_intern_vit.py
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# InternVL
|
3 |
+
# Copyright (c) 2024 OpenGVLab
|
4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
5 |
+
# --------------------------------------------------------
|
6 |
+
|
7 |
+
import os
|
8 |
+
from typing import Union
|
9 |
+
|
10 |
+
from transformers.configuration_utils import PretrainedConfig
|
11 |
+
from transformers.utils import logging
|
12 |
+
|
13 |
+
logger = logging.get_logger(__name__)
|
14 |
+
|
15 |
+
|
16 |
+
class InternVisionConfig(PretrainedConfig):
|
17 |
+
r"""
|
18 |
+
This is the configuration class to store the configuration of a [`InternVisionModel`]. It is used to
|
19 |
+
instantiate a vision encoder according to the specified arguments, defining the model architecture.
|
20 |
+
|
21 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
22 |
+
documentation from [`PretrainedConfig`] for more information.
|
23 |
+
|
24 |
+
Args:
|
25 |
+
num_channels (`int`, *optional*, defaults to 3):
|
26 |
+
Number of color channels in the input images (e.g., 3 for RGB).
|
27 |
+
patch_size (`int`, *optional*, defaults to 14):
|
28 |
+
The size (resolution) of each patch.
|
29 |
+
image_size (`int`, *optional*, defaults to 224):
|
30 |
+
The size (resolution) of each image.
|
31 |
+
qkv_bias (`bool`, *optional*, defaults to `False`):
|
32 |
+
Whether to add a bias to the queries and values in the self-attention layers.
|
33 |
+
hidden_size (`int`, *optional*, defaults to 3200):
|
34 |
+
Dimensionality of the encoder layers and the pooler layer.
|
35 |
+
num_attention_heads (`int`, *optional*, defaults to 25):
|
36 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
37 |
+
intermediate_size (`int`, *optional*, defaults to 12800):
|
38 |
+
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
39 |
+
qk_normalization (`bool`, *optional*, defaults to `True`):
|
40 |
+
Whether to normalize the queries and keys in the self-attention layers.
|
41 |
+
num_hidden_layers (`int`, *optional*, defaults to 48):
|
42 |
+
Number of hidden layers in the Transformer encoder.
|
43 |
+
use_flash_attn (`bool`, *optional*, defaults to `True`):
|
44 |
+
Whether to use flash attention mechanism.
|
45 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
|
46 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
47 |
+
`"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported.
|
48 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-6):
|
49 |
+
The epsilon used by the layer normalization layers.
|
50 |
+
dropout (`float`, *optional*, defaults to 0.0):
|
51 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
52 |
+
drop_path_rate (`float`, *optional*, defaults to 0.0):
|
53 |
+
Dropout rate for stochastic depth.
|
54 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
55 |
+
The dropout ratio for the attention probabilities.
|
56 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
57 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
58 |
+
initializer_factor (`float`, *optional*, defaults to 0.1):
|
59 |
+
A factor for layer scale.
|
60 |
+
"""
|
61 |
+
|
62 |
+
model_type = 'intern_vit_6b'
|
63 |
+
|
64 |
+
def __init__(
|
65 |
+
self,
|
66 |
+
num_channels=3,
|
67 |
+
patch_size=14,
|
68 |
+
image_size=224,
|
69 |
+
qkv_bias=False,
|
70 |
+
hidden_size=3200,
|
71 |
+
num_attention_heads=25,
|
72 |
+
intermediate_size=12800,
|
73 |
+
qk_normalization=True,
|
74 |
+
num_hidden_layers=48,
|
75 |
+
use_flash_attn=True,
|
76 |
+
hidden_act='gelu',
|
77 |
+
norm_type='rms_norm',
|
78 |
+
layer_norm_eps=1e-6,
|
79 |
+
dropout=0.0,
|
80 |
+
drop_path_rate=0.0,
|
81 |
+
attention_dropout=0.0,
|
82 |
+
initializer_range=0.02,
|
83 |
+
initializer_factor=0.1,
|
84 |
+
**kwargs,
|
85 |
+
):
|
86 |
+
super().__init__(**kwargs)
|
87 |
+
|
88 |
+
self.hidden_size = hidden_size
|
89 |
+
self.intermediate_size = intermediate_size
|
90 |
+
self.dropout = dropout
|
91 |
+
self.drop_path_rate = drop_path_rate
|
92 |
+
self.num_hidden_layers = num_hidden_layers
|
93 |
+
self.num_attention_heads = num_attention_heads
|
94 |
+
self.num_channels = num_channels
|
95 |
+
self.patch_size = patch_size
|
96 |
+
self.image_size = image_size
|
97 |
+
self.initializer_range = initializer_range
|
98 |
+
self.initializer_factor = initializer_factor
|
99 |
+
self.attention_dropout = attention_dropout
|
100 |
+
self.layer_norm_eps = layer_norm_eps
|
101 |
+
self.hidden_act = hidden_act
|
102 |
+
self.norm_type = norm_type
|
103 |
+
self.qkv_bias = qkv_bias
|
104 |
+
self.qk_normalization = qk_normalization
|
105 |
+
self.use_flash_attn = use_flash_attn
|
106 |
+
|
107 |
+
@classmethod
|
108 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> 'PretrainedConfig':
|
109 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
110 |
+
|
111 |
+
if 'vision_config' in config_dict:
|
112 |
+
config_dict = config_dict['vision_config']
|
113 |
+
|
114 |
+
if 'model_type' in config_dict and hasattr(cls, 'model_type') and config_dict['model_type'] != cls.model_type:
|
115 |
+
logger.warning(
|
116 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
117 |
+
f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.'
|
118 |
+
)
|
119 |
+
|
120 |
+
return cls.from_dict(config_dict, **kwargs)
|
src/third_party/InternVL/internvl_chat/internvl/model/internvl_chat/configuration_internvl_chat.py
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# InternVL
|
3 |
+
# Copyright (c) 2024 OpenGVLab
|
4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
5 |
+
# --------------------------------------------------------
|
6 |
+
|
7 |
+
import copy
|
8 |
+
|
9 |
+
from internvl.model.internlm2.configuration_internlm2 import InternLM2Config
|
10 |
+
from internvl.model.phi3.configuration_phi3 import Phi3Config
|
11 |
+
from transformers import AutoConfig, LlamaConfig, Qwen2Config
|
12 |
+
from transformers.configuration_utils import PretrainedConfig
|
13 |
+
from transformers.utils import logging
|
14 |
+
|
15 |
+
from .configuration_intern_vit import InternVisionConfig
|
16 |
+
|
17 |
+
logger = logging.get_logger(__name__)
|
18 |
+
|
19 |
+
|
20 |
+
class InternVLChatConfig(PretrainedConfig):
|
21 |
+
model_type = 'internvl_chat'
|
22 |
+
is_composition = True
|
23 |
+
|
24 |
+
def __init__(
|
25 |
+
self,
|
26 |
+
vision_config=None,
|
27 |
+
llm_config=None,
|
28 |
+
use_backbone_lora=0,
|
29 |
+
use_llm_lora=0,
|
30 |
+
pad2square=False,
|
31 |
+
select_layer=-1,
|
32 |
+
force_image_size=None,
|
33 |
+
downsample_ratio=0.5,
|
34 |
+
template=None,
|
35 |
+
dynamic_image_size=False,
|
36 |
+
use_thumbnail=False,
|
37 |
+
ps_version='v1',
|
38 |
+
min_dynamic_patch=1,
|
39 |
+
max_dynamic_patch=6,
|
40 |
+
**kwargs):
|
41 |
+
super().__init__(**kwargs)
|
42 |
+
|
43 |
+
if vision_config is None:
|
44 |
+
vision_config = {'architectures': ['InternVisionModel']}
|
45 |
+
logger.info('vision_config is None. Initializing the InternVisionConfig with default values.')
|
46 |
+
|
47 |
+
if llm_config is None:
|
48 |
+
# TODO: There might still be a bug in transformers version 4.44 and above.
|
49 |
+
llm_config = {'architectures': ['']}
|
50 |
+
logger.info('llm_config is None. Initializing the LlamaConfig config with default values (`LlamaConfig`).')
|
51 |
+
|
52 |
+
self.vision_config = InternVisionConfig(**vision_config)
|
53 |
+
if llm_config['architectures'][0] == 'LlamaForCausalLM':
|
54 |
+
self.llm_config = LlamaConfig(**llm_config)
|
55 |
+
elif llm_config['architectures'][0] == 'InternLM2ForCausalLM':
|
56 |
+
self.llm_config = InternLM2Config(**llm_config)
|
57 |
+
elif llm_config['architectures'][0] == 'Phi3ForCausalLM':
|
58 |
+
self.llm_config = Phi3Config(**llm_config)
|
59 |
+
elif llm_config['architectures'][0] == 'Qwen2ForCausalLM':
|
60 |
+
self.llm_config = Qwen2Config(**llm_config)
|
61 |
+
else:
|
62 |
+
raise ValueError('Unsupported architecture: {}'.format(llm_config['architectures'][0]))
|
63 |
+
self.use_backbone_lora = use_backbone_lora
|
64 |
+
self.use_llm_lora = use_llm_lora
|
65 |
+
self.pad2square = pad2square
|
66 |
+
self.select_layer = select_layer
|
67 |
+
self.force_image_size = force_image_size
|
68 |
+
self.downsample_ratio = downsample_ratio
|
69 |
+
self.template = template
|
70 |
+
self.dynamic_image_size = dynamic_image_size
|
71 |
+
self.use_thumbnail = use_thumbnail
|
72 |
+
self.ps_version = ps_version # pixel shuffle version
|
73 |
+
self.min_dynamic_patch = min_dynamic_patch
|
74 |
+
self.max_dynamic_patch = max_dynamic_patch
|
75 |
+
|
76 |
+
self.hidden_size = self.llm_config.hidden_size
|
77 |
+
# By default, we use tie_word_embeddings=False for models of all sizes.
|
78 |
+
self.tie_word_embeddings = False
|
79 |
+
self.llm_config.tie_word_embeddings = self.tie_word_embeddings
|
80 |
+
|
81 |
+
logger.info(f'vision_select_layer: {self.select_layer}')
|
82 |
+
logger.info(f'ps_version: {self.ps_version}')
|
83 |
+
logger.info(f'min_dynamic_patch: {self.min_dynamic_patch}')
|
84 |
+
logger.info(f'max_dynamic_patch: {self.max_dynamic_patch}')
|
85 |
+
|
86 |
+
def to_dict(self):
|
87 |
+
"""
|
88 |
+
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
|
89 |
+
|
90 |
+
Returns:
|
91 |
+
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
|
92 |
+
"""
|
93 |
+
output = copy.deepcopy(self.__dict__)
|
94 |
+
output['vision_config'] = self.vision_config.to_dict()
|
95 |
+
output['llm_config'] = self.llm_config.to_dict()
|
96 |
+
output['model_type'] = self.__class__.model_type
|
97 |
+
output['use_backbone_lora'] = self.use_backbone_lora
|
98 |
+
output['use_llm_lora'] = self.use_llm_lora
|
99 |
+
output['select_layer'] = self.select_layer
|
100 |
+
output['force_image_size'] = self.force_image_size
|
101 |
+
output['downsample_ratio'] = self.downsample_ratio
|
102 |
+
output['template'] = self.template
|
103 |
+
output['dynamic_image_size'] = self.dynamic_image_size
|
104 |
+
output['use_thumbnail'] = self.use_thumbnail
|
105 |
+
output['ps_version'] = self.ps_version
|
106 |
+
output['min_dynamic_patch'] = self.min_dynamic_patch
|
107 |
+
output['max_dynamic_patch'] = self.max_dynamic_patch
|
108 |
+
|
109 |
+
return output
|
src/third_party/InternVL/internvl_chat/internvl/model/internvl_chat/modeling_intern_vit.py
ADDED
@@ -0,0 +1,450 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# InternVL
|
3 |
+
# Copyright (c) 2024 OpenGVLab
|
4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
5 |
+
# --------------------------------------------------------
|
6 |
+
|
7 |
+
from typing import Optional, Tuple, Union
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn.functional as F
|
11 |
+
import torch.utils.checkpoint
|
12 |
+
from einops import rearrange
|
13 |
+
from timm.models.layers import DropPath
|
14 |
+
from torch import nn
|
15 |
+
from transformers.activations import ACT2FN
|
16 |
+
from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling
|
17 |
+
from transformers.modeling_utils import PreTrainedModel
|
18 |
+
from transformers.utils import logging
|
19 |
+
|
20 |
+
from .configuration_intern_vit import InternVisionConfig
|
21 |
+
|
22 |
+
|
23 |
+
try:
|
24 |
+
from flash_attn.bert_padding import pad_input, unpad_input
|
25 |
+
from flash_attn.flash_attn_interface import flash_attn_varlen_qkvpacked_func
|
26 |
+
|
27 |
+
has_flash_attn = True
|
28 |
+
except:
|
29 |
+
print("FlashAttention2 is not installed.")
|
30 |
+
has_flash_attn = False
|
31 |
+
|
32 |
+
logger = logging.get_logger(__name__)
|
33 |
+
|
34 |
+
|
35 |
+
class FlashAttention(nn.Module):
|
36 |
+
"""Implement the scaled dot product attention with softmax.
|
37 |
+
Arguments
|
38 |
+
---------
|
39 |
+
softmax_scale: The temperature to use for the softmax attention.
|
40 |
+
(default: 1/sqrt(d_keys) where d_keys is computed at
|
41 |
+
runtime)
|
42 |
+
attention_dropout: The dropout rate to apply to the attention
|
43 |
+
(default: 0.0)
|
44 |
+
"""
|
45 |
+
|
46 |
+
def __init__(self, softmax_scale=None, attention_dropout=0.0, device=None, dtype=None):
|
47 |
+
super().__init__()
|
48 |
+
self.softmax_scale = softmax_scale
|
49 |
+
self.dropout_p = attention_dropout
|
50 |
+
|
51 |
+
def forward(self, qkv, key_padding_mask=None, causal=False, cu_seqlens=None, max_s=None, need_weights=False):
|
52 |
+
"""Implements the multihead softmax attention.
|
53 |
+
Arguments
|
54 |
+
---------
|
55 |
+
qkv: The tensor containing the query, key, and value. (B, S, 3, H, D) if key_padding_mask is None
|
56 |
+
if unpadded: (nnz, 3, h, d)
|
57 |
+
key_padding_mask: a bool tensor of shape (B, S)
|
58 |
+
"""
|
59 |
+
assert not need_weights
|
60 |
+
assert qkv.dtype in [torch.float16, torch.bfloat16]
|
61 |
+
assert qkv.is_cuda
|
62 |
+
|
63 |
+
if cu_seqlens is None:
|
64 |
+
batch_size = qkv.shape[0]
|
65 |
+
seqlen = qkv.shape[1]
|
66 |
+
if key_padding_mask is None:
|
67 |
+
qkv = rearrange(qkv, "b s ... -> (b s) ...")
|
68 |
+
max_s = seqlen
|
69 |
+
cu_seqlens = torch.arange(
|
70 |
+
0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32, device=qkv.device
|
71 |
+
)
|
72 |
+
output = flash_attn_varlen_qkvpacked_func(
|
73 |
+
qkv,
|
74 |
+
cu_seqlens,
|
75 |
+
max_s,
|
76 |
+
self.dropout_p if self.training else 0.0,
|
77 |
+
softmax_scale=self.softmax_scale,
|
78 |
+
causal=causal,
|
79 |
+
)
|
80 |
+
output = rearrange(output, "(b s) ... -> b s ...", b=batch_size)
|
81 |
+
else:
|
82 |
+
nheads = qkv.shape[-2]
|
83 |
+
x = rearrange(qkv, "b s three h d -> b s (three h d)")
|
84 |
+
x_unpad, indices, cu_seqlens, max_s = unpad_input(x, key_padding_mask)
|
85 |
+
x_unpad = rearrange(x_unpad, "nnz (three h d) -> nnz three h d", three=3, h=nheads)
|
86 |
+
output_unpad = flash_attn_varlen_qkvpacked_func(
|
87 |
+
x_unpad,
|
88 |
+
cu_seqlens,
|
89 |
+
max_s,
|
90 |
+
self.dropout_p if self.training else 0.0,
|
91 |
+
softmax_scale=self.softmax_scale,
|
92 |
+
causal=causal,
|
93 |
+
)
|
94 |
+
output = rearrange(
|
95 |
+
pad_input(rearrange(output_unpad, "nnz h d -> nnz (h d)"), indices, batch_size, seqlen),
|
96 |
+
"b s (h d) -> b s h d",
|
97 |
+
h=nheads,
|
98 |
+
)
|
99 |
+
else:
|
100 |
+
assert max_s is not None
|
101 |
+
output = flash_attn_varlen_qkvpacked_func(
|
102 |
+
qkv,
|
103 |
+
cu_seqlens,
|
104 |
+
max_s,
|
105 |
+
self.dropout_p if self.training else 0.0,
|
106 |
+
softmax_scale=self.softmax_scale,
|
107 |
+
causal=causal,
|
108 |
+
)
|
109 |
+
|
110 |
+
return output, None
|
111 |
+
|
112 |
+
|
113 |
+
class InternRMSNorm(nn.Module):
|
114 |
+
def __init__(self, hidden_size, eps=1e-6):
|
115 |
+
super().__init__()
|
116 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
117 |
+
self.variance_epsilon = eps
|
118 |
+
|
119 |
+
def forward(self, hidden_states):
|
120 |
+
input_dtype = hidden_states.dtype
|
121 |
+
hidden_states = hidden_states.to(torch.float32)
|
122 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
123 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
124 |
+
return self.weight * hidden_states.to(input_dtype)
|
125 |
+
|
126 |
+
|
127 |
+
try:
|
128 |
+
from apex.normalization import FusedRMSNorm
|
129 |
+
|
130 |
+
InternRMSNorm = FusedRMSNorm # noqa
|
131 |
+
|
132 |
+
logger.info("Discovered apex.normalization.FusedRMSNorm - will use it instead of InternRMSNorm")
|
133 |
+
except ImportError:
|
134 |
+
# using the normal InternRMSNorm
|
135 |
+
pass
|
136 |
+
except Exception:
|
137 |
+
logger.warning("discovered apex but it failed to load, falling back to InternRMSNorm")
|
138 |
+
pass
|
139 |
+
|
140 |
+
|
141 |
+
NORM2FN = {
|
142 |
+
"rms_norm": InternRMSNorm,
|
143 |
+
"layer_norm": nn.LayerNorm,
|
144 |
+
}
|
145 |
+
|
146 |
+
|
147 |
+
class InternVisionEmbeddings(nn.Module):
|
148 |
+
def __init__(self, config: InternVisionConfig):
|
149 |
+
super().__init__()
|
150 |
+
self.config = config
|
151 |
+
self.embed_dim = config.hidden_size
|
152 |
+
self.image_size = config.image_size
|
153 |
+
self.patch_size = config.patch_size
|
154 |
+
|
155 |
+
self.class_embedding = nn.Parameter(
|
156 |
+
torch.randn(1, 1, self.embed_dim),
|
157 |
+
)
|
158 |
+
|
159 |
+
self.patch_embedding = nn.Conv2d(
|
160 |
+
in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size
|
161 |
+
)
|
162 |
+
|
163 |
+
self.num_patches = (self.image_size // self.patch_size) ** 2
|
164 |
+
self.num_positions = self.num_patches + 1
|
165 |
+
|
166 |
+
self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim))
|
167 |
+
|
168 |
+
def _get_pos_embed(self, pos_embed, H, W):
|
169 |
+
target_dtype = pos_embed.dtype
|
170 |
+
pos_embed = (
|
171 |
+
pos_embed.float()
|
172 |
+
.reshape(1, self.image_size // self.patch_size, self.image_size // self.patch_size, -1)
|
173 |
+
.permute(0, 3, 1, 2)
|
174 |
+
)
|
175 |
+
pos_embed = (
|
176 |
+
F.interpolate(pos_embed, size=(H, W), mode="bicubic", align_corners=False)
|
177 |
+
.reshape(1, -1, H * W)
|
178 |
+
.permute(0, 2, 1)
|
179 |
+
.to(target_dtype)
|
180 |
+
)
|
181 |
+
return pos_embed
|
182 |
+
|
183 |
+
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
|
184 |
+
target_dtype = self.patch_embedding.weight.dtype
|
185 |
+
patch_embeds = self.patch_embedding(pixel_values) # shape = [*, channel, width, height]
|
186 |
+
batch_size, _, height, width = patch_embeds.shape
|
187 |
+
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
|
188 |
+
class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype)
|
189 |
+
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
|
190 |
+
position_embedding = torch.cat(
|
191 |
+
[self.position_embedding[:, :1, :], self._get_pos_embed(self.position_embedding[:, 1:, :], height, width)],
|
192 |
+
dim=1,
|
193 |
+
)
|
194 |
+
embeddings = embeddings + position_embedding.to(target_dtype)
|
195 |
+
return embeddings
|
196 |
+
|
197 |
+
|
198 |
+
class InternAttention(nn.Module):
|
199 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
200 |
+
|
201 |
+
def __init__(self, config: InternVisionConfig):
|
202 |
+
super().__init__()
|
203 |
+
self.config = config
|
204 |
+
self.embed_dim = config.hidden_size
|
205 |
+
self.num_heads = config.num_attention_heads
|
206 |
+
self.use_flash_attn = config.use_flash_attn and has_flash_attn
|
207 |
+
if config.use_flash_attn and not has_flash_attn:
|
208 |
+
print("Warning: Flash Attention is not available, use_flash_attn is set to False.")
|
209 |
+
self.head_dim = self.embed_dim // self.num_heads
|
210 |
+
if self.head_dim * self.num_heads != self.embed_dim:
|
211 |
+
raise ValueError(
|
212 |
+
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
|
213 |
+
f" {self.num_heads})."
|
214 |
+
)
|
215 |
+
|
216 |
+
self.scale = self.head_dim**-0.5
|
217 |
+
self.qkv = nn.Linear(self.embed_dim, 3 * self.embed_dim, bias=config.qkv_bias)
|
218 |
+
self.attn_drop = nn.Dropout(config.attention_dropout)
|
219 |
+
self.proj_drop = nn.Dropout(config.dropout)
|
220 |
+
|
221 |
+
self.qk_normalization = config.qk_normalization
|
222 |
+
|
223 |
+
if self.qk_normalization:
|
224 |
+
self.q_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
|
225 |
+
self.k_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
|
226 |
+
|
227 |
+
if self.use_flash_attn:
|
228 |
+
self.inner_attn = FlashAttention(attention_dropout=config.attention_dropout)
|
229 |
+
self.proj = nn.Linear(self.embed_dim, self.embed_dim)
|
230 |
+
|
231 |
+
def _naive_attn(self, x):
|
232 |
+
B, N, C = x.shape
|
233 |
+
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
234 |
+
q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
|
235 |
+
|
236 |
+
if self.qk_normalization:
|
237 |
+
B_, H_, N_, D_ = q.shape
|
238 |
+
q = self.q_norm(q.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
|
239 |
+
k = self.k_norm(k.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
|
240 |
+
|
241 |
+
attn = (q * self.scale) @ k.transpose(-2, -1)
|
242 |
+
attn = attn.softmax(dim=-1)
|
243 |
+
attn = self.attn_drop(attn)
|
244 |
+
|
245 |
+
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
246 |
+
x = self.proj(x)
|
247 |
+
x = self.proj_drop(x)
|
248 |
+
return x
|
249 |
+
|
250 |
+
def _flash_attn(self, x, key_padding_mask=None, need_weights=False):
|
251 |
+
qkv = self.qkv(x)
|
252 |
+
qkv = rearrange(qkv, "b s (three h d) -> b s three h d", three=3, h=self.num_heads)
|
253 |
+
|
254 |
+
if self.qk_normalization:
|
255 |
+
q, k, v = qkv.unbind(2)
|
256 |
+
q = self.q_norm(q.flatten(-2, -1)).view(q.shape)
|
257 |
+
k = self.k_norm(k.flatten(-2, -1)).view(k.shape)
|
258 |
+
qkv = torch.stack([q, k, v], dim=2)
|
259 |
+
|
260 |
+
context, _ = self.inner_attn(qkv, key_padding_mask=key_padding_mask, need_weights=need_weights, causal=False)
|
261 |
+
outs = self.proj(rearrange(context, "b s h d -> b s (h d)"))
|
262 |
+
outs = self.proj_drop(outs)
|
263 |
+
return outs
|
264 |
+
|
265 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
266 |
+
x = self._naive_attn(hidden_states) if not self.use_flash_attn else self._flash_attn(hidden_states)
|
267 |
+
return x
|
268 |
+
|
269 |
+
|
270 |
+
class InternMLP(nn.Module):
|
271 |
+
def __init__(self, config: InternVisionConfig):
|
272 |
+
super().__init__()
|
273 |
+
self.config = config
|
274 |
+
self.act = ACT2FN[config.hidden_act]
|
275 |
+
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
276 |
+
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
277 |
+
|
278 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
279 |
+
hidden_states = self.fc1(hidden_states)
|
280 |
+
hidden_states = self.act(hidden_states)
|
281 |
+
hidden_states = self.fc2(hidden_states)
|
282 |
+
return hidden_states
|
283 |
+
|
284 |
+
|
285 |
+
class InternVisionEncoderLayer(nn.Module):
|
286 |
+
def __init__(self, config: InternVisionConfig, drop_path_rate: float):
|
287 |
+
super().__init__()
|
288 |
+
self.embed_dim = config.hidden_size
|
289 |
+
self.intermediate_size = config.intermediate_size
|
290 |
+
self.norm_type = config.norm_type
|
291 |
+
|
292 |
+
self.attn = InternAttention(config)
|
293 |
+
self.mlp = InternMLP(config)
|
294 |
+
self.norm1 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
|
295 |
+
self.norm2 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
|
296 |
+
|
297 |
+
self.ls1 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
|
298 |
+
self.ls2 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
|
299 |
+
self.drop_path1 = DropPath(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity()
|
300 |
+
self.drop_path2 = DropPath(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity()
|
301 |
+
|
302 |
+
def forward(
|
303 |
+
self,
|
304 |
+
hidden_states: torch.Tensor,
|
305 |
+
) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor], Optional[Tuple[torch.FloatTensor]]]:
|
306 |
+
"""
|
307 |
+
Args:
|
308 |
+
hidden_states (`Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
309 |
+
"""
|
310 |
+
hidden_states = hidden_states + self.drop_path1(
|
311 |
+
self.attn(self.norm1(hidden_states).to(hidden_states.dtype)) * self.ls1
|
312 |
+
)
|
313 |
+
|
314 |
+
hidden_states = hidden_states + self.drop_path2(
|
315 |
+
self.mlp(self.norm2(hidden_states).to(hidden_states.dtype)) * self.ls2
|
316 |
+
)
|
317 |
+
|
318 |
+
return hidden_states
|
319 |
+
|
320 |
+
|
321 |
+
class InternVisionEncoder(nn.Module):
|
322 |
+
"""
|
323 |
+
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
|
324 |
+
[`InternEncoderLayer`].
|
325 |
+
|
326 |
+
Args:
|
327 |
+
config (`InternConfig`):
|
328 |
+
The corresponding vision configuration for the `InternEncoder`.
|
329 |
+
"""
|
330 |
+
|
331 |
+
def __init__(self, config: InternVisionConfig):
|
332 |
+
super().__init__()
|
333 |
+
self.config = config
|
334 |
+
# stochastic depth decay rule
|
335 |
+
dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)]
|
336 |
+
self.layers = nn.ModuleList(
|
337 |
+
[InternVisionEncoderLayer(config, dpr[idx]) for idx in range(config.num_hidden_layers)]
|
338 |
+
)
|
339 |
+
self.gradient_checkpointing = True
|
340 |
+
|
341 |
+
def forward(
|
342 |
+
self,
|
343 |
+
inputs_embeds,
|
344 |
+
output_hidden_states: Optional[bool] = None,
|
345 |
+
return_dict: Optional[bool] = None,
|
346 |
+
) -> Union[Tuple, BaseModelOutput]:
|
347 |
+
r"""
|
348 |
+
Args:
|
349 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
350 |
+
Embedded representation of the inputs. Should be float, not int tokens.
|
351 |
+
output_hidden_states (`bool`, *optional*):
|
352 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
353 |
+
for more detail.
|
354 |
+
return_dict (`bool`, *optional*):
|
355 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
356 |
+
"""
|
357 |
+
output_hidden_states = (
|
358 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
359 |
+
)
|
360 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
361 |
+
|
362 |
+
encoder_states = () if output_hidden_states else None
|
363 |
+
hidden_states = inputs_embeds
|
364 |
+
|
365 |
+
for idx, encoder_layer in enumerate(self.layers):
|
366 |
+
if output_hidden_states:
|
367 |
+
encoder_states = encoder_states + (hidden_states,)
|
368 |
+
if self.gradient_checkpointing and self.training:
|
369 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(encoder_layer, hidden_states)
|
370 |
+
else:
|
371 |
+
layer_outputs = encoder_layer(
|
372 |
+
hidden_states,
|
373 |
+
)
|
374 |
+
hidden_states = layer_outputs
|
375 |
+
|
376 |
+
if output_hidden_states:
|
377 |
+
encoder_states = encoder_states + (hidden_states,)
|
378 |
+
|
379 |
+
if not return_dict:
|
380 |
+
return tuple(v for v in [hidden_states, encoder_states] if v is not None)
|
381 |
+
return BaseModelOutput(last_hidden_state=hidden_states, hidden_states=encoder_states)
|
382 |
+
|
383 |
+
|
384 |
+
class InternVisionModel(PreTrainedModel):
|
385 |
+
main_input_name = "pixel_values"
|
386 |
+
_supports_flash_attn_2 = True
|
387 |
+
config_class = InternVisionConfig
|
388 |
+
_no_split_modules = ["InternVisionEncoderLayer"]
|
389 |
+
|
390 |
+
def __init__(self, config: InternVisionConfig):
|
391 |
+
super().__init__(config)
|
392 |
+
self.config = config
|
393 |
+
|
394 |
+
self.embeddings = InternVisionEmbeddings(config)
|
395 |
+
self.encoder = InternVisionEncoder(config)
|
396 |
+
|
397 |
+
def resize_pos_embeddings(self, old_size, new_size, patch_size):
|
398 |
+
pos_emb = self.embeddings.position_embedding
|
399 |
+
_, num_positions, embed_dim = pos_emb.shape
|
400 |
+
cls_emb = pos_emb[:, :1, :]
|
401 |
+
pos_emb = pos_emb[:, 1:, :].reshape(1, old_size // patch_size, old_size // patch_size, -1).permute(0, 3, 1, 2)
|
402 |
+
pos_emb = F.interpolate(pos_emb.float(), size=new_size // patch_size, mode="bicubic", align_corners=False)
|
403 |
+
pos_emb = pos_emb.to(cls_emb.dtype).reshape(1, embed_dim, -1).permute(0, 2, 1)
|
404 |
+
pos_emb = torch.cat([cls_emb, pos_emb], dim=1)
|
405 |
+
self.embeddings.position_embedding = nn.Parameter(pos_emb)
|
406 |
+
self.embeddings.image_size = new_size
|
407 |
+
logger.info("Resized position embeddings from {} to {}".format(old_size, new_size))
|
408 |
+
|
409 |
+
def get_input_embeddings(self):
|
410 |
+
return self.embeddings
|
411 |
+
|
412 |
+
def forward(
|
413 |
+
self,
|
414 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
415 |
+
output_hidden_states: Optional[bool] = None,
|
416 |
+
return_dict: Optional[bool] = None,
|
417 |
+
pixel_embeds: Optional[torch.FloatTensor] = None,
|
418 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
419 |
+
output_hidden_states = (
|
420 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
421 |
+
)
|
422 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
423 |
+
|
424 |
+
if pixel_values is None and pixel_embeds is None:
|
425 |
+
raise ValueError("You have to specify pixel_values or pixel_embeds")
|
426 |
+
|
427 |
+
if pixel_embeds is not None:
|
428 |
+
hidden_states = pixel_embeds
|
429 |
+
else:
|
430 |
+
if len(pixel_values.shape) == 4:
|
431 |
+
hidden_states = self.embeddings(pixel_values)
|
432 |
+
else:
|
433 |
+
raise ValueError(f"wrong pixel_values size: {pixel_values.shape}")
|
434 |
+
encoder_outputs = self.encoder(
|
435 |
+
inputs_embeds=hidden_states,
|
436 |
+
output_hidden_states=output_hidden_states,
|
437 |
+
return_dict=return_dict,
|
438 |
+
)
|
439 |
+
last_hidden_state = encoder_outputs.last_hidden_state
|
440 |
+
pooled_output = last_hidden_state[:, 0, :]
|
441 |
+
|
442 |
+
if not return_dict:
|
443 |
+
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
444 |
+
|
445 |
+
return BaseModelOutputWithPooling(
|
446 |
+
last_hidden_state=last_hidden_state,
|
447 |
+
pooler_output=pooled_output,
|
448 |
+
hidden_states=encoder_outputs.hidden_states,
|
449 |
+
attentions=encoder_outputs.attentions,
|
450 |
+
)
|
src/third_party/InternVL/internvl_chat/internvl/model/internvl_chat/modeling_internvl_chat.py
ADDED
@@ -0,0 +1,477 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# InternVL
|
3 |
+
# Copyright (c) 2024 OpenGVLab
|
4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
5 |
+
# --------------------------------------------------------
|
6 |
+
|
7 |
+
import warnings
|
8 |
+
from typing import List, Optional, Tuple, Union
|
9 |
+
|
10 |
+
import torch.distributed as dist
|
11 |
+
import torch.utils.checkpoint
|
12 |
+
import transformers
|
13 |
+
from peft import LoraConfig, get_peft_model
|
14 |
+
from torch import nn
|
15 |
+
from torch.nn import CrossEntropyLoss
|
16 |
+
from transformers import GenerationConfig, LlamaForCausalLM, Qwen2ForCausalLM
|
17 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
18 |
+
from transformers.modeling_utils import PreTrainedModel
|
19 |
+
from transformers.utils import logging
|
20 |
+
|
21 |
+
from internvl.conversation import get_conv_template
|
22 |
+
from internvl.model.internlm2.modeling_internlm2 import InternLM2ForCausalLM
|
23 |
+
from internvl.model.phi3.modeling_phi3 import Phi3ForCausalLM
|
24 |
+
|
25 |
+
from .configuration_internvl_chat import InternVLChatConfig
|
26 |
+
from .modeling_intern_vit import InternVisionModel, has_flash_attn
|
27 |
+
|
28 |
+
|
29 |
+
logger = logging.get_logger(__name__)
|
30 |
+
|
31 |
+
|
32 |
+
def version_cmp(v1, v2, op="eq"):
|
33 |
+
import operator
|
34 |
+
|
35 |
+
from packaging import version
|
36 |
+
|
37 |
+
op_func = getattr(operator, op)
|
38 |
+
return op_func(version.parse(v1), version.parse(v2))
|
39 |
+
|
40 |
+
|
41 |
+
class InternVLChatModel(PreTrainedModel):
|
42 |
+
config_class = InternVLChatConfig
|
43 |
+
main_input_name = "pixel_values"
|
44 |
+
base_model_prefix = "language_model"
|
45 |
+
_no_split_modules = [
|
46 |
+
"InternVisionModel",
|
47 |
+
"LlamaDecoderLayer",
|
48 |
+
"InternLM2DecoderLayer",
|
49 |
+
"Phi3DecoderLayer",
|
50 |
+
"Qwen2DecoderLayer",
|
51 |
+
]
|
52 |
+
_supports_flash_attn_2 = True
|
53 |
+
supports_gradient_checkpointing = True
|
54 |
+
|
55 |
+
def __init__(self, config: InternVLChatConfig, vision_model=None, language_model=None, use_flash_attn=True):
|
56 |
+
super().__init__(config)
|
57 |
+
|
58 |
+
assert version_cmp(transformers.__version__, "4.37.0", "ge")
|
59 |
+
image_size = config.force_image_size or config.vision_config.image_size
|
60 |
+
patch_size = config.vision_config.patch_size
|
61 |
+
self.patch_size = patch_size
|
62 |
+
self.select_layer = config.select_layer
|
63 |
+
self.template = config.template
|
64 |
+
self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio**2))
|
65 |
+
self.downsample_ratio = config.downsample_ratio
|
66 |
+
self.ps_version = config.ps_version
|
67 |
+
self.llm_arch_name = config.llm_config.architectures[0]
|
68 |
+
# Enable Flash Attention if supported, otherwise fall back to eager attention.
|
69 |
+
use_flash_attn = use_flash_attn if has_flash_attn else False
|
70 |
+
config.vision_config.use_flash_attn = True if use_flash_attn else False
|
71 |
+
config.llm_config.attn_implementation = "flash_attention_2" if use_flash_attn else "eager"
|
72 |
+
|
73 |
+
logger.info(f"num_image_token: {self.num_image_token}")
|
74 |
+
logger.info(f"ps_version: {self.ps_version}")
|
75 |
+
if vision_model is not None:
|
76 |
+
self.vision_model = vision_model
|
77 |
+
else:
|
78 |
+
self.vision_model = InternVisionModel(config.vision_config)
|
79 |
+
if language_model is not None:
|
80 |
+
self.language_model = language_model
|
81 |
+
else:
|
82 |
+
if config.llm_config.architectures[0] == "LlamaForCausalLM":
|
83 |
+
self.language_model = LlamaForCausalLM(config.llm_config)
|
84 |
+
elif config.llm_config.architectures[0] == "InternLM2ForCausalLM":
|
85 |
+
self.language_model = InternLM2ForCausalLM(config.llm_config)
|
86 |
+
elif config.llm_config.architectures[0] == "Phi3ForCausalLM":
|
87 |
+
self.language_model = Phi3ForCausalLM(config.llm_config)
|
88 |
+
elif config.llm_config.architectures[0] == "Qwen2ForCausalLM":
|
89 |
+
self.language_model = Qwen2ForCausalLM(config.llm_config)
|
90 |
+
else:
|
91 |
+
raise NotImplementedError(f"{config.llm_config.architectures[0]} is not implemented.")
|
92 |
+
|
93 |
+
vit_hidden_size = config.vision_config.hidden_size
|
94 |
+
llm_hidden_size = config.llm_config.hidden_size
|
95 |
+
|
96 |
+
self.mlp1 = nn.Sequential(
|
97 |
+
nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2),
|
98 |
+
nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size),
|
99 |
+
nn.GELU(),
|
100 |
+
nn.Linear(llm_hidden_size, llm_hidden_size),
|
101 |
+
)
|
102 |
+
|
103 |
+
self.img_context_token_id = None
|
104 |
+
self.conv_template = get_conv_template(self.template)
|
105 |
+
if hasattr(config, "system_message"):
|
106 |
+
self.system_message = config.system_message
|
107 |
+
else:
|
108 |
+
self.system_message = self.conv_template.system_message
|
109 |
+
self.num_samples = 0
|
110 |
+
|
111 |
+
if config.use_backbone_lora:
|
112 |
+
self.wrap_backbone_lora(r=config.use_backbone_lora, lora_alpha=2 * config.use_backbone_lora)
|
113 |
+
|
114 |
+
if config.use_llm_lora:
|
115 |
+
self.wrap_llm_lora(r=config.use_llm_lora, lora_alpha=2 * config.use_llm_lora)
|
116 |
+
|
117 |
+
def wrap_backbone_lora(self, r=128, lora_alpha=256, lora_dropout=0.05):
|
118 |
+
lora_config = LoraConfig(
|
119 |
+
r=r,
|
120 |
+
target_modules=["attn.qkv", "attn.proj", "mlp.fc1", "mlp.fc2"],
|
121 |
+
lora_alpha=lora_alpha,
|
122 |
+
lora_dropout=lora_dropout,
|
123 |
+
)
|
124 |
+
self.vision_model = get_peft_model(self.vision_model, lora_config)
|
125 |
+
self.vision_model.print_trainable_parameters()
|
126 |
+
|
127 |
+
def wrap_llm_lora(self, r=128, lora_alpha=256, lora_dropout=0.05):
|
128 |
+
# Determine the target modules based on the architecture of the language model
|
129 |
+
if self.llm_arch_name == "InternLM2ForCausalLM":
|
130 |
+
target_modules = ["attention.wqkv", "attention.wo", "feed_forward.w1", "feed_forward.w2", "feed_forward.w3"]
|
131 |
+
elif self.llm_arch_name == "Phi3ForCausalLM":
|
132 |
+
target_modules = ["mlp.down_proj", "mlp.gate_up_proj", "self_attn.o_proj", "self_attn.qkv_proj"]
|
133 |
+
elif self.llm_arch_name in ["Qwen2ForCausalLM", "LlamaForCausalLM"]:
|
134 |
+
target_modules = [
|
135 |
+
"self_attn.q_proj",
|
136 |
+
"self_attn.k_proj",
|
137 |
+
"self_attn.v_proj",
|
138 |
+
"self_attn.o_proj",
|
139 |
+
"mlp.gate_proj",
|
140 |
+
"mlp.down_proj",
|
141 |
+
"mlp.up_proj",
|
142 |
+
]
|
143 |
+
else:
|
144 |
+
raise NotImplemented
|
145 |
+
lora_config = LoraConfig(
|
146 |
+
r=r, target_modules=target_modules, lora_alpha=lora_alpha, lora_dropout=lora_dropout, task_type="CAUSAL_LM"
|
147 |
+
)
|
148 |
+
self.language_model = get_peft_model(self.language_model, lora_config)
|
149 |
+
self.language_model.enable_input_require_grads()
|
150 |
+
self.language_model.print_trainable_parameters()
|
151 |
+
|
152 |
+
def forward(
|
153 |
+
self,
|
154 |
+
pixel_values: torch.FloatTensor,
|
155 |
+
input_ids: torch.LongTensor = None,
|
156 |
+
attention_mask: Optional[torch.Tensor] = None,
|
157 |
+
position_ids: Optional[torch.LongTensor] = None,
|
158 |
+
image_flags: Optional[torch.LongTensor] = None,
|
159 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
160 |
+
labels: Optional[torch.LongTensor] = None,
|
161 |
+
use_cache: Optional[bool] = None,
|
162 |
+
output_attentions: Optional[bool] = None,
|
163 |
+
output_hidden_states: Optional[bool] = None,
|
164 |
+
return_dict: Optional[bool] = None,
|
165 |
+
statistics: Optional[torch.LongTensor] = None,
|
166 |
+
loss_weight: Optional[List] = None,
|
167 |
+
loss_reduction_all_gather: Optional[bool] = False,
|
168 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
169 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
170 |
+
|
171 |
+
image_flags = image_flags.squeeze(-1)
|
172 |
+
input_embeds = self.language_model.get_input_embeddings()(input_ids).clone()
|
173 |
+
|
174 |
+
vit_embeds = self.extract_feature(pixel_values)
|
175 |
+
vit_embeds = vit_embeds[image_flags == 1]
|
176 |
+
vit_batch_size = pixel_values.shape[0]
|
177 |
+
|
178 |
+
B, N, C = input_embeds.shape
|
179 |
+
input_embeds = input_embeds.reshape(B * N, C)
|
180 |
+
|
181 |
+
if torch.distributed.is_initialized() and torch.distributed.get_rank() == 0:
|
182 |
+
print(
|
183 |
+
f"dynamic ViT batch size: {vit_batch_size}, images per sample: {vit_batch_size / B}, dynamic token length: {N}"
|
184 |
+
)
|
185 |
+
if statistics is not None:
|
186 |
+
num_samples, num_padding_tokens, num_padding_images = statistics.tolist()
|
187 |
+
self.num_samples += num_samples
|
188 |
+
print(f"total_samples={self.num_samples}, {num_samples=}, {num_padding_tokens=}, {num_padding_images=}")
|
189 |
+
|
190 |
+
input_ids = input_ids.reshape(B * N)
|
191 |
+
selected = input_ids == self.img_context_token_id
|
192 |
+
try:
|
193 |
+
input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds.reshape(-1, C)
|
194 |
+
ignore_flag = False
|
195 |
+
except Exception as e:
|
196 |
+
vit_embeds = vit_embeds.reshape(-1, C)
|
197 |
+
print(
|
198 |
+
f"warning: {e}, input_embeds[selected].shape={input_embeds[selected].shape}, "
|
199 |
+
f"vit_embeds.shape={vit_embeds.shape}"
|
200 |
+
)
|
201 |
+
n_token = selected.sum()
|
202 |
+
input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds[:n_token]
|
203 |
+
ignore_flag = True
|
204 |
+
|
205 |
+
input_embeds = input_embeds.reshape(B, N, C)
|
206 |
+
|
207 |
+
outputs = self.language_model(
|
208 |
+
inputs_embeds=input_embeds,
|
209 |
+
attention_mask=attention_mask,
|
210 |
+
position_ids=position_ids,
|
211 |
+
past_key_values=past_key_values,
|
212 |
+
use_cache=use_cache,
|
213 |
+
output_attentions=output_attentions,
|
214 |
+
output_hidden_states=output_hidden_states,
|
215 |
+
return_dict=return_dict,
|
216 |
+
)
|
217 |
+
logits = outputs.logits
|
218 |
+
|
219 |
+
loss = None
|
220 |
+
if labels is not None and loss_weight is not None:
|
221 |
+
loss_weight = torch.tensor(loss_weight, dtype=torch.float32, device=labels.device)
|
222 |
+
# Shift so that tokens < n predict n
|
223 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
224 |
+
shift_labels = labels[..., 1:].contiguous()
|
225 |
+
shift_weights = loss_weight[..., 1:].contiguous()
|
226 |
+
# Flatten the tokens
|
227 |
+
loss_fct = CrossEntropyLoss(reduction="none")
|
228 |
+
shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size)
|
229 |
+
shift_labels = shift_labels.view(-1)
|
230 |
+
shift_weights = shift_weights.view(-1)
|
231 |
+
# Enable model parallelism
|
232 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
233 |
+
shift_weights = shift_weights.to(shift_logits.device)
|
234 |
+
loss = loss_fct(shift_logits, shift_labels)
|
235 |
+
|
236 |
+
shift_weights_sum = shift_weights.sum()
|
237 |
+
if loss_reduction_all_gather:
|
238 |
+
dist.all_reduce(shift_weights_sum, op=dist.ReduceOp.AVG)
|
239 |
+
|
240 |
+
loss = loss * shift_weights
|
241 |
+
loss = loss.sum() / shift_weights_sum
|
242 |
+
if ignore_flag:
|
243 |
+
loss = loss * 0.0
|
244 |
+
elif labels is not None:
|
245 |
+
# Shift so that tokens < n predict n
|
246 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
247 |
+
shift_labels = labels[..., 1:].contiguous()
|
248 |
+
# Flatten the tokens
|
249 |
+
loss_fct = CrossEntropyLoss()
|
250 |
+
shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size)
|
251 |
+
shift_labels = shift_labels.view(-1)
|
252 |
+
# Enable model parallelism
|
253 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
254 |
+
loss = loss_fct(shift_logits, shift_labels)
|
255 |
+
if ignore_flag:
|
256 |
+
loss = loss * 0.0
|
257 |
+
|
258 |
+
if not return_dict:
|
259 |
+
output = (logits,) + outputs[1:]
|
260 |
+
return (loss,) + output if loss is not None else output
|
261 |
+
|
262 |
+
return CausalLMOutputWithPast(
|
263 |
+
loss=loss,
|
264 |
+
logits=logits,
|
265 |
+
past_key_values=outputs.past_key_values,
|
266 |
+
hidden_states=outputs.hidden_states,
|
267 |
+
attentions=outputs.attentions,
|
268 |
+
)
|
269 |
+
|
270 |
+
def pixel_shuffle(self, x, scale_factor=0.5):
|
271 |
+
n, w, h, c = x.size()
|
272 |
+
# N, W, H, C --> N, W, H * scale, C // scale
|
273 |
+
x = x.view(n, w, int(h * scale_factor), int(c / scale_factor))
|
274 |
+
# N, W, H * scale, C // scale --> N, H * scale, W, C // scale
|
275 |
+
x = x.permute(0, 2, 1, 3).contiguous()
|
276 |
+
# N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2)
|
277 |
+
x = x.view(n, int(h * scale_factor), int(w * scale_factor), int(c / (scale_factor * scale_factor)))
|
278 |
+
if self.ps_version == "v1":
|
279 |
+
warnings.warn(
|
280 |
+
"In ps_version 'v1', the height and width have not been swapped back, "
|
281 |
+
"which results in a transposed image."
|
282 |
+
)
|
283 |
+
else:
|
284 |
+
x = x.permute(0, 2, 1, 3).contiguous()
|
285 |
+
return x
|
286 |
+
|
287 |
+
def extract_feature(self, pixel_values):
|
288 |
+
if self.select_layer == -1:
|
289 |
+
vit_embeds = self.vision_model(
|
290 |
+
pixel_values=pixel_values, output_hidden_states=False, return_dict=True
|
291 |
+
).last_hidden_state
|
292 |
+
else:
|
293 |
+
vit_embeds = self.vision_model(
|
294 |
+
pixel_values=pixel_values, output_hidden_states=True, return_dict=True
|
295 |
+
).hidden_states[self.select_layer]
|
296 |
+
vit_embeds = vit_embeds[:, 1:, :]
|
297 |
+
|
298 |
+
h = w = int(vit_embeds.shape[1] ** 0.5)
|
299 |
+
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
|
300 |
+
vit_embeds = self.pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio)
|
301 |
+
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
|
302 |
+
vit_embeds = self.mlp1(vit_embeds)
|
303 |
+
return vit_embeds
|
304 |
+
|
305 |
+
def batch_chat(
|
306 |
+
self,
|
307 |
+
tokenizer,
|
308 |
+
pixel_values,
|
309 |
+
questions,
|
310 |
+
generation_config,
|
311 |
+
num_patches_list=None,
|
312 |
+
history=None,
|
313 |
+
return_history=False,
|
314 |
+
IMG_START_TOKEN="<img>",
|
315 |
+
IMG_END_TOKEN="</img>",
|
316 |
+
IMG_CONTEXT_TOKEN="<IMG_CONTEXT>",
|
317 |
+
verbose=False,
|
318 |
+
image_counts=None,
|
319 |
+
):
|
320 |
+
if history is not None or return_history:
|
321 |
+
print("Now multi-turn chat is not supported in batch_chat.")
|
322 |
+
raise NotImplementedError
|
323 |
+
|
324 |
+
if image_counts is not None:
|
325 |
+
num_patches_list = image_counts
|
326 |
+
print("Warning: `image_counts` is deprecated. Please use `num_patches_list` instead.")
|
327 |
+
|
328 |
+
img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
|
329 |
+
self.img_context_token_id = img_context_token_id
|
330 |
+
|
331 |
+
if verbose and pixel_values is not None:
|
332 |
+
image_bs = pixel_values.shape[0]
|
333 |
+
print(f"dynamic ViT batch size: {image_bs}")
|
334 |
+
|
335 |
+
queries = []
|
336 |
+
for idx, num_patches in enumerate(num_patches_list):
|
337 |
+
question = questions[idx]
|
338 |
+
if pixel_values is not None and "<image>" not in question:
|
339 |
+
question = "<image>\n" + question
|
340 |
+
template = get_conv_template(self.template)
|
341 |
+
template.system_message = self.system_message
|
342 |
+
template.append_message(template.roles[0], question)
|
343 |
+
template.append_message(template.roles[1], None)
|
344 |
+
query = template.get_prompt()
|
345 |
+
|
346 |
+
image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
|
347 |
+
query = query.replace("<image>", image_tokens, 1)
|
348 |
+
queries.append(query)
|
349 |
+
|
350 |
+
tokenizer.padding_side = "left"
|
351 |
+
model_inputs = tokenizer(queries, return_tensors="pt", padding=True)
|
352 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
353 |
+
input_ids = model_inputs["input_ids"].to(device)
|
354 |
+
attention_mask = model_inputs["attention_mask"].to(device)
|
355 |
+
eos_token_id = tokenizer.convert_tokens_to_ids(template.sep.strip())
|
356 |
+
generation_config["eos_token_id"] = eos_token_id
|
357 |
+
generation_output = self.generate(
|
358 |
+
pixel_values=pixel_values, input_ids=input_ids, attention_mask=attention_mask, **generation_config
|
359 |
+
)
|
360 |
+
responses = tokenizer.batch_decode(generation_output, skip_special_tokens=True)
|
361 |
+
responses = [response.split(template.sep.strip())[0].strip() for response in responses]
|
362 |
+
return responses
|
363 |
+
|
364 |
+
def chat(
|
365 |
+
self,
|
366 |
+
tokenizer,
|
367 |
+
pixel_values,
|
368 |
+
question,
|
369 |
+
generation_config,
|
370 |
+
history=None,
|
371 |
+
return_history=False,
|
372 |
+
num_patches_list=None,
|
373 |
+
IMG_START_TOKEN="<img>",
|
374 |
+
IMG_END_TOKEN="</img>",
|
375 |
+
IMG_CONTEXT_TOKEN="<IMG_CONTEXT>",
|
376 |
+
verbose=False,
|
377 |
+
):
|
378 |
+
if history is None and pixel_values is not None and "<image>" not in question:
|
379 |
+
question = "<image>\n" + question
|
380 |
+
|
381 |
+
if num_patches_list is None:
|
382 |
+
num_patches_list = [pixel_values.shape[0]] if pixel_values is not None else []
|
383 |
+
assert pixel_values is None or len(pixel_values) == sum(num_patches_list)
|
384 |
+
|
385 |
+
img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
|
386 |
+
self.img_context_token_id = img_context_token_id
|
387 |
+
|
388 |
+
template = get_conv_template(self.template)
|
389 |
+
template.system_message = self.system_message
|
390 |
+
eos_token_id = tokenizer.convert_tokens_to_ids(template.sep.strip())
|
391 |
+
|
392 |
+
history = [] if history is None else history
|
393 |
+
for old_question, old_answer in history:
|
394 |
+
template.append_message(template.roles[0], old_question)
|
395 |
+
template.append_message(template.roles[1], old_answer)
|
396 |
+
template.append_message(template.roles[0], question)
|
397 |
+
template.append_message(template.roles[1], None)
|
398 |
+
query = template.get_prompt()
|
399 |
+
|
400 |
+
if verbose and pixel_values is not None:
|
401 |
+
image_bs = pixel_values.shape[0]
|
402 |
+
print(f"dynamic ViT batch size: {image_bs}")
|
403 |
+
|
404 |
+
for num_patches in num_patches_list:
|
405 |
+
image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
|
406 |
+
query = query.replace("<image>", image_tokens, 1)
|
407 |
+
|
408 |
+
model_inputs = tokenizer(query, return_tensors="pt")
|
409 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
410 |
+
input_ids = model_inputs["input_ids"].to(device)
|
411 |
+
attention_mask = model_inputs["attention_mask"].to(device)
|
412 |
+
generation_config["eos_token_id"] = eos_token_id
|
413 |
+
generation_output = self.generate(
|
414 |
+
pixel_values=pixel_values, input_ids=input_ids, attention_mask=attention_mask, **generation_config
|
415 |
+
)
|
416 |
+
response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0]
|
417 |
+
response = response.split(template.sep.strip())[0].strip()
|
418 |
+
history.append((question, response))
|
419 |
+
if return_history:
|
420 |
+
return response, history
|
421 |
+
else:
|
422 |
+
query_to_print = query.replace(IMG_CONTEXT_TOKEN, "")
|
423 |
+
query_to_print = query_to_print.replace(f"{IMG_START_TOKEN}{IMG_END_TOKEN}", "<image>")
|
424 |
+
if verbose:
|
425 |
+
print(query_to_print, response)
|
426 |
+
return response
|
427 |
+
|
428 |
+
@torch.no_grad()
|
429 |
+
def generate(
|
430 |
+
self,
|
431 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
432 |
+
input_ids: Optional[torch.FloatTensor] = None,
|
433 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
434 |
+
visual_features: Optional[torch.FloatTensor] = None,
|
435 |
+
generation_config: Optional[GenerationConfig] = None,
|
436 |
+
output_hidden_states: Optional[bool] = None,
|
437 |
+
**generate_kwargs,
|
438 |
+
) -> torch.LongTensor:
|
439 |
+
assert self.img_context_token_id is not None
|
440 |
+
if pixel_values is not None:
|
441 |
+
if visual_features is not None:
|
442 |
+
vit_embeds = visual_features
|
443 |
+
else:
|
444 |
+
vit_embeds = self.extract_feature(pixel_values)
|
445 |
+
input_embeds = self.language_model.get_input_embeddings()(input_ids)
|
446 |
+
B, N, C = input_embeds.shape
|
447 |
+
input_embeds = input_embeds.reshape(B * N, C)
|
448 |
+
|
449 |
+
input_ids = input_ids.reshape(B * N)
|
450 |
+
selected = input_ids == self.img_context_token_id
|
451 |
+
assert selected.sum() != 0
|
452 |
+
input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device)
|
453 |
+
|
454 |
+
input_embeds = input_embeds.reshape(B, N, C)
|
455 |
+
else:
|
456 |
+
input_embeds = self.language_model.get_input_embeddings()(input_ids)
|
457 |
+
|
458 |
+
outputs = self.language_model.generate(
|
459 |
+
inputs_embeds=input_embeds,
|
460 |
+
attention_mask=attention_mask,
|
461 |
+
generation_config=generation_config,
|
462 |
+
output_hidden_states=output_hidden_states,
|
463 |
+
use_cache=True,
|
464 |
+
**generate_kwargs,
|
465 |
+
)
|
466 |
+
|
467 |
+
return outputs
|
468 |
+
|
469 |
+
@property
|
470 |
+
def lm_head(self):
|
471 |
+
return self.language_model.get_output_embeddings()
|
472 |
+
|
473 |
+
def get_input_embeddings(self):
|
474 |
+
return self.language_model.get_input_embeddings()
|
475 |
+
|
476 |
+
def get_output_embeddings(self):
|
477 |
+
return self.language_model.get_output_embeddings()
|
src/third_party/InternVL/internvl_chat/internvl/model/phi3/configuration_phi3.py
ADDED
@@ -0,0 +1,211 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License atd
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
""" Phi-3 model configuration"""
|
16 |
+
|
17 |
+
|
18 |
+
from transformers.configuration_utils import PretrainedConfig
|
19 |
+
from transformers.utils import logging
|
20 |
+
|
21 |
+
logger = logging.get_logger(__name__)
|
22 |
+
|
23 |
+
PHI3_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
24 |
+
'microsoft/Phi-3-mini-4k-instruct': 'https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/resolve/main/config.json',
|
25 |
+
'microsoft/Phi-3-mini-128k-instruct': 'https://huggingface.co/microsoft/Phi-3-mini-128k-instruct/resolve/main/config.json',
|
26 |
+
}
|
27 |
+
|
28 |
+
|
29 |
+
class Phi3Config(PretrainedConfig):
|
30 |
+
r"""
|
31 |
+
This is the configuration class to store the configuration of a [`Phi3Model`]. It is used to instantiate a Phi-3
|
32 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
33 |
+
defaults will yield a similar configuration to that of the
|
34 |
+
[microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct).
|
35 |
+
|
36 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
37 |
+
documentation from [`PretrainedConfig`] for more information.
|
38 |
+
|
39 |
+
Args:
|
40 |
+
vocab_size (`int`, *optional*, defaults to 32064):
|
41 |
+
Vocabulary size of the Phi-3 model. Defines the number of different tokens that can be represented by the
|
42 |
+
`inputs_ids` passed when calling [`Phi3Model`].
|
43 |
+
hidden_size (`int`, *optional*, defaults to 3072):
|
44 |
+
Dimension of the hidden representations.
|
45 |
+
intermediate_size (`int`, *optional*, defaults to 8192):
|
46 |
+
Dimension of the MLP representations.
|
47 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
48 |
+
Number of hidden layers in the Transformer decoder.
|
49 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
50 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
51 |
+
num_key_value_heads (`int`, *optional*):
|
52 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
53 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
54 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
55 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
56 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
57 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
58 |
+
`num_attention_heads`.
|
59 |
+
resid_pdrop (`float`, *optional*, defaults to 0.0):
|
60 |
+
Dropout probability for mlp outputs.
|
61 |
+
embd_pdrop (`int`, *optional*, defaults to 0.0):
|
62 |
+
The dropout ratio for the embeddings.
|
63 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
64 |
+
The dropout ratio after computing the attention scores.
|
65 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
66 |
+
The non-linear activation function (function or string) in the decoder.
|
67 |
+
max_position_embeddings (`int`, *optional*, defaults to 4096):
|
68 |
+
The maximum sequence length that this model might ever be used with.
|
69 |
+
original_max_position_embeddings (`int`, *optional*, defaults to 4096):
|
70 |
+
The maximum sequence length that this model was trained with. This is used to determine the size of the
|
71 |
+
original RoPE embeddings when using long scaling.
|
72 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
73 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
74 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-05):
|
75 |
+
The epsilon value used for the RMSNorm.
|
76 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
77 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
78 |
+
relevant if `config.is_decoder=True`. Whether to tie weight embeddings or not.
|
79 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
80 |
+
Whether to tie weight embeddings
|
81 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
82 |
+
The base period of the RoPE embeddings.
|
83 |
+
rope_scaling (`dict`, *optional*):
|
84 |
+
The scaling strategy for the RoPE embeddings. If `None`, no scaling is applied. If a dictionary, it must
|
85 |
+
contain the following keys: `type`, `short_factor` and `long_factor`. The `type` must be either `su` or `yarn` and
|
86 |
+
the `short_factor` and `long_factor` must be lists of numbers with the same length as the hidden size
|
87 |
+
divided by the number of attention heads divided by 2.
|
88 |
+
bos_token_id (`int`, *optional*, defaults to 1):
|
89 |
+
The id of the "beginning-of-sequence" token.
|
90 |
+
eos_token_id (`int`, *optional*, defaults to 32000):
|
91 |
+
The id of the "end-of-sequence" token.
|
92 |
+
pad_token_id (`int`, *optional*, defaults to 32000):
|
93 |
+
The id of the padding token.
|
94 |
+
sliding_window (`int`, *optional*):
|
95 |
+
Sliding window attention window size. If `None`, no sliding window is applied.
|
96 |
+
|
97 |
+
Example:
|
98 |
+
|
99 |
+
```python
|
100 |
+
>>> from transformers import Phi3Model, Phi3Config
|
101 |
+
|
102 |
+
>>> # Initializing a Phi-3 style configuration
|
103 |
+
>>> configuration = Phi3Config.from_pretrained("microsoft/Phi-3-mini-4k-instruct")
|
104 |
+
|
105 |
+
>>> # Initializing a model from the configuration
|
106 |
+
>>> model = Phi3Model(configuration)
|
107 |
+
|
108 |
+
>>> # Accessing the model configuration
|
109 |
+
>>> configuration = model.config
|
110 |
+
```"""
|
111 |
+
|
112 |
+
model_type = 'phi3'
|
113 |
+
keys_to_ignore_at_inference = ['past_key_values']
|
114 |
+
|
115 |
+
def __init__(
|
116 |
+
self,
|
117 |
+
vocab_size=32064,
|
118 |
+
hidden_size=3072,
|
119 |
+
intermediate_size=8192,
|
120 |
+
num_hidden_layers=32,
|
121 |
+
num_attention_heads=32,
|
122 |
+
num_key_value_heads=None,
|
123 |
+
resid_pdrop=0.0,
|
124 |
+
embd_pdrop=0.0,
|
125 |
+
attention_dropout=0.0,
|
126 |
+
hidden_act='silu',
|
127 |
+
max_position_embeddings=4096,
|
128 |
+
original_max_position_embeddings=4096,
|
129 |
+
initializer_range=0.02,
|
130 |
+
rms_norm_eps=1e-5,
|
131 |
+
use_cache=True,
|
132 |
+
tie_word_embeddings=False,
|
133 |
+
rope_theta=10000.0,
|
134 |
+
rope_scaling=None,
|
135 |
+
bos_token_id=1,
|
136 |
+
eos_token_id=32000,
|
137 |
+
pad_token_id=32000,
|
138 |
+
sliding_window=None,
|
139 |
+
**kwargs,
|
140 |
+
):
|
141 |
+
self.vocab_size = vocab_size
|
142 |
+
self.hidden_size = hidden_size
|
143 |
+
self.intermediate_size = intermediate_size
|
144 |
+
self.num_hidden_layers = num_hidden_layers
|
145 |
+
self.num_attention_heads = num_attention_heads
|
146 |
+
|
147 |
+
if num_key_value_heads is None:
|
148 |
+
num_key_value_heads = num_attention_heads
|
149 |
+
|
150 |
+
self.num_key_value_heads = num_key_value_heads
|
151 |
+
self.resid_pdrop = resid_pdrop
|
152 |
+
self.embd_pdrop = embd_pdrop
|
153 |
+
self.attention_dropout = attention_dropout
|
154 |
+
self.hidden_act = hidden_act
|
155 |
+
self.max_position_embeddings = max_position_embeddings
|
156 |
+
self.original_max_position_embeddings = original_max_position_embeddings
|
157 |
+
self.initializer_range = initializer_range
|
158 |
+
self.rms_norm_eps = rms_norm_eps
|
159 |
+
self.use_cache = use_cache
|
160 |
+
self.rope_theta = rope_theta
|
161 |
+
self.rope_scaling = rope_scaling
|
162 |
+
self._rope_scaling_validation()
|
163 |
+
self.sliding_window = sliding_window
|
164 |
+
|
165 |
+
super().__init__(
|
166 |
+
bos_token_id=bos_token_id,
|
167 |
+
eos_token_id=eos_token_id,
|
168 |
+
pad_token_id=pad_token_id,
|
169 |
+
tie_word_embeddings=tie_word_embeddings,
|
170 |
+
**kwargs,
|
171 |
+
)
|
172 |
+
|
173 |
+
def _rope_scaling_validation(self):
|
174 |
+
"""
|
175 |
+
Validate the `rope_scaling` configuration.
|
176 |
+
"""
|
177 |
+
if self.rope_scaling is None:
|
178 |
+
return
|
179 |
+
|
180 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 3:
|
181 |
+
raise ValueError(
|
182 |
+
'`rope_scaling` must be a dictionary with three fields, `type`, `short_factor` and `long_factor`, '
|
183 |
+
f'got {self.rope_scaling}'
|
184 |
+
)
|
185 |
+
rope_scaling_type = self.rope_scaling.get('type', None)
|
186 |
+
rope_scaling_short_factor = self.rope_scaling.get('short_factor', None)
|
187 |
+
rope_scaling_long_factor = self.rope_scaling.get('long_factor', None)
|
188 |
+
if rope_scaling_type is None or rope_scaling_type not in ['su', 'yarn']:
|
189 |
+
raise ValueError(f"`rope_scaling`'s type field must be one of ['su', 'yarn'], got {rope_scaling_type}")
|
190 |
+
if not (
|
191 |
+
isinstance(rope_scaling_short_factor, list)
|
192 |
+
and all(isinstance(x, (int, float)) for x in rope_scaling_short_factor)
|
193 |
+
):
|
194 |
+
raise ValueError(
|
195 |
+
f"`rope_scaling`'s short_factor field must be a list of numbers, got {rope_scaling_short_factor}"
|
196 |
+
)
|
197 |
+
if not len(rope_scaling_short_factor) == self.hidden_size // self.num_attention_heads // 2:
|
198 |
+
raise ValueError(
|
199 |
+
f"`rope_scaling`'s short_factor field must have length {self.hidden_size // self.num_attention_heads // 2}, got {len(rope_scaling_short_factor)}"
|
200 |
+
)
|
201 |
+
if not (
|
202 |
+
isinstance(rope_scaling_long_factor, list)
|
203 |
+
and all(isinstance(x, (int, float)) for x in rope_scaling_long_factor)
|
204 |
+
):
|
205 |
+
raise ValueError(
|
206 |
+
f"`rope_scaling`'s long_factor field must be a list of numbers, got {rope_scaling_long_factor}"
|
207 |
+
)
|
208 |
+
if not len(rope_scaling_long_factor) == self.hidden_size // self.num_attention_heads // 2:
|
209 |
+
raise ValueError(
|
210 |
+
f"`rope_scaling`'s long_factor field must have length {self.hidden_size // self.num_attention_heads // 2}, got {len(rope_scaling_long_factor)}"
|
211 |
+
)
|
src/third_party/InternVL/internvl_chat/internvl/model/phi3/modeling_phi3.py
ADDED
@@ -0,0 +1,1610 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
""" PyTorch Phi-3 model."""
|
16 |
+
|
17 |
+
import inspect
|
18 |
+
import math
|
19 |
+
import warnings
|
20 |
+
from typing import List, Optional, Tuple, Union
|
21 |
+
|
22 |
+
import torch
|
23 |
+
import torch.nn.functional as F
|
24 |
+
import torch.utils.checkpoint
|
25 |
+
from torch import nn
|
26 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
27 |
+
from transformers.activations import ACT2FN
|
28 |
+
from transformers.cache_utils import Cache, DynamicCache
|
29 |
+
from transformers.modeling_attn_mask_utils import \
|
30 |
+
_prepare_4d_causal_attention_mask
|
31 |
+
from transformers.modeling_outputs import (BaseModelOutputWithPast,
|
32 |
+
CausalLMOutputWithPast,
|
33 |
+
SequenceClassifierOutputWithPast,
|
34 |
+
TokenClassifierOutput)
|
35 |
+
from transformers.modeling_utils import PreTrainedModel
|
36 |
+
from transformers.utils import (add_code_sample_docstrings,
|
37 |
+
add_start_docstrings,
|
38 |
+
add_start_docstrings_to_model_forward,
|
39 |
+
is_flash_attn_2_available,
|
40 |
+
is_flash_attn_greater_or_equal_2_10, logging,
|
41 |
+
replace_return_docstrings)
|
42 |
+
|
43 |
+
from .configuration_phi3 import Phi3Config
|
44 |
+
|
45 |
+
logger = logging.get_logger(__name__)
|
46 |
+
|
47 |
+
# Transformers scans dependencies in the modeling file, causing issues on conditional loading. The regex only ignores try/catch blocks, but not if statements
|
48 |
+
# if is_flash_attn_2_available():
|
49 |
+
_flash_supports_window_size = False
|
50 |
+
try:
|
51 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
52 |
+
from flash_attn.bert_padding import (index_first_axis, pad_input, # noqa
|
53 |
+
unpad_input)
|
54 |
+
|
55 |
+
_flash_supports_window_size = 'window_size' in list(inspect.signature(flash_attn_func).parameters)
|
56 |
+
has_flash_attn = True
|
57 |
+
except ImportError as error:
|
58 |
+
logger.warning(
|
59 |
+
f'`flash-attention` package not found, consider installing for better performance: {error}.'
|
60 |
+
)
|
61 |
+
if not _flash_supports_window_size:
|
62 |
+
logger.warning(
|
63 |
+
"Current `flash-attenton` does not support `window_size`. Either upgrade or use `attn_implementation='eager'`."
|
64 |
+
)
|
65 |
+
has_flash_attn = False
|
66 |
+
|
67 |
+
_CHECKPOINT_FOR_DOC = 'microsoft/Phi-3-mini-4k-instruct'
|
68 |
+
_CONFIG_FOR_DOC = 'Phi3Config'
|
69 |
+
|
70 |
+
PHI3_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
71 |
+
'microsoft/Phi-3-mini-4k-instruct',
|
72 |
+
'microsoft/Phi-3-mini-128k-instruct',
|
73 |
+
# See all Phi-3 models at https://huggingface.co/models?filter=Phi-3
|
74 |
+
]
|
75 |
+
|
76 |
+
|
77 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Phi3
|
78 |
+
class Phi3RMSNorm(nn.Module):
|
79 |
+
def __init__(self, hidden_size, eps=1e-6):
|
80 |
+
"""
|
81 |
+
Phi3RMSNorm is equivalent to T5LayerNorm
|
82 |
+
"""
|
83 |
+
super().__init__()
|
84 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
85 |
+
self.variance_epsilon = eps
|
86 |
+
|
87 |
+
def forward(self, hidden_states):
|
88 |
+
input_dtype = hidden_states.dtype
|
89 |
+
hidden_states = hidden_states.to(torch.float32)
|
90 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
91 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
92 |
+
return self.weight * hidden_states.to(input_dtype)
|
93 |
+
|
94 |
+
|
95 |
+
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
96 |
+
def _get_unpad_data(attention_mask):
|
97 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
98 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
99 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
100 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
101 |
+
return (
|
102 |
+
indices,
|
103 |
+
cu_seqlens,
|
104 |
+
max_seqlen_in_batch,
|
105 |
+
)
|
106 |
+
|
107 |
+
|
108 |
+
# Copied from transformers.models.gemma.modeling_gemma.GemmaRotaryEmbedding with gemma->phi3, Gemma->Phi3
|
109 |
+
class Phi3RotaryEmbedding(nn.Module):
|
110 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
111 |
+
super().__init__()
|
112 |
+
|
113 |
+
self.dim = dim
|
114 |
+
self.max_position_embeddings = max_position_embeddings
|
115 |
+
self.base = base
|
116 |
+
self.register_buffer('inv_freq', None, persistent=False)
|
117 |
+
|
118 |
+
@torch.no_grad()
|
119 |
+
def forward(self, x, position_ids, seq_len=None):
|
120 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
121 |
+
if self.inv_freq is None:
|
122 |
+
self.inv_freq = 1.0 / (
|
123 |
+
self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64, device=x.device).float() / self.dim)
|
124 |
+
)
|
125 |
+
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
126 |
+
position_ids_expanded = position_ids[:, None, :].float()
|
127 |
+
# Force float32 since bfloat16 loses precision on long contexts
|
128 |
+
# See https://github.com/huggingface/transformers/pull/29285
|
129 |
+
device_type = x.device.type
|
130 |
+
device_type = device_type if isinstance(device_type, str) and device_type != 'mps' else 'cpu'
|
131 |
+
with torch.autocast(device_type=device_type, enabled=False):
|
132 |
+
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
133 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
134 |
+
cos = emb.cos()
|
135 |
+
sin = emb.sin()
|
136 |
+
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
137 |
+
|
138 |
+
|
139 |
+
class Phi3SuScaledRotaryEmbedding(Phi3RotaryEmbedding):
|
140 |
+
def __init__(self, dim, config, device=None):
|
141 |
+
super().__init__(dim, config.max_position_embeddings, config.rope_theta, device)
|
142 |
+
|
143 |
+
self.short_factor = config.rope_scaling['short_factor']
|
144 |
+
self.long_factor = config.rope_scaling['long_factor']
|
145 |
+
self.original_max_position_embeddings = config.original_max_position_embeddings
|
146 |
+
|
147 |
+
@torch.no_grad()
|
148 |
+
def forward(self, x, position_ids, seq_len=None):
|
149 |
+
seq_len = torch.max(position_ids) + 1
|
150 |
+
if seq_len > self.original_max_position_embeddings:
|
151 |
+
ext_factors = torch.tensor(self.long_factor, dtype=torch.float32, device=x.device)
|
152 |
+
else:
|
153 |
+
ext_factors = torch.tensor(self.short_factor, dtype=torch.float32, device=x.device)
|
154 |
+
|
155 |
+
inv_freq_shape = torch.arange(0, self.dim, 2, dtype=torch.int64, device=x.device).float() / self.dim
|
156 |
+
self.inv_freq = 1.0 / (ext_factors * self.base**inv_freq_shape)
|
157 |
+
|
158 |
+
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
159 |
+
position_ids_expanded = position_ids[:, None, :].float()
|
160 |
+
|
161 |
+
# Force float32 since bfloat16 loses precision on long contexts
|
162 |
+
# See https://github.com/huggingface/transformers/pull/29285
|
163 |
+
device_type = x.device.type
|
164 |
+
device_type = device_type if isinstance(device_type, str) and device_type != 'mps' else 'cpu'
|
165 |
+
with torch.autocast(device_type=device_type, enabled=False):
|
166 |
+
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
167 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
168 |
+
|
169 |
+
scale = self.max_position_embeddings / self.original_max_position_embeddings
|
170 |
+
if scale <= 1.0:
|
171 |
+
scaling_factor = 1.0
|
172 |
+
else:
|
173 |
+
scaling_factor = math.sqrt(1 + math.log(scale) / math.log(self.original_max_position_embeddings))
|
174 |
+
|
175 |
+
cos = emb.cos() * scaling_factor
|
176 |
+
sin = emb.sin() * scaling_factor
|
177 |
+
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
178 |
+
|
179 |
+
|
180 |
+
class Phi3YarnScaledRotaryEmbedding(Phi3RotaryEmbedding):
|
181 |
+
def __init__(self, dim, config, device=None):
|
182 |
+
super().__init__(dim, config.max_position_embeddings, config.rope_theta, device)
|
183 |
+
|
184 |
+
self.short_factor = config.rope_scaling['short_factor']
|
185 |
+
self.long_factor = config.rope_scaling['long_factor']
|
186 |
+
self.original_max_position_embeddings = config.original_max_position_embeddings
|
187 |
+
|
188 |
+
@torch.no_grad()
|
189 |
+
def forward(self, x, position_ids, seq_len=None):
|
190 |
+
seq_len = torch.max(position_ids) + 1
|
191 |
+
if seq_len > self.original_max_position_embeddings:
|
192 |
+
ext_factors = torch.tensor(self.long_factor, dtype=torch.float32, device=x.device)
|
193 |
+
else:
|
194 |
+
ext_factors = torch.tensor(self.short_factor, dtype=torch.float32, device=x.device)
|
195 |
+
|
196 |
+
inv_freq_shape = torch.arange(0, self.dim, 2, dtype=torch.int64, device=x.device).float() / self.dim
|
197 |
+
self.inv_freq = 1.0 / (ext_factors * self.base**inv_freq_shape)
|
198 |
+
|
199 |
+
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
200 |
+
position_ids_expanded = position_ids[:, None, :].float()
|
201 |
+
|
202 |
+
# Force float32 since bfloat16 loses precision on long contexts
|
203 |
+
# See https://github.com/huggingface/transformers/pull/29285
|
204 |
+
device_type = x.device.type
|
205 |
+
device_type = device_type if isinstance(device_type, str) and device_type != 'mps' else 'cpu'
|
206 |
+
with torch.autocast(device_type=device_type, enabled=False):
|
207 |
+
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
208 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
209 |
+
|
210 |
+
scale = self.max_position_embeddings / self.original_max_position_embeddings
|
211 |
+
if scale <= 1.0:
|
212 |
+
scaling_factor = 1.0
|
213 |
+
else:
|
214 |
+
scaling_factor = 0.1 * math.log(scale) + 1.0
|
215 |
+
|
216 |
+
cos = emb.cos() * scaling_factor
|
217 |
+
sin = emb.sin() * scaling_factor
|
218 |
+
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
219 |
+
|
220 |
+
|
221 |
+
# Copied from transformers.models.llama.modeling_llama.rotate_half
|
222 |
+
def rotate_half(x):
|
223 |
+
"""Rotates half the hidden dims of the input."""
|
224 |
+
x1 = x[..., : x.shape[-1] // 2]
|
225 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
226 |
+
return torch.cat((-x2, x1), dim=-1)
|
227 |
+
|
228 |
+
|
229 |
+
# Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
|
230 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
231 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
232 |
+
|
233 |
+
Args:
|
234 |
+
q (`torch.Tensor`): The query tensor.
|
235 |
+
k (`torch.Tensor`): The key tensor.
|
236 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
237 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
238 |
+
position_ids (`torch.Tensor`, *optional*):
|
239 |
+
Deprecated and unused.
|
240 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
241 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
242 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
243 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
244 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
245 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
246 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
247 |
+
Returns:
|
248 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
249 |
+
"""
|
250 |
+
cos = cos.unsqueeze(unsqueeze_dim)
|
251 |
+
sin = sin.unsqueeze(unsqueeze_dim)
|
252 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
253 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
254 |
+
return q_embed, k_embed
|
255 |
+
|
256 |
+
|
257 |
+
class Phi3MLP(nn.Module):
|
258 |
+
def __init__(self, config):
|
259 |
+
super().__init__()
|
260 |
+
|
261 |
+
self.config = config
|
262 |
+
self.gate_up_proj = nn.Linear(config.hidden_size, 2 * config.intermediate_size, bias=False)
|
263 |
+
self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
|
264 |
+
|
265 |
+
self.activation_fn = ACT2FN[config.hidden_act]
|
266 |
+
|
267 |
+
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
|
268 |
+
up_states = self.gate_up_proj(hidden_states)
|
269 |
+
|
270 |
+
gate, up_states = up_states.chunk(2, dim=-1)
|
271 |
+
up_states = up_states * self.activation_fn(gate)
|
272 |
+
|
273 |
+
return self.down_proj(up_states)
|
274 |
+
|
275 |
+
|
276 |
+
# Copied from transformers.models.llama.modeling_llama.repeat_kv with llama->phi
|
277 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
278 |
+
"""
|
279 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
280 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
281 |
+
"""
|
282 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
283 |
+
if n_rep == 1:
|
284 |
+
return hidden_states
|
285 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
286 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
287 |
+
|
288 |
+
|
289 |
+
class Phi3Attention(nn.Module):
|
290 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
291 |
+
|
292 |
+
def __init__(self, config: Phi3Config, layer_idx: Optional[int] = None):
|
293 |
+
super().__init__()
|
294 |
+
self.config = config
|
295 |
+
self.layer_idx = layer_idx
|
296 |
+
if layer_idx is None:
|
297 |
+
logger.warning_once(
|
298 |
+
f'Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will '
|
299 |
+
'lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` '
|
300 |
+
'when creating this class.'
|
301 |
+
)
|
302 |
+
|
303 |
+
self.attention_dropout = config.attention_dropout
|
304 |
+
self.hidden_size = config.hidden_size
|
305 |
+
self.num_heads = config.num_attention_heads
|
306 |
+
self.head_dim = self.hidden_size // self.num_heads
|
307 |
+
self.num_key_value_heads = config.num_key_value_heads
|
308 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
309 |
+
self.max_position_embeddings = config.max_position_embeddings
|
310 |
+
self.original_max_position_embeddings = config.original_max_position_embeddings
|
311 |
+
self.rope_theta = config.rope_theta
|
312 |
+
self.rope_scaling = config.rope_scaling
|
313 |
+
self.is_causal = True
|
314 |
+
|
315 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
316 |
+
raise ValueError(
|
317 |
+
f'hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}'
|
318 |
+
f' and `num_heads`: {self.num_heads}).'
|
319 |
+
)
|
320 |
+
|
321 |
+
op_size = self.num_heads * self.head_dim + 2 * (self.num_key_value_heads * self.head_dim)
|
322 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
323 |
+
self.qkv_proj = nn.Linear(self.hidden_size, op_size, bias=False)
|
324 |
+
self._init_rope()
|
325 |
+
|
326 |
+
def _init_rope(self):
|
327 |
+
if self.rope_scaling is None:
|
328 |
+
self.rotary_emb = Phi3RotaryEmbedding(
|
329 |
+
self.head_dim,
|
330 |
+
max_position_embeddings=self.max_position_embeddings,
|
331 |
+
base=self.rope_theta,
|
332 |
+
)
|
333 |
+
else:
|
334 |
+
scaling_type = self.config.rope_scaling['type']
|
335 |
+
if scaling_type == 'su':
|
336 |
+
self.rotary_emb = Phi3SuScaledRotaryEmbedding(self.head_dim, self.config)
|
337 |
+
elif scaling_type == 'yarn':
|
338 |
+
self.rotary_emb = Phi3YarnScaledRotaryEmbedding(self.head_dim, self.config)
|
339 |
+
else:
|
340 |
+
raise ValueError(f'Unknown RoPE scaling type {scaling_type}')
|
341 |
+
|
342 |
+
def forward(
|
343 |
+
self,
|
344 |
+
hidden_states: torch.Tensor,
|
345 |
+
attention_mask: Optional[torch.Tensor] = None,
|
346 |
+
position_ids: Optional[torch.LongTensor] = None,
|
347 |
+
past_key_value: Optional[Cache] = None,
|
348 |
+
output_attentions: bool = False,
|
349 |
+
use_cache: bool = False,
|
350 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
351 |
+
logger.warning_once('You are not running the flash-attention implementation, expect numerical differences.')
|
352 |
+
|
353 |
+
bsz, q_len, _ = hidden_states.size()
|
354 |
+
|
355 |
+
qkv = self.qkv_proj(hidden_states)
|
356 |
+
query_pos = self.num_heads * self.head_dim
|
357 |
+
query_states = qkv[..., :query_pos]
|
358 |
+
key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim]
|
359 |
+
value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :]
|
360 |
+
|
361 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
362 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
363 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
364 |
+
|
365 |
+
kv_seq_len = key_states.shape[-2]
|
366 |
+
if past_key_value is not None:
|
367 |
+
if self.layer_idx is None:
|
368 |
+
raise ValueError(
|
369 |
+
f'The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} '
|
370 |
+
'for auto-regressive decoding with k/v caching, please make sure to initialize the attention class '
|
371 |
+
'with a layer index.'
|
372 |
+
)
|
373 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
374 |
+
cos, sin = self.rotary_emb(value_states, position_ids, seq_len=kv_seq_len)
|
375 |
+
|
376 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
377 |
+
|
378 |
+
if past_key_value is not None:
|
379 |
+
cache_kwargs = {'sin': sin, 'cos': cos} # Specific to RoPE models
|
380 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
381 |
+
|
382 |
+
# repeat k/v heads if n_kv_heads < n_heads
|
383 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
384 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
385 |
+
|
386 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
387 |
+
|
388 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
389 |
+
raise ValueError(
|
390 |
+
f'Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is'
|
391 |
+
f' {attn_weights.size()}'
|
392 |
+
)
|
393 |
+
|
394 |
+
if attention_mask is not None:
|
395 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
396 |
+
raise ValueError(
|
397 |
+
f'Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}'
|
398 |
+
)
|
399 |
+
attn_weights = attn_weights + attention_mask
|
400 |
+
|
401 |
+
# upcast attention to fp32
|
402 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(value_states.dtype)
|
403 |
+
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
|
404 |
+
|
405 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
406 |
+
|
407 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
408 |
+
raise ValueError(
|
409 |
+
f'`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is'
|
410 |
+
f' {attn_output.size()}'
|
411 |
+
)
|
412 |
+
|
413 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
414 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
415 |
+
|
416 |
+
attn_output = self.o_proj(attn_output)
|
417 |
+
|
418 |
+
if not output_attentions:
|
419 |
+
attn_weights = None
|
420 |
+
|
421 |
+
return attn_output, attn_weights, past_key_value
|
422 |
+
|
423 |
+
|
424 |
+
class Phi3FlashAttention2(Phi3Attention):
|
425 |
+
"""
|
426 |
+
Phi-3 flash attention module. This module inherits from `Phi3Attention` as the weights of the module stays
|
427 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
428 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
429 |
+
"""
|
430 |
+
|
431 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
|
432 |
+
def __init__(self, *args, **kwargs):
|
433 |
+
super().__init__(*args, **kwargs)
|
434 |
+
|
435 |
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
436 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
437 |
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
438 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
439 |
+
|
440 |
+
def forward(
|
441 |
+
self,
|
442 |
+
hidden_states: torch.Tensor,
|
443 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
444 |
+
position_ids: Optional[torch.LongTensor] = None,
|
445 |
+
past_key_value: Optional[Cache] = None,
|
446 |
+
output_attentions: bool = False,
|
447 |
+
use_cache: bool = False,
|
448 |
+
**kwargs,
|
449 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
450 |
+
# Phi3FlashAttention2 attention does not support output_attentions
|
451 |
+
|
452 |
+
if not _flash_supports_window_size:
|
453 |
+
logger.warning_once(
|
454 |
+
"The current flash attention version does not support sliding window attention. Please use `attn_implementation='eager'` or upgrade flash-attn library."
|
455 |
+
)
|
456 |
+
raise ValueError('The current flash attention version does not support sliding window attention.')
|
457 |
+
|
458 |
+
output_attentions = False
|
459 |
+
|
460 |
+
if 'padding_mask' in kwargs:
|
461 |
+
warnings.warn(
|
462 |
+
'Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`'
|
463 |
+
)
|
464 |
+
|
465 |
+
# overwrite attention_mask with padding_mask
|
466 |
+
attention_mask = kwargs.pop('padding_mask')
|
467 |
+
|
468 |
+
bsz, q_len, _ = hidden_states.size()
|
469 |
+
|
470 |
+
qkv = self.qkv_proj(hidden_states)
|
471 |
+
query_pos = self.num_heads * self.head_dim
|
472 |
+
query_states = qkv[..., :query_pos]
|
473 |
+
key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim]
|
474 |
+
value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :]
|
475 |
+
|
476 |
+
# Flash attention requires the input to have the shape
|
477 |
+
# batch_size x seq_length x head_dim x hidden_dim
|
478 |
+
# therefore we just need to keep the original shape
|
479 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
480 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
481 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
482 |
+
|
483 |
+
kv_seq_len = key_states.shape[-2]
|
484 |
+
if past_key_value is not None:
|
485 |
+
if self.layer_idx is None:
|
486 |
+
raise ValueError(
|
487 |
+
f'The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} '
|
488 |
+
'for auto-regressive decoding with k/v caching, please make sure to initialize the attention class '
|
489 |
+
'with a layer index.'
|
490 |
+
)
|
491 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
492 |
+
|
493 |
+
# Because the input can be padded, the absolute sequence length depends on the max position id.
|
494 |
+
rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item()) + 1
|
495 |
+
cos, sin = self.rotary_emb(value_states, position_ids, seq_len=rotary_seq_len)
|
496 |
+
|
497 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
498 |
+
|
499 |
+
use_sliding_windows = (
|
500 |
+
_flash_supports_window_size
|
501 |
+
and getattr(self.config, 'sliding_window', None) is not None
|
502 |
+
and kv_seq_len > self.config.sliding_window
|
503 |
+
)
|
504 |
+
|
505 |
+
if past_key_value is not None:
|
506 |
+
# Activate slicing cache only if the config has a value `sliding_windows` attribute
|
507 |
+
cache_has_contents = past_key_value.get_seq_length(self.layer_idx) > 0
|
508 |
+
if (
|
509 |
+
getattr(self.config, 'sliding_window', None) is not None
|
510 |
+
and kv_seq_len > self.config.sliding_window
|
511 |
+
and cache_has_contents
|
512 |
+
):
|
513 |
+
slicing_tokens = 1 - self.config.sliding_window
|
514 |
+
|
515 |
+
past_key = past_key_value[self.layer_idx][0]
|
516 |
+
past_value = past_key_value[self.layer_idx][1]
|
517 |
+
|
518 |
+
past_key = past_key[:, :, slicing_tokens:, :].contiguous()
|
519 |
+
past_value = past_value[:, :, slicing_tokens:, :].contiguous()
|
520 |
+
|
521 |
+
if past_key.shape[-2] != self.config.sliding_window - 1:
|
522 |
+
raise ValueError(
|
523 |
+
f'past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got'
|
524 |
+
f' {past_key.shape}'
|
525 |
+
)
|
526 |
+
|
527 |
+
if attention_mask is not None:
|
528 |
+
attention_mask = attention_mask[:, slicing_tokens:]
|
529 |
+
attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1)
|
530 |
+
|
531 |
+
cache_kwargs = {'sin': sin, 'cos': cos} # Specific to RoPE models
|
532 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
533 |
+
|
534 |
+
# repeat k/v heads if n_kv_heads < n_heads
|
535 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
536 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
537 |
+
|
538 |
+
attn_dropout = self.attention_dropout if self.training else 0.0
|
539 |
+
|
540 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
541 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
542 |
+
# cast them back in the correct dtype just to be sure everything works as expected.
|
543 |
+
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
544 |
+
# in fp32.
|
545 |
+
|
546 |
+
if query_states.dtype == torch.float32:
|
547 |
+
if torch.is_autocast_enabled():
|
548 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
549 |
+
# Handle the case where the model is quantized
|
550 |
+
elif hasattr(self.config, '_pre_quantization_dtype'):
|
551 |
+
target_dtype = self.config._pre_quantization_dtype
|
552 |
+
else:
|
553 |
+
target_dtype = self.qkv_proj.weight.dtype
|
554 |
+
|
555 |
+
logger.warning_once(
|
556 |
+
f'The input hidden states seems to be silently casted in float32, this might be related to'
|
557 |
+
f' the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in'
|
558 |
+
f' {target_dtype}.'
|
559 |
+
)
|
560 |
+
|
561 |
+
query_states = query_states.to(target_dtype)
|
562 |
+
key_states = key_states.to(target_dtype)
|
563 |
+
value_states = value_states.to(target_dtype)
|
564 |
+
|
565 |
+
# Reashape to the expected shape for Flash Attention
|
566 |
+
query_states = query_states.transpose(1, 2)
|
567 |
+
key_states = key_states.transpose(1, 2)
|
568 |
+
value_states = value_states.transpose(1, 2)
|
569 |
+
|
570 |
+
attn_output = self._flash_attention_forward(
|
571 |
+
query_states,
|
572 |
+
key_states,
|
573 |
+
value_states,
|
574 |
+
attention_mask,
|
575 |
+
q_len,
|
576 |
+
dropout=attn_dropout,
|
577 |
+
use_sliding_windows=use_sliding_windows,
|
578 |
+
)
|
579 |
+
|
580 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
581 |
+
attn_output = self.o_proj(attn_output)
|
582 |
+
|
583 |
+
if not output_attentions:
|
584 |
+
attn_weights = None
|
585 |
+
|
586 |
+
return attn_output, attn_weights, past_key_value
|
587 |
+
|
588 |
+
# Copied from transformers.models.mistral.modeling_mistral.MistralFlashAttention2._flash_attention_forward
|
589 |
+
def _flash_attention_forward(
|
590 |
+
self,
|
591 |
+
query_states,
|
592 |
+
key_states,
|
593 |
+
value_states,
|
594 |
+
attention_mask,
|
595 |
+
query_length,
|
596 |
+
dropout=0.0,
|
597 |
+
softmax_scale=None,
|
598 |
+
use_sliding_windows=False,
|
599 |
+
):
|
600 |
+
"""
|
601 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
602 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
603 |
+
|
604 |
+
Args:
|
605 |
+
query_states (`torch.Tensor`):
|
606 |
+
Input query states to be passed to Flash Attention API
|
607 |
+
key_states (`torch.Tensor`):
|
608 |
+
Input key states to be passed to Flash Attention API
|
609 |
+
value_states (`torch.Tensor`):
|
610 |
+
Input value states to be passed to Flash Attention API
|
611 |
+
attention_mask (`torch.Tensor`):
|
612 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
613 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
614 |
+
dropout (`float`):
|
615 |
+
Attention dropout
|
616 |
+
softmax_scale (`float`, *optional*):
|
617 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
618 |
+
use_sliding_windows (`bool`, *optional*):
|
619 |
+
Whether to activate sliding window attention.
|
620 |
+
"""
|
621 |
+
if not self._flash_attn_uses_top_left_mask:
|
622 |
+
causal = self.is_causal
|
623 |
+
else:
|
624 |
+
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
|
625 |
+
causal = self.is_causal and query_length != 1
|
626 |
+
|
627 |
+
# Contains at least one padding token in the sequence
|
628 |
+
if attention_mask is not None:
|
629 |
+
batch_size = query_states.shape[0]
|
630 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
|
631 |
+
query_states, key_states, value_states, attention_mask, query_length
|
632 |
+
)
|
633 |
+
|
634 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
635 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
636 |
+
|
637 |
+
if not use_sliding_windows:
|
638 |
+
attn_output_unpad = flash_attn_varlen_func(
|
639 |
+
query_states,
|
640 |
+
key_states,
|
641 |
+
value_states,
|
642 |
+
cu_seqlens_q=cu_seqlens_q,
|
643 |
+
cu_seqlens_k=cu_seqlens_k,
|
644 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
645 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
646 |
+
dropout_p=dropout,
|
647 |
+
softmax_scale=softmax_scale,
|
648 |
+
causal=causal,
|
649 |
+
)
|
650 |
+
else:
|
651 |
+
attn_output_unpad = flash_attn_varlen_func(
|
652 |
+
query_states,
|
653 |
+
key_states,
|
654 |
+
value_states,
|
655 |
+
cu_seqlens_q=cu_seqlens_q,
|
656 |
+
cu_seqlens_k=cu_seqlens_k,
|
657 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
658 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
659 |
+
dropout_p=dropout,
|
660 |
+
softmax_scale=softmax_scale,
|
661 |
+
causal=causal,
|
662 |
+
window_size=(self.config.sliding_window, self.config.sliding_window),
|
663 |
+
)
|
664 |
+
|
665 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
666 |
+
else:
|
667 |
+
if not use_sliding_windows:
|
668 |
+
attn_output = flash_attn_func(
|
669 |
+
query_states,
|
670 |
+
key_states,
|
671 |
+
value_states,
|
672 |
+
dropout,
|
673 |
+
softmax_scale=softmax_scale,
|
674 |
+
causal=causal,
|
675 |
+
)
|
676 |
+
else:
|
677 |
+
attn_output = flash_attn_func(
|
678 |
+
query_states,
|
679 |
+
key_states,
|
680 |
+
value_states,
|
681 |
+
dropout,
|
682 |
+
softmax_scale=softmax_scale,
|
683 |
+
causal=causal,
|
684 |
+
window_size=(self.config.sliding_window, self.config.sliding_window),
|
685 |
+
)
|
686 |
+
|
687 |
+
return attn_output
|
688 |
+
|
689 |
+
# Copied from transformers.models.mistral.modeling_mistral.MistralFlashAttention2._upad_input
|
690 |
+
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
691 |
+
batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape
|
692 |
+
|
693 |
+
# On the first iteration we need to properly re-create the padding mask
|
694 |
+
# by slicing it on the proper place
|
695 |
+
if kv_seq_len != attention_mask.shape[-1]:
|
696 |
+
attention_mask_num_tokens = attention_mask.shape[-1]
|
697 |
+
attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :]
|
698 |
+
|
699 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
700 |
+
|
701 |
+
key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
|
702 |
+
value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
|
703 |
+
|
704 |
+
if query_length == kv_seq_len:
|
705 |
+
query_layer = index_first_axis(
|
706 |
+
query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k
|
707 |
+
)
|
708 |
+
cu_seqlens_q = cu_seqlens_k
|
709 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
710 |
+
indices_q = indices_k
|
711 |
+
elif query_length == 1:
|
712 |
+
max_seqlen_in_batch_q = 1
|
713 |
+
cu_seqlens_q = torch.arange(
|
714 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
715 |
+
) # There is a memcpy here, that is very bad.
|
716 |
+
indices_q = cu_seqlens_q[:-1]
|
717 |
+
query_layer = query_layer.squeeze(1)
|
718 |
+
else:
|
719 |
+
# The -q_len: slice assumes left padding.
|
720 |
+
attention_mask = attention_mask[:, -query_length:]
|
721 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
722 |
+
|
723 |
+
return (
|
724 |
+
query_layer,
|
725 |
+
key_layer,
|
726 |
+
value_layer,
|
727 |
+
indices_q,
|
728 |
+
(cu_seqlens_q, cu_seqlens_k),
|
729 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
730 |
+
)
|
731 |
+
|
732 |
+
|
733 |
+
# copied from transformers.models.llama.modeling_llama.LlamaSdpaAttention with Llama->Phi3
|
734 |
+
# TODO @Arthur no longer copied from LLama after static cache
|
735 |
+
class Phi3SdpaAttention(Phi3Attention):
|
736 |
+
"""
|
737 |
+
Phi3 attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
|
738 |
+
`Phi3Attention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
|
739 |
+
SDPA API.
|
740 |
+
"""
|
741 |
+
|
742 |
+
# Adapted from Phi3Attention.forward
|
743 |
+
def forward(
|
744 |
+
self,
|
745 |
+
hidden_states: torch.Tensor,
|
746 |
+
attention_mask: Optional[torch.Tensor] = None,
|
747 |
+
position_ids: Optional[torch.LongTensor] = None,
|
748 |
+
past_key_value: Optional[Cache] = None,
|
749 |
+
output_attentions: bool = False,
|
750 |
+
use_cache: bool = False,
|
751 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
752 |
+
if output_attentions:
|
753 |
+
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
|
754 |
+
logger.warning_once(
|
755 |
+
'Phi3Model is using Phi3SdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, '
|
756 |
+
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
757 |
+
)
|
758 |
+
return super().forward(
|
759 |
+
hidden_states=hidden_states,
|
760 |
+
attention_mask=attention_mask,
|
761 |
+
position_ids=position_ids,
|
762 |
+
past_key_value=past_key_value,
|
763 |
+
output_attentions=output_attentions,
|
764 |
+
use_cache=use_cache,
|
765 |
+
)
|
766 |
+
|
767 |
+
bsz, q_len, _ = hidden_states.size()
|
768 |
+
|
769 |
+
qkv = self.qkv_proj(hidden_states)
|
770 |
+
query_pos = self.num_heads * self.head_dim
|
771 |
+
query_states = qkv[..., :query_pos]
|
772 |
+
key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim]
|
773 |
+
value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :]
|
774 |
+
|
775 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
776 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
777 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
778 |
+
|
779 |
+
kv_seq_len = key_states.shape[-2]
|
780 |
+
if past_key_value is not None:
|
781 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
782 |
+
cos, sin = self.rotary_emb(value_states, position_ids, seq_len=kv_seq_len)
|
783 |
+
|
784 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
785 |
+
|
786 |
+
if past_key_value is not None:
|
787 |
+
cache_kwargs = {'sin': sin, 'cos': cos} # Specific to RoPE models
|
788 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
789 |
+
|
790 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
791 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
792 |
+
|
793 |
+
if attention_mask is not None:
|
794 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
795 |
+
raise ValueError(
|
796 |
+
f'Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}'
|
797 |
+
)
|
798 |
+
|
799 |
+
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
|
800 |
+
# Reference: https://github.com/pytorch/pytorch/issues/112577.
|
801 |
+
if query_states.device.type == 'cuda' and attention_mask is not None:
|
802 |
+
query_states = query_states.contiguous()
|
803 |
+
key_states = key_states.contiguous()
|
804 |
+
value_states = value_states.contiguous()
|
805 |
+
|
806 |
+
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
807 |
+
query_states,
|
808 |
+
key_states,
|
809 |
+
value_states,
|
810 |
+
attn_mask=attention_mask,
|
811 |
+
dropout_p=self.attention_dropout if self.training else 0.0,
|
812 |
+
# The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
|
813 |
+
is_causal=self.is_causal and attention_mask is None and q_len > 1,
|
814 |
+
)
|
815 |
+
|
816 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
817 |
+
attn_output = attn_output.view(bsz, q_len, self.hidden_size)
|
818 |
+
|
819 |
+
attn_output = self.o_proj(attn_output)
|
820 |
+
|
821 |
+
return attn_output, None, past_key_value
|
822 |
+
|
823 |
+
|
824 |
+
PHI3_ATTENTION_CLASSES = {
|
825 |
+
'eager': Phi3Attention,
|
826 |
+
'flash_attention_2': Phi3FlashAttention2,
|
827 |
+
'sdpa': Phi3SdpaAttention,
|
828 |
+
}
|
829 |
+
|
830 |
+
|
831 |
+
class Phi3DecoderLayer(nn.Module):
|
832 |
+
def __init__(self, config: Phi3Config, layer_idx: int):
|
833 |
+
super().__init__()
|
834 |
+
|
835 |
+
self.config = config
|
836 |
+
self.self_attn = PHI3_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx=layer_idx)
|
837 |
+
|
838 |
+
self.mlp = Phi3MLP(config)
|
839 |
+
self.input_layernorm = Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
840 |
+
|
841 |
+
self.resid_attn_dropout = nn.Dropout(config.resid_pdrop)
|
842 |
+
self.resid_mlp_dropout = nn.Dropout(config.resid_pdrop)
|
843 |
+
self.post_attention_layernorm = Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
844 |
+
|
845 |
+
def forward(
|
846 |
+
self,
|
847 |
+
hidden_states: torch.Tensor,
|
848 |
+
attention_mask: Optional[torch.Tensor] = None,
|
849 |
+
position_ids: Optional[torch.LongTensor] = None,
|
850 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
851 |
+
output_attentions: Optional[bool] = False,
|
852 |
+
use_cache: Optional[bool] = False,
|
853 |
+
**kwargs,
|
854 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
855 |
+
if 'padding_mask' in kwargs:
|
856 |
+
warnings.warn(
|
857 |
+
'Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`'
|
858 |
+
)
|
859 |
+
"""
|
860 |
+
Args:
|
861 |
+
hidden_states (`torch.FloatTensor`):
|
862 |
+
input to the layer of shape `(batch, seq_len, embed_dim)`
|
863 |
+
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
864 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
865 |
+
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
866 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range
|
867 |
+
`[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids)
|
868 |
+
output_attentions (`bool`, *optional*):
|
869 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
870 |
+
returned tensors for more detail.
|
871 |
+
use_cache (`bool`, *optional*):
|
872 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
873 |
+
(see `past_key_values`).
|
874 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
875 |
+
"""
|
876 |
+
|
877 |
+
residual = hidden_states
|
878 |
+
|
879 |
+
hidden_states = self.input_layernorm(hidden_states)
|
880 |
+
|
881 |
+
# Self Attention
|
882 |
+
attn_outputs, self_attn_weights, present_key_value = self.self_attn(
|
883 |
+
hidden_states=hidden_states,
|
884 |
+
attention_mask=attention_mask,
|
885 |
+
position_ids=position_ids,
|
886 |
+
past_key_value=past_key_value,
|
887 |
+
output_attentions=output_attentions,
|
888 |
+
use_cache=use_cache,
|
889 |
+
)
|
890 |
+
|
891 |
+
hidden_states = residual + self.resid_attn_dropout(attn_outputs)
|
892 |
+
|
893 |
+
residual = hidden_states
|
894 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
895 |
+
hidden_states = self.mlp(hidden_states)
|
896 |
+
hidden_states = residual + self.resid_mlp_dropout(hidden_states)
|
897 |
+
|
898 |
+
outputs = (hidden_states,)
|
899 |
+
|
900 |
+
if output_attentions:
|
901 |
+
outputs += (self_attn_weights,)
|
902 |
+
|
903 |
+
if use_cache:
|
904 |
+
outputs += (present_key_value,)
|
905 |
+
|
906 |
+
return outputs
|
907 |
+
|
908 |
+
|
909 |
+
PHI3_START_DOCSTRING = r"""
|
910 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
911 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
912 |
+
etc.)
|
913 |
+
|
914 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
915 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
916 |
+
and behavior.
|
917 |
+
|
918 |
+
Parameters:
|
919 |
+
config ([`Phi3Config`]):
|
920 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
921 |
+
load the weights associated with the model, only the configuration. Check out the
|
922 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
923 |
+
"""
|
924 |
+
|
925 |
+
|
926 |
+
@add_start_docstrings(
|
927 |
+
'The bare Phi-3 model outputting raw hidden-states without any specific head on top.',
|
928 |
+
PHI3_START_DOCSTRING,
|
929 |
+
)
|
930 |
+
class Phi3PreTrainedModel(PreTrainedModel):
|
931 |
+
config_class = Phi3Config
|
932 |
+
base_model_prefix = 'model'
|
933 |
+
supports_gradient_checkpointing = True
|
934 |
+
_no_split_modules = ['Phi3DecoderLayer']
|
935 |
+
_skip_keys_device_placement = 'past_key_values'
|
936 |
+
_supports_flash_attn_2 = True
|
937 |
+
_supports_sdpa = False
|
938 |
+
_supports_cache_class = True
|
939 |
+
|
940 |
+
_version = '0.0.5'
|
941 |
+
|
942 |
+
def __init__(self, config: Phi3Config):
|
943 |
+
if not has_flash_attn:
|
944 |
+
config._attn_implementation = 'eager'
|
945 |
+
print('Warning: Flash attention is not available, using eager attention instead.')
|
946 |
+
super().__init__(config)
|
947 |
+
|
948 |
+
def _init_weights(self, module):
|
949 |
+
std = self.config.initializer_range
|
950 |
+
if isinstance(module, nn.Linear):
|
951 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
952 |
+
if module.bias is not None:
|
953 |
+
module.bias.data.zero_()
|
954 |
+
elif isinstance(module, nn.Embedding):
|
955 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
956 |
+
if module.padding_idx is not None:
|
957 |
+
module.weight.data[module.padding_idx].zero_()
|
958 |
+
|
959 |
+
|
960 |
+
PHI3_INPUTS_DOCSTRING = r"""
|
961 |
+
Args:
|
962 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
963 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
964 |
+
it.
|
965 |
+
|
966 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
967 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
968 |
+
|
969 |
+
[What are input IDs?](../glossary#input-ids)
|
970 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
971 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
972 |
+
|
973 |
+
- 1 for tokens that are **not masked**,
|
974 |
+
- 0 for tokens that are **masked**.
|
975 |
+
|
976 |
+
[What are attention masks?](../glossary#attention-mask)
|
977 |
+
|
978 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
979 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
980 |
+
|
981 |
+
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
982 |
+
`past_key_values`).
|
983 |
+
|
984 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
985 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
986 |
+
information on the default strategy.
|
987 |
+
|
988 |
+
- 1 indicates the head is **not masked**,
|
989 |
+
- 0 indicates the head is **masked**.
|
990 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
991 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
992 |
+
config.n_positions - 1]`.
|
993 |
+
|
994 |
+
[What are position IDs?](../glossary#position-ids)
|
995 |
+
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
996 |
+
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
997 |
+
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
998 |
+
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
999 |
+
|
1000 |
+
Two formats are allowed:
|
1001 |
+
- a [`~cache_utils.Cache`] instance;
|
1002 |
+
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
1003 |
+
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
1004 |
+
cache format.
|
1005 |
+
|
1006 |
+
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
1007 |
+
legacy cache format will be returned.
|
1008 |
+
|
1009 |
+
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
1010 |
+
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
1011 |
+
of shape `(batch_size, sequence_length)`.
|
1012 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
1013 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
1014 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
1015 |
+
model's internal embedding lookup matrix.
|
1016 |
+
use_cache (`bool`, *optional*):
|
1017 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
1018 |
+
`past_key_values`).
|
1019 |
+
output_attentions (`bool`, *optional*):
|
1020 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
1021 |
+
tensors for more detail.
|
1022 |
+
output_hidden_states (`bool`, *optional*):
|
1023 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
1024 |
+
more detail.
|
1025 |
+
return_dict (`bool`, *optional*):
|
1026 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
1027 |
+
"""
|
1028 |
+
|
1029 |
+
|
1030 |
+
@add_start_docstrings(
|
1031 |
+
'The bare Phi-3 model outputting raw hidden-states without any specific head on top.',
|
1032 |
+
PHI3_START_DOCSTRING,
|
1033 |
+
)
|
1034 |
+
class Phi3Model(Phi3PreTrainedModel):
|
1035 |
+
"""
|
1036 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Phi3DecoderLayer`]
|
1037 |
+
|
1038 |
+
Args:
|
1039 |
+
config: Phi3Config
|
1040 |
+
"""
|
1041 |
+
|
1042 |
+
def __init__(self, config: Phi3Config):
|
1043 |
+
super().__init__(config)
|
1044 |
+
self.padding_idx = config.pad_token_id
|
1045 |
+
self.vocab_size = config.vocab_size
|
1046 |
+
|
1047 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
1048 |
+
self.embed_dropout = nn.Dropout(config.embd_pdrop)
|
1049 |
+
self.layers = nn.ModuleList(
|
1050 |
+
[Phi3DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
1051 |
+
)
|
1052 |
+
self._attn_implementation = config._attn_implementation
|
1053 |
+
|
1054 |
+
self.norm = Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
1055 |
+
|
1056 |
+
self.gradient_checkpointing = False
|
1057 |
+
# Initialize weights and apply final processing
|
1058 |
+
self.post_init()
|
1059 |
+
|
1060 |
+
def get_input_embeddings(self):
|
1061 |
+
return self.embed_tokens
|
1062 |
+
|
1063 |
+
def set_input_embeddings(self, value):
|
1064 |
+
self.embed_tokens = value
|
1065 |
+
|
1066 |
+
@add_start_docstrings_to_model_forward(PHI3_INPUTS_DOCSTRING)
|
1067 |
+
def forward(
|
1068 |
+
self,
|
1069 |
+
input_ids: torch.LongTensor = None,
|
1070 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1071 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1072 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1073 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1074 |
+
use_cache: Optional[bool] = None,
|
1075 |
+
output_attentions: Optional[bool] = None,
|
1076 |
+
output_hidden_states: Optional[bool] = None,
|
1077 |
+
return_dict: Optional[bool] = None,
|
1078 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
1079 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1080 |
+
output_hidden_states = (
|
1081 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1082 |
+
)
|
1083 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
1084 |
+
|
1085 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1086 |
+
|
1087 |
+
# retrieve input_ids and inputs_embeds
|
1088 |
+
if input_ids is not None and inputs_embeds is not None:
|
1089 |
+
raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time')
|
1090 |
+
elif input_ids is not None:
|
1091 |
+
batch_size, seq_length = input_ids.shape[:2]
|
1092 |
+
elif inputs_embeds is not None:
|
1093 |
+
batch_size, seq_length = inputs_embeds.shape[:2]
|
1094 |
+
else:
|
1095 |
+
raise ValueError('You have to specify either input_ids or inputs_embeds')
|
1096 |
+
|
1097 |
+
past_key_values_length = 0
|
1098 |
+
|
1099 |
+
if self.gradient_checkpointing and self.training:
|
1100 |
+
if use_cache:
|
1101 |
+
logger.warning_once(
|
1102 |
+
'`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...'
|
1103 |
+
)
|
1104 |
+
use_cache = False
|
1105 |
+
|
1106 |
+
if use_cache:
|
1107 |
+
use_legacy_cache = not isinstance(past_key_values, Cache)
|
1108 |
+
if use_legacy_cache:
|
1109 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
1110 |
+
past_key_values_length = past_key_values.get_usable_length(seq_length)
|
1111 |
+
|
1112 |
+
if position_ids is None:
|
1113 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
1114 |
+
position_ids = torch.arange(
|
1115 |
+
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
1116 |
+
)
|
1117 |
+
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
1118 |
+
else:
|
1119 |
+
position_ids = position_ids.view(-1, seq_length).long()
|
1120 |
+
|
1121 |
+
if inputs_embeds is None:
|
1122 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
1123 |
+
|
1124 |
+
if attention_mask is not None and self._attn_implementation == 'flash_attention_2' and use_cache:
|
1125 |
+
is_padding_right = attention_mask[:, -1].sum().item() != batch_size
|
1126 |
+
if is_padding_right:
|
1127 |
+
raise ValueError(
|
1128 |
+
"You are attempting to perform batched generation with padding_side='right'"
|
1129 |
+
' this may lead to unexpected behaviour for Flash Attention version of Phi3. Make sure to '
|
1130 |
+
" call `tokenizer.padding_side = 'left'` before tokenizing the input. "
|
1131 |
+
)
|
1132 |
+
|
1133 |
+
if self._attn_implementation == 'flash_attention_2':
|
1134 |
+
# 2d mask is passed through the layers
|
1135 |
+
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
1136 |
+
else:
|
1137 |
+
# 4d mask is passed through the layers
|
1138 |
+
attention_mask = _prepare_4d_causal_attention_mask(
|
1139 |
+
attention_mask,
|
1140 |
+
(batch_size, seq_length),
|
1141 |
+
inputs_embeds,
|
1142 |
+
past_key_values_length,
|
1143 |
+
sliding_window=self.config.sliding_window,
|
1144 |
+
)
|
1145 |
+
|
1146 |
+
hidden_states = inputs_embeds
|
1147 |
+
|
1148 |
+
# decoder layers
|
1149 |
+
all_hidden_states = () if output_hidden_states else None
|
1150 |
+
all_self_attns = () if output_attentions else None
|
1151 |
+
next_decoder_cache = None
|
1152 |
+
|
1153 |
+
for decoder_layer in self.layers:
|
1154 |
+
if output_hidden_states:
|
1155 |
+
all_hidden_states += (hidden_states,)
|
1156 |
+
|
1157 |
+
if self.gradient_checkpointing and self.training:
|
1158 |
+
layer_outputs = self._gradient_checkpointing_func(
|
1159 |
+
decoder_layer.__call__,
|
1160 |
+
hidden_states,
|
1161 |
+
attention_mask,
|
1162 |
+
position_ids,
|
1163 |
+
past_key_values,
|
1164 |
+
output_attentions,
|
1165 |
+
use_cache,
|
1166 |
+
)
|
1167 |
+
else:
|
1168 |
+
layer_outputs = decoder_layer(
|
1169 |
+
hidden_states,
|
1170 |
+
attention_mask=attention_mask,
|
1171 |
+
position_ids=position_ids,
|
1172 |
+
past_key_value=past_key_values,
|
1173 |
+
output_attentions=output_attentions,
|
1174 |
+
use_cache=use_cache,
|
1175 |
+
)
|
1176 |
+
|
1177 |
+
hidden_states = layer_outputs[0]
|
1178 |
+
|
1179 |
+
if use_cache:
|
1180 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
1181 |
+
|
1182 |
+
if output_attentions:
|
1183 |
+
all_self_attns += (layer_outputs[1],)
|
1184 |
+
|
1185 |
+
hidden_states = self.norm(hidden_states)
|
1186 |
+
|
1187 |
+
# add hidden states from the last decoder layer
|
1188 |
+
if output_hidden_states:
|
1189 |
+
all_hidden_states += (hidden_states,)
|
1190 |
+
|
1191 |
+
next_cache = None
|
1192 |
+
if use_cache:
|
1193 |
+
next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
|
1194 |
+
if not return_dict:
|
1195 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
1196 |
+
return BaseModelOutputWithPast(
|
1197 |
+
last_hidden_state=hidden_states,
|
1198 |
+
past_key_values=next_cache,
|
1199 |
+
hidden_states=all_hidden_states,
|
1200 |
+
attentions=all_self_attns,
|
1201 |
+
)
|
1202 |
+
|
1203 |
+
|
1204 |
+
class Phi3ForCausalLM(Phi3PreTrainedModel):
|
1205 |
+
_tied_weights_keys = ['lm_head.weight']
|
1206 |
+
|
1207 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.__init__ with Llama->Phi3
|
1208 |
+
def __init__(self, config):
|
1209 |
+
super().__init__(config)
|
1210 |
+
self.model = Phi3Model(config)
|
1211 |
+
self.vocab_size = config.vocab_size
|
1212 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1213 |
+
|
1214 |
+
# Initialize weights and apply final processing
|
1215 |
+
self.post_init()
|
1216 |
+
|
1217 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_input_embeddings
|
1218 |
+
def get_input_embeddings(self):
|
1219 |
+
return self.model.embed_tokens
|
1220 |
+
|
1221 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_input_embeddings
|
1222 |
+
def set_input_embeddings(self, value):
|
1223 |
+
self.model.embed_tokens = value
|
1224 |
+
|
1225 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_output_embeddings
|
1226 |
+
def get_output_embeddings(self):
|
1227 |
+
return self.lm_head
|
1228 |
+
|
1229 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_output_embeddings
|
1230 |
+
def set_output_embeddings(self, new_embeddings):
|
1231 |
+
self.lm_head = new_embeddings
|
1232 |
+
|
1233 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_decoder
|
1234 |
+
def set_decoder(self, decoder):
|
1235 |
+
self.model = decoder
|
1236 |
+
|
1237 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_decoder
|
1238 |
+
def get_decoder(self):
|
1239 |
+
return self.model
|
1240 |
+
|
1241 |
+
# Ignore copy
|
1242 |
+
@add_start_docstrings_to_model_forward(PHI3_INPUTS_DOCSTRING)
|
1243 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
1244 |
+
def forward(
|
1245 |
+
self,
|
1246 |
+
input_ids: torch.LongTensor = None,
|
1247 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1248 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1249 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1250 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1251 |
+
labels: Optional[torch.LongTensor] = None,
|
1252 |
+
use_cache: Optional[bool] = None,
|
1253 |
+
output_attentions: Optional[bool] = None,
|
1254 |
+
output_hidden_states: Optional[bool] = None,
|
1255 |
+
return_dict: Optional[bool] = None,
|
1256 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
1257 |
+
r"""
|
1258 |
+
Args:
|
1259 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1260 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
1261 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1262 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
1263 |
+
|
1264 |
+
Returns:
|
1265 |
+
|
1266 |
+
Example:
|
1267 |
+
|
1268 |
+
```python
|
1269 |
+
>>> from transformers import AutoTokenizer, Phi3ForCausalLM
|
1270 |
+
|
1271 |
+
>>> model = Phi3ForCausalLM.from_pretrained("microsoft/phi-3-mini-4k-instruct")
|
1272 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-3-mini-4k-instruct")
|
1273 |
+
|
1274 |
+
>>> prompt = "This is an example script ."
|
1275 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
1276 |
+
|
1277 |
+
>>> # Generate
|
1278 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
1279 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
1280 |
+
'This is an example script .\n Certainly! Below is a sample script that demonstrates a simple task, such as calculating the sum'
|
1281 |
+
```"""
|
1282 |
+
|
1283 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1284 |
+
output_hidden_states = (
|
1285 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1286 |
+
)
|
1287 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1288 |
+
|
1289 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
1290 |
+
outputs = self.model(
|
1291 |
+
input_ids=input_ids,
|
1292 |
+
attention_mask=attention_mask,
|
1293 |
+
position_ids=position_ids,
|
1294 |
+
past_key_values=past_key_values,
|
1295 |
+
inputs_embeds=inputs_embeds,
|
1296 |
+
use_cache=use_cache,
|
1297 |
+
output_attentions=output_attentions,
|
1298 |
+
output_hidden_states=output_hidden_states,
|
1299 |
+
return_dict=return_dict,
|
1300 |
+
)
|
1301 |
+
|
1302 |
+
hidden_states = outputs[0]
|
1303 |
+
logits = self.lm_head(hidden_states)
|
1304 |
+
logits = logits.float()
|
1305 |
+
|
1306 |
+
loss = None
|
1307 |
+
if labels is not None:
|
1308 |
+
# Shift so that tokens < n predict n
|
1309 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
1310 |
+
shift_labels = labels[..., 1:].contiguous()
|
1311 |
+
# Flatten the tokens
|
1312 |
+
loss_fct = CrossEntropyLoss()
|
1313 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
1314 |
+
shift_labels = shift_labels.view(-1)
|
1315 |
+
# Enable model parallelism
|
1316 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
1317 |
+
loss = loss_fct(shift_logits, shift_labels)
|
1318 |
+
|
1319 |
+
if not return_dict:
|
1320 |
+
output = (logits,) + outputs[1:]
|
1321 |
+
return (loss,) + output if loss is not None else output
|
1322 |
+
|
1323 |
+
return CausalLMOutputWithPast(
|
1324 |
+
loss=loss,
|
1325 |
+
logits=logits,
|
1326 |
+
past_key_values=outputs.past_key_values,
|
1327 |
+
hidden_states=outputs.hidden_states,
|
1328 |
+
attentions=outputs.attentions,
|
1329 |
+
)
|
1330 |
+
|
1331 |
+
# Copied from transformers.models.persimmon.modeling_persimmon.PersimmonForCausalLM.prepare_inputs_for_generation
|
1332 |
+
def prepare_inputs_for_generation(
|
1333 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
1334 |
+
):
|
1335 |
+
if past_key_values is not None:
|
1336 |
+
if isinstance(past_key_values, Cache):
|
1337 |
+
cache_length = past_key_values.get_seq_length()
|
1338 |
+
past_length = past_key_values.seen_tokens
|
1339 |
+
max_cache_length = past_key_values.get_max_length()
|
1340 |
+
else:
|
1341 |
+
cache_length = past_length = past_key_values[0][0].shape[2]
|
1342 |
+
max_cache_length = None
|
1343 |
+
|
1344 |
+
# Keep only the unprocessed tokens:
|
1345 |
+
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
1346 |
+
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
|
1347 |
+
# input)
|
1348 |
+
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
1349 |
+
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
1350 |
+
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
1351 |
+
# input_ids based on the past_length.
|
1352 |
+
elif past_length < input_ids.shape[1]:
|
1353 |
+
input_ids = input_ids[:, past_length:]
|
1354 |
+
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
1355 |
+
|
1356 |
+
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
|
1357 |
+
if (
|
1358 |
+
max_cache_length is not None
|
1359 |
+
and attention_mask is not None
|
1360 |
+
and cache_length + input_ids.shape[1] > max_cache_length
|
1361 |
+
):
|
1362 |
+
attention_mask = attention_mask[:, -max_cache_length:]
|
1363 |
+
|
1364 |
+
position_ids = kwargs.get('position_ids', None)
|
1365 |
+
if attention_mask is not None and position_ids is None:
|
1366 |
+
# create position_ids on the fly for batch generation
|
1367 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
1368 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
1369 |
+
if past_key_values:
|
1370 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
1371 |
+
|
1372 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1373 |
+
if (inputs_embeds is not None and past_key_values is None) or (inputs_embeds is not None and len(past_key_values) == 0):
|
1374 |
+
model_inputs = {'inputs_embeds': inputs_embeds}
|
1375 |
+
else:
|
1376 |
+
model_inputs = {'input_ids': input_ids}
|
1377 |
+
|
1378 |
+
model_inputs.update(
|
1379 |
+
{
|
1380 |
+
'position_ids': position_ids,
|
1381 |
+
'past_key_values': past_key_values,
|
1382 |
+
'use_cache': kwargs.get('use_cache'),
|
1383 |
+
'attention_mask': attention_mask,
|
1384 |
+
}
|
1385 |
+
)
|
1386 |
+
return model_inputs
|
1387 |
+
|
1388 |
+
@staticmethod
|
1389 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM._reorder_cache
|
1390 |
+
def _reorder_cache(past_key_values, beam_idx):
|
1391 |
+
reordered_past = ()
|
1392 |
+
for layer_past in past_key_values:
|
1393 |
+
reordered_past += (
|
1394 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
1395 |
+
)
|
1396 |
+
return reordered_past
|
1397 |
+
|
1398 |
+
|
1399 |
+
@add_start_docstrings(
|
1400 |
+
"""
|
1401 |
+
The [`Phi3Model`] with a sequence classification head on top (linear layer).
|
1402 |
+
|
1403 |
+
[`Phi3ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
1404 |
+
(e.g. GPT-2) do.
|
1405 |
+
|
1406 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
1407 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
1408 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
1409 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
1410 |
+
each row of the batch).
|
1411 |
+
""",
|
1412 |
+
PHI3_START_DOCSTRING,
|
1413 |
+
)
|
1414 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with Llama->Phi3, LLAMA->PHI3, self.transformer->self.model, transformer_outputs->model_outputs
|
1415 |
+
class Phi3ForSequenceClassification(Phi3PreTrainedModel):
|
1416 |
+
def __init__(self, config):
|
1417 |
+
super().__init__(config)
|
1418 |
+
self.num_labels = config.num_labels
|
1419 |
+
self.model = Phi3Model(config)
|
1420 |
+
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
1421 |
+
|
1422 |
+
# Initialize weights and apply final processing
|
1423 |
+
self.post_init()
|
1424 |
+
|
1425 |
+
def get_input_embeddings(self):
|
1426 |
+
return self.model.embed_tokens
|
1427 |
+
|
1428 |
+
def set_input_embeddings(self, value):
|
1429 |
+
self.model.embed_tokens = value
|
1430 |
+
|
1431 |
+
@add_start_docstrings_to_model_forward(PHI3_INPUTS_DOCSTRING)
|
1432 |
+
def forward(
|
1433 |
+
self,
|
1434 |
+
input_ids: torch.LongTensor = None,
|
1435 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1436 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1437 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1438 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1439 |
+
labels: Optional[torch.LongTensor] = None,
|
1440 |
+
use_cache: Optional[bool] = None,
|
1441 |
+
output_attentions: Optional[bool] = None,
|
1442 |
+
output_hidden_states: Optional[bool] = None,
|
1443 |
+
return_dict: Optional[bool] = None,
|
1444 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
1445 |
+
r"""
|
1446 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1447 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1448 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1449 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1450 |
+
"""
|
1451 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1452 |
+
|
1453 |
+
model_outputs = self.model(
|
1454 |
+
input_ids,
|
1455 |
+
attention_mask=attention_mask,
|
1456 |
+
position_ids=position_ids,
|
1457 |
+
past_key_values=past_key_values,
|
1458 |
+
inputs_embeds=inputs_embeds,
|
1459 |
+
use_cache=use_cache,
|
1460 |
+
output_attentions=output_attentions,
|
1461 |
+
output_hidden_states=output_hidden_states,
|
1462 |
+
return_dict=return_dict,
|
1463 |
+
)
|
1464 |
+
hidden_states = model_outputs[0]
|
1465 |
+
logits = self.score(hidden_states)
|
1466 |
+
|
1467 |
+
if input_ids is not None:
|
1468 |
+
batch_size = input_ids.shape[0]
|
1469 |
+
else:
|
1470 |
+
batch_size = inputs_embeds.shape[0]
|
1471 |
+
|
1472 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
1473 |
+
raise ValueError('Cannot handle batch sizes > 1 if no padding token is defined.')
|
1474 |
+
if self.config.pad_token_id is None:
|
1475 |
+
sequence_lengths = -1
|
1476 |
+
else:
|
1477 |
+
if input_ids is not None:
|
1478 |
+
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
|
1479 |
+
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
1480 |
+
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
1481 |
+
sequence_lengths = sequence_lengths.to(logits.device)
|
1482 |
+
else:
|
1483 |
+
sequence_lengths = -1
|
1484 |
+
|
1485 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
1486 |
+
|
1487 |
+
loss = None
|
1488 |
+
if labels is not None:
|
1489 |
+
labels = labels.to(logits.device)
|
1490 |
+
if self.config.problem_type is None:
|
1491 |
+
if self.num_labels == 1:
|
1492 |
+
self.config.problem_type = 'regression'
|
1493 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1494 |
+
self.config.problem_type = 'single_label_classification'
|
1495 |
+
else:
|
1496 |
+
self.config.problem_type = 'multi_label_classification'
|
1497 |
+
|
1498 |
+
if self.config.problem_type == 'regression':
|
1499 |
+
loss_fct = MSELoss()
|
1500 |
+
if self.num_labels == 1:
|
1501 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
1502 |
+
else:
|
1503 |
+
loss = loss_fct(pooled_logits, labels)
|
1504 |
+
elif self.config.problem_type == 'single_label_classification':
|
1505 |
+
loss_fct = CrossEntropyLoss()
|
1506 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
1507 |
+
elif self.config.problem_type == 'multi_label_classification':
|
1508 |
+
loss_fct = BCEWithLogitsLoss()
|
1509 |
+
loss = loss_fct(pooled_logits, labels)
|
1510 |
+
if not return_dict:
|
1511 |
+
output = (pooled_logits,) + model_outputs[1:]
|
1512 |
+
return ((loss,) + output) if loss is not None else output
|
1513 |
+
|
1514 |
+
return SequenceClassifierOutputWithPast(
|
1515 |
+
loss=loss,
|
1516 |
+
logits=pooled_logits,
|
1517 |
+
past_key_values=model_outputs.past_key_values,
|
1518 |
+
hidden_states=model_outputs.hidden_states,
|
1519 |
+
attentions=model_outputs.attentions,
|
1520 |
+
)
|
1521 |
+
|
1522 |
+
|
1523 |
+
@add_start_docstrings(
|
1524 |
+
"""
|
1525 |
+
[`Phi3Model`] with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
|
1526 |
+
Named-Entity-Recognition (NER) tasks.
|
1527 |
+
""",
|
1528 |
+
PHI3_START_DOCSTRING,
|
1529 |
+
)
|
1530 |
+
# Copied from transformers.models.mpt.modeling_mpt.MptForTokenClassification with Mpt->Phi3,MPT->PHI3,self.transformer->self.model,transformer_outputs->model_outputs
|
1531 |
+
class Phi3ForTokenClassification(Phi3PreTrainedModel):
|
1532 |
+
def __init__(self, config: Phi3Config):
|
1533 |
+
super().__init__(config)
|
1534 |
+
self.num_labels = config.num_labels
|
1535 |
+
|
1536 |
+
self.model = Phi3Model(config)
|
1537 |
+
if hasattr(config, 'classifier_dropout') and config.classifier_dropout is not None:
|
1538 |
+
classifier_dropout = config.classifier_dropout
|
1539 |
+
elif hasattr(config, 'hidden_dropout') and config.hidden_dropout is not None:
|
1540 |
+
classifier_dropout = config.hidden_dropout
|
1541 |
+
else:
|
1542 |
+
classifier_dropout = 0.1
|
1543 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
1544 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
1545 |
+
|
1546 |
+
# Initialize weights and apply final processing
|
1547 |
+
self.post_init()
|
1548 |
+
|
1549 |
+
@add_start_docstrings_to_model_forward(PHI3_INPUTS_DOCSTRING)
|
1550 |
+
@add_code_sample_docstrings(
|
1551 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1552 |
+
output_type=TokenClassifierOutput,
|
1553 |
+
config_class=_CONFIG_FOR_DOC,
|
1554 |
+
)
|
1555 |
+
def forward(
|
1556 |
+
self,
|
1557 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1558 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
1559 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1560 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1561 |
+
labels: Optional[torch.Tensor] = None,
|
1562 |
+
use_cache: Optional[bool] = None,
|
1563 |
+
output_attentions: Optional[bool] = None,
|
1564 |
+
output_hidden_states: Optional[bool] = None,
|
1565 |
+
return_dict: Optional[bool] = None,
|
1566 |
+
**deprecated_arguments,
|
1567 |
+
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
|
1568 |
+
r"""
|
1569 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1570 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1571 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1572 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1573 |
+
"""
|
1574 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1575 |
+
|
1576 |
+
model_outputs = self.model(
|
1577 |
+
input_ids,
|
1578 |
+
past_key_values=past_key_values,
|
1579 |
+
attention_mask=attention_mask,
|
1580 |
+
inputs_embeds=inputs_embeds,
|
1581 |
+
use_cache=use_cache,
|
1582 |
+
output_attentions=output_attentions,
|
1583 |
+
output_hidden_states=output_hidden_states,
|
1584 |
+
return_dict=return_dict,
|
1585 |
+
)
|
1586 |
+
|
1587 |
+
hidden_states = model_outputs[0]
|
1588 |
+
hidden_states = self.dropout(hidden_states)
|
1589 |
+
logits = self.classifier(hidden_states)
|
1590 |
+
|
1591 |
+
loss = None
|
1592 |
+
if labels is not None:
|
1593 |
+
# move labels to correct device to enable model parallelism
|
1594 |
+
labels = labels.to(logits.device)
|
1595 |
+
batch_size, seq_length = labels.shape
|
1596 |
+
loss_fct = CrossEntropyLoss()
|
1597 |
+
loss = loss_fct(
|
1598 |
+
logits.view(batch_size * seq_length, self.num_labels), labels.view(batch_size * seq_length)
|
1599 |
+
)
|
1600 |
+
|
1601 |
+
if not return_dict:
|
1602 |
+
output = (logits,) + model_outputs[2:]
|
1603 |
+
return ((loss,) + output) if loss is not None else output
|
1604 |
+
|
1605 |
+
return TokenClassifierOutput(
|
1606 |
+
loss=loss,
|
1607 |
+
logits=logits,
|
1608 |
+
hidden_states=model_outputs.hidden_states,
|
1609 |
+
attentions=model_outputs.attentions,
|
1610 |
+
)
|
src/third_party/InternVL/internvl_chat/internvl/patch/__init__.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# InternVL
|
3 |
+
# Copyright (c) 2024 OpenGVLab
|
4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
5 |
+
# --------------------------------------------------------
|
6 |
+
|
7 |
+
from .internlm2_packed_training_patch import replace_internlm2_attention_class
|
8 |
+
from .internvit_liger_monkey_patch import apply_liger_kernel_to_internvit
|
9 |
+
from .llama2_flash_attn_monkey_patch import replace_llama2_attn_with_flash_attn
|
10 |
+
from .llama_flash_attn_monkey_patch import replace_llama_attn_with_flash_attn
|
11 |
+
from .llama_packed_training_patch import replace_llama_attention_class
|
12 |
+
from .llama_rmsnorm_monkey_patch import \
|
13 |
+
replace_llama_rmsnorm_with_fused_rmsnorm
|
14 |
+
from .pad_data_collator import (concat_pad_data_collator,
|
15 |
+
dpo_concat_pad_data_collator,
|
16 |
+
pad_data_collator)
|
17 |
+
from .phi3_packed_training_patch import replace_phi3_attention_class
|
18 |
+
from .qwen2_packed_training_patch import replace_qwen2_attention_class
|
19 |
+
from .train_dataloader_patch import replace_train_dataloader
|
20 |
+
from .train_sampler_patch import replace_train_sampler
|
21 |
+
|
22 |
+
__all__ = ['replace_llama_attn_with_flash_attn',
|
23 |
+
'replace_llama_rmsnorm_with_fused_rmsnorm',
|
24 |
+
'replace_llama2_attn_with_flash_attn',
|
25 |
+
'replace_train_sampler',
|
26 |
+
'replace_train_dataloader',
|
27 |
+
'replace_internlm2_attention_class',
|
28 |
+
'replace_qwen2_attention_class',
|
29 |
+
'replace_phi3_attention_class',
|
30 |
+
'replace_llama_attention_class',
|
31 |
+
'pad_data_collator',
|
32 |
+
'dpo_concat_pad_data_collator',
|
33 |
+
'concat_pad_data_collator',
|
34 |
+
'apply_liger_kernel_to_internvit']
|
src/third_party/InternVL/internvl_chat/internvl/patch/internlm2_packed_training_patch.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# InternVL
|
3 |
+
# Copyright (c) 2024 OpenGVLab
|
4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
5 |
+
# --------------------------------------------------------
|
6 |
+
|
7 |
+
import torch
|
8 |
+
from flash_attn.flash_attn_interface import flash_attn_varlen_func
|
9 |
+
from internvl.model.internlm2.modeling_internlm2 import (
|
10 |
+
INTERNLM2_ATTENTION_CLASSES, InternLM2FlashAttention2,
|
11 |
+
apply_rotary_pos_emb)
|
12 |
+
|
13 |
+
|
14 |
+
# Modified from internvl.model.internlm2.modeling_internlm2.InternLM2FlashAttention2
|
15 |
+
class InternLM2FlashAttention2ForPackedTraining(InternLM2FlashAttention2):
|
16 |
+
|
17 |
+
def _flash_attention_forward(
|
18 |
+
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
|
19 |
+
):
|
20 |
+
"""
|
21 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
22 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
23 |
+
|
24 |
+
Args:
|
25 |
+
query_states (`torch.Tensor`):
|
26 |
+
Input query states to be passed to Flash Attention API
|
27 |
+
key_states (`torch.Tensor`):
|
28 |
+
Input key states to be passed to Flash Attention API
|
29 |
+
value_states (`torch.Tensor`):
|
30 |
+
Input value states to be passed to Flash Attention API
|
31 |
+
attention_mask (`torch.Tensor`):
|
32 |
+
rename from cu_seqlens to keep compatability - (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
|
33 |
+
of the sequences in the batch.
|
34 |
+
dropout (`int`, *optional*):
|
35 |
+
Attention dropout
|
36 |
+
softmax_scale (`float`, *optional*):
|
37 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
38 |
+
"""
|
39 |
+
assert query_states.size(0) == key_states.size(0) == value_states.size(0) == 1
|
40 |
+
query_states = query_states.squeeze(0)
|
41 |
+
key_states = key_states.squeeze(0)
|
42 |
+
value_states = value_states.squeeze(0)
|
43 |
+
cu_seqlens = attention_mask.squeeze(0)
|
44 |
+
|
45 |
+
with torch.no_grad():
|
46 |
+
max_seqlen = max([
|
47 |
+
cu_seqlens[idx+1] - cu_seqlens[idx]
|
48 |
+
for idx in range(cu_seqlens.size(0) - 1)
|
49 |
+
]).item()
|
50 |
+
|
51 |
+
# Contains at least one padding token in the sequence
|
52 |
+
causal = self.is_causal and query_length != 1
|
53 |
+
attn_output = flash_attn_varlen_func(
|
54 |
+
q=query_states,
|
55 |
+
k=key_states,
|
56 |
+
v=value_states,
|
57 |
+
cu_seqlens_q=cu_seqlens,
|
58 |
+
cu_seqlens_k=cu_seqlens,
|
59 |
+
max_seqlen_q=max_seqlen,
|
60 |
+
max_seqlen_k=max_seqlen,
|
61 |
+
dropout_p=dropout,
|
62 |
+
softmax_scale=softmax_scale,
|
63 |
+
causal=causal,
|
64 |
+
)
|
65 |
+
|
66 |
+
query_states = query_states.unsqueeze(0)
|
67 |
+
key_states = key_states.unsqueeze(0)
|
68 |
+
value_states = value_states.unsqueeze(0)
|
69 |
+
return attn_output
|
70 |
+
|
71 |
+
|
72 |
+
def replace_internlm2_attention_class():
|
73 |
+
INTERNLM2_ATTENTION_CLASSES['flash_attention_2'] = InternLM2FlashAttention2ForPackedTraining
|
74 |
+
print('Replace INTERNLM2_ATTENTION_CLASSES to support packed training!!')
|
src/third_party/InternVL/internvl_chat/internvl/patch/internvit_liger_monkey_patch.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# InternVL
|
3 |
+
# Copyright (c) 2024 OpenGVLab
|
4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
5 |
+
# --------------------------------------------------------
|
6 |
+
|
7 |
+
def apply_liger_kernel_to_internvit() -> None:
|
8 |
+
from internvl.model.internvl_chat import modeling_intern_vit
|
9 |
+
from liger_kernel.transformers.layer_norm import LigerLayerNorm
|
10 |
+
from liger_kernel.transformers.rms_norm import LigerRMSNorm
|
11 |
+
modeling_intern_vit.NORM2FN['rms_norm'] = LigerRMSNorm
|
12 |
+
modeling_intern_vit.NORM2FN['layer_norm'] = LigerLayerNorm
|
13 |
+
print('Liger kernel applied to InternViT')
|
src/third_party/InternVL/internvl_chat/internvl/patch/llama2_flash_attn_monkey_patch.py
ADDED
@@ -0,0 +1,238 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
This file is copied from: https://github.com/lm-sys/FastChat
|
3 |
+
"""
|
4 |
+
|
5 |
+
import warnings
|
6 |
+
from typing import Optional, Tuple
|
7 |
+
|
8 |
+
import torch
|
9 |
+
from flash_attn import __version__ as flash_attn_version
|
10 |
+
from flash_attn.bert_padding import pad_input, unpad_input
|
11 |
+
from flash_attn.flash_attn_interface import (flash_attn_func,
|
12 |
+
flash_attn_varlen_kvpacked_func)
|
13 |
+
from transformers.models.llama.modeling_llama import (LlamaAttention,
|
14 |
+
LlamaModel, rotate_half)
|
15 |
+
|
16 |
+
|
17 |
+
def apply_rotary_pos_emb(q, k, cos_sin, position_ids):
|
18 |
+
gather_indices = position_ids[:, :, None, None] # [bsz, seq_len, 1, 1]
|
19 |
+
gather_indices = gather_indices.repeat(
|
20 |
+
1, 1, cos_sin[0].shape[1], cos_sin[0].shape[3]
|
21 |
+
)
|
22 |
+
bsz = gather_indices.shape[0]
|
23 |
+
cos, sin = (
|
24 |
+
torch.gather(x.transpose(1, 2).repeat(bsz, 1, 1, 1), 1, gather_indices)
|
25 |
+
for x in cos_sin
|
26 |
+
)
|
27 |
+
q, k = ((x * cos) + (rotate_half(x) * sin) for x in (q, k))
|
28 |
+
return q, k
|
29 |
+
|
30 |
+
|
31 |
+
def forward(
|
32 |
+
self,
|
33 |
+
hidden_states: torch.Tensor,
|
34 |
+
attention_mask: Optional[torch.Tensor] = None,
|
35 |
+
position_ids: Optional[torch.Tensor] = None,
|
36 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
37 |
+
output_attentions: bool = False,
|
38 |
+
use_cache: bool = False,
|
39 |
+
padding_mask: Optional[torch.Tensor] = None,
|
40 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
41 |
+
if output_attentions:
|
42 |
+
warnings.warn(
|
43 |
+
'Output attentions is not supported for patched `LlamaAttention`, returning `None` instead.'
|
44 |
+
)
|
45 |
+
|
46 |
+
bsz, q_len, _ = hidden_states.size()
|
47 |
+
kv_heads = getattr(self, 'num_key_value_heads', self.num_heads)
|
48 |
+
|
49 |
+
q, k, v = (
|
50 |
+
op(hidden_states).view(bsz, q_len, nh, self.head_dim)
|
51 |
+
for op, nh in (
|
52 |
+
(self.q_proj, self.num_heads),
|
53 |
+
(self.k_proj, kv_heads),
|
54 |
+
(self.v_proj, kv_heads),
|
55 |
+
)
|
56 |
+
)
|
57 |
+
# shape: (b, s, num_heads, head_dim)
|
58 |
+
|
59 |
+
kv_seq_len = k.shape[1]
|
60 |
+
past_kv_len = 0
|
61 |
+
if past_key_value is not None:
|
62 |
+
past_kv_len = past_key_value[0].shape[2]
|
63 |
+
kv_seq_len += past_kv_len
|
64 |
+
|
65 |
+
cos_sin = self.rotary_emb(v, seq_len=kv_seq_len)
|
66 |
+
q, k = apply_rotary_pos_emb(q, k, cos_sin, position_ids)
|
67 |
+
|
68 |
+
if past_key_value is not None:
|
69 |
+
assert (
|
70 |
+
flash_attn_version >= '2.1.0'
|
71 |
+
), 'past_key_value support requires flash-attn >= 2.1.0'
|
72 |
+
# reuse k, v
|
73 |
+
k = torch.cat([past_key_value[0].transpose(1, 2), k], dim=1)
|
74 |
+
v = torch.cat([past_key_value[1].transpose(1, 2), v], dim=1)
|
75 |
+
|
76 |
+
past_key_value = (k.transpose(1, 2), v.transpose(1, 2)) if use_cache else None
|
77 |
+
|
78 |
+
if attention_mask is None:
|
79 |
+
output = flash_attn_func(q, k, v, 0.0, softmax_scale=None, causal=True).view(
|
80 |
+
bsz, q_len, -1
|
81 |
+
)
|
82 |
+
else:
|
83 |
+
q, indices, cu_q_lens, max_s = unpad_input(q, attention_mask[:, -q_len:])
|
84 |
+
# We can skip concat and call unpad twice but seems better to call unpad only once.
|
85 |
+
kv, _, cu_k_lens, max_k = unpad_input(
|
86 |
+
torch.stack((k, v), dim=2), attention_mask
|
87 |
+
)
|
88 |
+
output_unpad = flash_attn_varlen_kvpacked_func(
|
89 |
+
q,
|
90 |
+
kv,
|
91 |
+
cu_q_lens,
|
92 |
+
cu_k_lens,
|
93 |
+
max_s,
|
94 |
+
max_k,
|
95 |
+
0.0,
|
96 |
+
softmax_scale=None,
|
97 |
+
causal=True,
|
98 |
+
)
|
99 |
+
output_unpad = output_unpad.reshape(-1, self.num_heads * self.head_dim)
|
100 |
+
output = pad_input(output_unpad, indices, bsz, q_len)
|
101 |
+
|
102 |
+
return self.o_proj(output), None, past_key_value
|
103 |
+
|
104 |
+
|
105 |
+
# Disable the transformation of the attention mask in LlamaModel as flash attention
|
106 |
+
# takes a boolean key_padding_mask. Fills in the past kv length for use in forward.
|
107 |
+
def _prepare_decoder_attention_mask(
|
108 |
+
self, attention_mask, input_shape, inputs_embeds, past_key_values_length
|
109 |
+
):
|
110 |
+
# [bsz, seq_len]
|
111 |
+
if past_key_values_length > 0 and attention_mask is not None:
|
112 |
+
attention_mask = torch.cat(
|
113 |
+
(
|
114 |
+
torch.full(
|
115 |
+
(input_shape[0], past_key_values_length),
|
116 |
+
True,
|
117 |
+
dtype=attention_mask.dtype,
|
118 |
+
device=attention_mask.device,
|
119 |
+
),
|
120 |
+
attention_mask,
|
121 |
+
),
|
122 |
+
dim=-1,
|
123 |
+
)
|
124 |
+
|
125 |
+
if attention_mask is not None and torch.all(attention_mask):
|
126 |
+
return None # This uses the faster call when training with full samples
|
127 |
+
|
128 |
+
return attention_mask
|
129 |
+
|
130 |
+
|
131 |
+
def replace_llama2_attn_with_flash_attn():
|
132 |
+
cuda_major, cuda_minor = torch.cuda.get_device_capability()
|
133 |
+
if cuda_major < 8:
|
134 |
+
warnings.warn(
|
135 |
+
'Flash attention is only supported on A100 or H100 GPU during training due to head dim > 64 backward.'
|
136 |
+
'ref: https://github.com/HazyResearch/flash-attention/issues/190#issuecomment-1523359593'
|
137 |
+
)
|
138 |
+
|
139 |
+
LlamaModel._prepare_decoder_attention_mask = _prepare_decoder_attention_mask
|
140 |
+
LlamaAttention.forward = forward
|
141 |
+
|
142 |
+
|
143 |
+
def test():
|
144 |
+
from fastchat.train.llama_flash_attn_monkey_patch import \
|
145 |
+
forward as fastchat_forward
|
146 |
+
from transformers.models.llama.configuration_llama import LlamaConfig
|
147 |
+
|
148 |
+
config = LlamaConfig(
|
149 |
+
hidden_size=1024,
|
150 |
+
intermediate_size=128,
|
151 |
+
num_hidden_layers=1,
|
152 |
+
num_attention_heads=8,
|
153 |
+
max_position_embeddings=16,
|
154 |
+
)
|
155 |
+
device = torch.device('cuda')
|
156 |
+
model = LlamaModel(config)
|
157 |
+
attn = LlamaAttention(config).to(device).half()
|
158 |
+
bsz, hs, seqlen = 2, config.hidden_size, config.max_position_embeddings
|
159 |
+
position_ids = torch.arange(seqlen, dtype=torch.long, device=device).view(
|
160 |
+
-1, seqlen
|
161 |
+
)
|
162 |
+
|
163 |
+
mask = torch.full((bsz, seqlen), True, dtype=torch.bool, device=device)
|
164 |
+
for i in range(4):
|
165 |
+
hidden = torch.rand((bsz, seqlen, hs), dtype=torch.float16, device=device)
|
166 |
+
if i:
|
167 |
+
mask[0, -i:] = False
|
168 |
+
mask[1, :i] = False
|
169 |
+
|
170 |
+
lmask = model._prepare_decoder_attention_mask(mask, hidden.shape[:2], hidden, 0)
|
171 |
+
ref, _, _ = attn.forward(
|
172 |
+
hidden, attention_mask=lmask, position_ids=position_ids
|
173 |
+
)
|
174 |
+
|
175 |
+
fast, _, _ = fastchat_forward(
|
176 |
+
attn, hidden, attention_mask=mask, position_ids=position_ids
|
177 |
+
)
|
178 |
+
|
179 |
+
lmask = _prepare_decoder_attention_mask(
|
180 |
+
model, mask, hidden.shape[:2], hidden, 0
|
181 |
+
)
|
182 |
+
test, _, _ = forward(
|
183 |
+
attn, hidden, attention_mask=lmask, position_ids=position_ids
|
184 |
+
)
|
185 |
+
|
186 |
+
print(f'Mean(abs(ref)) = {torch.mean(torch.abs(ref))}')
|
187 |
+
print(f'Mean(abs(ref - fast)) = {torch.mean(torch.abs(ref - fast))}')
|
188 |
+
print(f'Mean(abs(ref - test)) = {torch.mean(torch.abs(ref - test))}')
|
189 |
+
print(f'Mean(abs(fast - test)) = {torch.mean(torch.abs(fast - test))}')
|
190 |
+
print(f'allclose(fast, test) = {torch.allclose(fast, test)}')
|
191 |
+
|
192 |
+
with torch.no_grad():
|
193 |
+
# Also check that past_kv is handled properly
|
194 |
+
hidden = torch.rand((bsz, seqlen, hs), dtype=torch.float16, device=device)
|
195 |
+
part_len = seqlen // 4
|
196 |
+
assert part_len * 4 == seqlen
|
197 |
+
mask = torch.full((bsz, seqlen), True, dtype=torch.bool, device=device)
|
198 |
+
mask[0, -2:] = False
|
199 |
+
lmask = _prepare_decoder_attention_mask(
|
200 |
+
model, mask, hidden.shape[:2], hidden, 0
|
201 |
+
)
|
202 |
+
oneshot, _, _ = forward(
|
203 |
+
attn, hidden, attention_mask=lmask, position_ids=position_ids
|
204 |
+
)
|
205 |
+
parts = []
|
206 |
+
past_kv, past_kv_len = None, 0
|
207 |
+
for i in range(4):
|
208 |
+
start = part_len * i
|
209 |
+
end = start + part_len
|
210 |
+
hidden_part = hidden[:, start:end, ...]
|
211 |
+
lmask = _prepare_decoder_attention_mask(
|
212 |
+
model,
|
213 |
+
mask[:, start:end],
|
214 |
+
hidden_part.shape[:2],
|
215 |
+
hidden_part,
|
216 |
+
past_kv_len,
|
217 |
+
)
|
218 |
+
part, _, past_kv = forward(
|
219 |
+
attn,
|
220 |
+
hidden_part.clone(),
|
221 |
+
attention_mask=lmask,
|
222 |
+
position_ids=position_ids[:, start:end],
|
223 |
+
past_key_value=past_kv,
|
224 |
+
use_cache=True,
|
225 |
+
)
|
226 |
+
parts.append(part)
|
227 |
+
past_kv_len = past_kv[0].shape[2]
|
228 |
+
|
229 |
+
print(
|
230 |
+
f'allclose(oneshot[:, 0], parts[0]) = {torch.allclose(oneshot[:, :part_len], parts[0])}'
|
231 |
+
)
|
232 |
+
print(
|
233 |
+
f'allclose(oneshot, parts) = {torch.allclose(oneshot, torch.cat(parts, dim=1))}'
|
234 |
+
)
|
235 |
+
|
236 |
+
|
237 |
+
if __name__ == '__main__':
|
238 |
+
test()
|
src/third_party/InternVL/internvl_chat/internvl/patch/llama_flash_attn_monkey_patch.py
ADDED
@@ -0,0 +1,222 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# InternVL
|
3 |
+
# Copyright (c) 2024 OpenGVLab
|
4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
5 |
+
# --------------------------------------------------------
|
6 |
+
|
7 |
+
import math
|
8 |
+
from typing import Optional, Tuple
|
9 |
+
|
10 |
+
import torch
|
11 |
+
import torch.nn.functional as F
|
12 |
+
import transformers
|
13 |
+
from torch import nn
|
14 |
+
from transformers.models.llama.modeling_llama import apply_rotary_pos_emb
|
15 |
+
|
16 |
+
|
17 |
+
def forward(
|
18 |
+
self,
|
19 |
+
hidden_states: torch.Tensor,
|
20 |
+
attention_mask: Optional[torch.Tensor] = None,
|
21 |
+
position_ids: Optional[torch.Tensor] = None,
|
22 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
23 |
+
output_attentions: bool = False,
|
24 |
+
use_cache: bool = False,
|
25 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
26 |
+
"""Input shape: Batch x Time x Channel
|
27 |
+
|
28 |
+
attention_mask: [bsz, q_len]
|
29 |
+
"""
|
30 |
+
from einops import rearrange
|
31 |
+
try: # v1
|
32 |
+
from flash_attn.flash_attn_interface import \
|
33 |
+
flash_attn_unpadded_qkvpacked_func
|
34 |
+
except: # v2
|
35 |
+
from flash_attn.flash_attn_interface import \
|
36 |
+
flash_attn_varlen_qkvpacked_func as flash_attn_unpadded_qkvpacked_func
|
37 |
+
from flash_attn.bert_padding import pad_input, unpad_input
|
38 |
+
|
39 |
+
bsz, q_len, _ = hidden_states.size()
|
40 |
+
|
41 |
+
query_states = (
|
42 |
+
self.q_proj(hidden_states)
|
43 |
+
.view(bsz, q_len, self.num_heads, self.head_dim)
|
44 |
+
.transpose(1, 2)
|
45 |
+
)
|
46 |
+
key_states = (
|
47 |
+
self.k_proj(hidden_states)
|
48 |
+
.view(bsz, q_len, self.num_heads, self.head_dim)
|
49 |
+
.transpose(1, 2)
|
50 |
+
)
|
51 |
+
value_states = (
|
52 |
+
self.v_proj(hidden_states)
|
53 |
+
.view(bsz, q_len, self.num_heads, self.head_dim)
|
54 |
+
.transpose(1, 2)
|
55 |
+
)
|
56 |
+
# [bsz, q_len, nh, hd]
|
57 |
+
# [bsz, nh, q_len, hd]
|
58 |
+
|
59 |
+
kv_seq_len = key_states.shape[-2]
|
60 |
+
assert past_key_value is None, 'past_key_value is not supported'
|
61 |
+
|
62 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
63 |
+
query_states, key_states = apply_rotary_pos_emb(
|
64 |
+
query_states, key_states, cos, sin, position_ids
|
65 |
+
)
|
66 |
+
# [bsz, nh, t, hd]
|
67 |
+
assert not output_attentions, 'output_attentions is not supported'
|
68 |
+
assert not use_cache, 'use_cache is not supported'
|
69 |
+
|
70 |
+
# Flash attention codes from
|
71 |
+
# https://github.com/HazyResearch/flash-attention/blob/main/flash_attn/flash_attention.py
|
72 |
+
|
73 |
+
# transform the data into the format required by flash attention
|
74 |
+
qkv = torch.stack(
|
75 |
+
[query_states, key_states, value_states], dim=2
|
76 |
+
) # [bsz, nh, 3, q_len, hd]
|
77 |
+
qkv = qkv.transpose(1, 3) # [bsz, q_len, 3, nh, hd]
|
78 |
+
# We have disabled _prepare_decoder_attention_mask in LlamaModel
|
79 |
+
# the attention_mask should be the same as the key_padding_mask
|
80 |
+
key_padding_mask = attention_mask
|
81 |
+
|
82 |
+
if key_padding_mask is None:
|
83 |
+
qkv = rearrange(qkv, 'b s ... -> (b s) ...')
|
84 |
+
max_s = q_len
|
85 |
+
cu_q_lens = torch.arange(
|
86 |
+
0, (bsz + 1) * q_len, step=q_len, dtype=torch.int32, device=qkv.device
|
87 |
+
)
|
88 |
+
output = flash_attn_unpadded_qkvpacked_func(
|
89 |
+
qkv, cu_q_lens, max_s, 0.0, softmax_scale=None, causal=True
|
90 |
+
)
|
91 |
+
output = rearrange(output, '(b s) ... -> b s ...', b=bsz)
|
92 |
+
else:
|
93 |
+
nheads = qkv.shape[-2]
|
94 |
+
x = rearrange(qkv, 'b s three h d -> b s (three h d)')
|
95 |
+
x_unpad, indices, cu_q_lens, max_s = unpad_input(x, key_padding_mask)
|
96 |
+
x_unpad = rearrange(
|
97 |
+
x_unpad, 'nnz (three h d) -> nnz three h d', three=3, h=nheads
|
98 |
+
)
|
99 |
+
output_unpad = flash_attn_unpadded_qkvpacked_func(
|
100 |
+
x_unpad, cu_q_lens, max_s, 0.0, softmax_scale=None, causal=True
|
101 |
+
)
|
102 |
+
output = rearrange(
|
103 |
+
pad_input(
|
104 |
+
rearrange(output_unpad, 'nnz h d -> nnz (h d)'), indices, bsz, q_len
|
105 |
+
),
|
106 |
+
'b s (h d) -> b s h d',
|
107 |
+
h=nheads,
|
108 |
+
)
|
109 |
+
return self.o_proj(rearrange(output, 'b s h d -> b s (h d)')), None, None
|
110 |
+
|
111 |
+
|
112 |
+
# Disable the transformation of the attention mask in LlamaModel as the flash attention
|
113 |
+
# requires the attention mask to be the same as the key_padding_mask
|
114 |
+
def _prepare_decoder_attention_mask(
|
115 |
+
self, attention_mask, input_shape, inputs_embeds, past_key_values_length
|
116 |
+
):
|
117 |
+
# [bsz, seq_len]
|
118 |
+
return attention_mask
|
119 |
+
|
120 |
+
|
121 |
+
def forward_2(
|
122 |
+
self,
|
123 |
+
hidden_states: torch.Tensor,
|
124 |
+
attention_mask: Optional[torch.Tensor] = None,
|
125 |
+
position_ids: Optional[torch.LongTensor] = None,
|
126 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
127 |
+
output_attentions: bool = False,
|
128 |
+
use_cache: bool = False,
|
129 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
130 |
+
bsz, q_len, _ = hidden_states.size()
|
131 |
+
|
132 |
+
query_states = (
|
133 |
+
self.q_proj(hidden_states)
|
134 |
+
.view(bsz, q_len, self.num_heads, self.head_dim)
|
135 |
+
.transpose(1, 2)
|
136 |
+
)
|
137 |
+
key_states = (
|
138 |
+
self.k_proj(hidden_states)
|
139 |
+
.view(bsz, q_len, self.num_heads, self.head_dim)
|
140 |
+
.transpose(1, 2)
|
141 |
+
)
|
142 |
+
value_states = (
|
143 |
+
self.v_proj(hidden_states)
|
144 |
+
.view(bsz, q_len, self.num_heads, self.head_dim)
|
145 |
+
.transpose(1, 2)
|
146 |
+
)
|
147 |
+
|
148 |
+
kv_seq_len = key_states.shape[-2]
|
149 |
+
if past_key_value is not None:
|
150 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
151 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
152 |
+
query_states, key_states = apply_rotary_pos_emb(
|
153 |
+
query_states, key_states, cos, sin, position_ids
|
154 |
+
)
|
155 |
+
|
156 |
+
assert not output_attentions, 'output_attentions is not supported'
|
157 |
+
assert not use_cache, 'use_cache is not supported'
|
158 |
+
assert past_key_value is None, 'past_key_value is not supported'
|
159 |
+
|
160 |
+
if past_key_value is not None:
|
161 |
+
# reuse k, v, self_attention
|
162 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
163 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
164 |
+
|
165 |
+
past_key_value = (key_states, value_states) if use_cache else None
|
166 |
+
if self.training:
|
167 |
+
attn_output = F.scaled_dot_product_attention(
|
168 |
+
query_states, key_states, value_states, dropout_p=0.0, is_causal=True
|
169 |
+
)
|
170 |
+
attn_weights = None
|
171 |
+
else:
|
172 |
+
attn_weights = torch.matmul(
|
173 |
+
query_states, key_states.transpose(2, 3)
|
174 |
+
) / math.sqrt(self.head_dim)
|
175 |
+
|
176 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
177 |
+
raise ValueError(
|
178 |
+
f'Attention weights should be of size {(bsz * self.num_heads, q_len, kv_seq_len)}, but is'
|
179 |
+
f' {attn_weights.size()}'
|
180 |
+
)
|
181 |
+
|
182 |
+
if attention_mask is not None:
|
183 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
184 |
+
raise ValueError(
|
185 |
+
f'Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}'
|
186 |
+
)
|
187 |
+
attn_weights = attn_weights + attention_mask
|
188 |
+
attn_weights = torch.max(
|
189 |
+
attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min)
|
190 |
+
)
|
191 |
+
|
192 |
+
# upcast attention to fp32
|
193 |
+
attn_weights = nn.functional.softmax(
|
194 |
+
attn_weights, dim=-1, dtype=torch.float32
|
195 |
+
).to(query_states.dtype)
|
196 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
197 |
+
|
198 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
199 |
+
raise ValueError(
|
200 |
+
f'`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is'
|
201 |
+
f' {attn_output.size()}'
|
202 |
+
)
|
203 |
+
|
204 |
+
attn_output = attn_output.transpose(1, 2)
|
205 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
206 |
+
|
207 |
+
attn_output = self.o_proj(attn_output)
|
208 |
+
|
209 |
+
if not output_attentions:
|
210 |
+
attn_weights = None
|
211 |
+
|
212 |
+
return attn_output, attn_weights, past_key_value
|
213 |
+
|
214 |
+
|
215 |
+
def replace_llama_attn_with_flash_attn():
|
216 |
+
if hasattr(F, 'scaled_dot_product_attention'):
|
217 |
+
transformers.models.llama.modeling_llama.LlamaAttention.forward = forward_2
|
218 |
+
else:
|
219 |
+
transformers.models.llama.modeling_llama.LlamaModel._prepare_decoder_attention_mask = (
|
220 |
+
_prepare_decoder_attention_mask
|
221 |
+
)
|
222 |
+
transformers.models.llama.modeling_llama.LlamaAttention.forward = forward
|
src/third_party/InternVL/internvl_chat/internvl/patch/llama_packed_training_patch.py
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# InternVL
|
3 |
+
# Copyright (c) 2024 OpenGVLab
|
4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
5 |
+
# --------------------------------------------------------
|
6 |
+
|
7 |
+
import torch
|
8 |
+
from flash_attn.flash_attn_interface import flash_attn_varlen_func
|
9 |
+
from transformers.models.llama.modeling_llama import (LLAMA_ATTENTION_CLASSES,
|
10 |
+
LlamaFlashAttention2)
|
11 |
+
|
12 |
+
|
13 |
+
# Modified from transformers.models.llama.modeling_llama.LlamaFlashAttention2
|
14 |
+
class LlamaFlashAttention2ForPackedTraining(LlamaFlashAttention2):
|
15 |
+
|
16 |
+
def _flash_attention_forward(
|
17 |
+
self,
|
18 |
+
query_states,
|
19 |
+
key_states,
|
20 |
+
value_states,
|
21 |
+
attention_mask,
|
22 |
+
query_length,
|
23 |
+
dropout=0.0,
|
24 |
+
softmax_scale=None,
|
25 |
+
use_sliding_windows=False,
|
26 |
+
):
|
27 |
+
"""
|
28 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
29 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
30 |
+
|
31 |
+
Args:
|
32 |
+
query_states (`torch.Tensor`):
|
33 |
+
Input query states to be passed to Flash Attention API
|
34 |
+
key_states (`torch.Tensor`):
|
35 |
+
Input key states to be passed to Flash Attention API
|
36 |
+
value_states (`torch.Tensor`):
|
37 |
+
Input value states to be passed to Flash Attention API
|
38 |
+
attention_mask (`torch.Tensor`):
|
39 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
40 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
41 |
+
dropout (`int`, *optional*):
|
42 |
+
Attention dropout
|
43 |
+
softmax_scale (`float`, *optional*):
|
44 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
45 |
+
use_sliding_windows (`bool`, *optional*):
|
46 |
+
Whether to activate sliding window attention.
|
47 |
+
"""
|
48 |
+
assert query_states.size(0) == key_states.size(0) == value_states.size(0) == 1
|
49 |
+
query_states = query_states.squeeze(0)
|
50 |
+
key_states = key_states.squeeze(0)
|
51 |
+
value_states = value_states.squeeze(0)
|
52 |
+
cu_seqlens = attention_mask.squeeze(0)
|
53 |
+
|
54 |
+
with torch.no_grad():
|
55 |
+
max_seqlen = max([
|
56 |
+
cu_seqlens[idx+1] - cu_seqlens[idx]
|
57 |
+
for idx in range(cu_seqlens.size(0) - 1)
|
58 |
+
]).item()
|
59 |
+
|
60 |
+
if not self._flash_attn_uses_top_left_mask:
|
61 |
+
causal = self.is_causal
|
62 |
+
else:
|
63 |
+
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
|
64 |
+
causal = self.is_causal and query_length != 1
|
65 |
+
|
66 |
+
# Decide whether to use SWA or not by layer index.
|
67 |
+
if use_sliding_windows and self.layer_idx >= self.config.max_window_layers:
|
68 |
+
use_sliding_windows = False
|
69 |
+
|
70 |
+
if not use_sliding_windows:
|
71 |
+
attn_output = flash_attn_varlen_func(
|
72 |
+
q=query_states,
|
73 |
+
k=key_states,
|
74 |
+
v=value_states,
|
75 |
+
cu_seqlens_q=cu_seqlens,
|
76 |
+
cu_seqlens_k=cu_seqlens,
|
77 |
+
max_seqlen_q=max_seqlen,
|
78 |
+
max_seqlen_k=max_seqlen,
|
79 |
+
dropout_p=dropout,
|
80 |
+
softmax_scale=softmax_scale,
|
81 |
+
causal=causal,
|
82 |
+
)
|
83 |
+
else:
|
84 |
+
attn_output = flash_attn_varlen_func(
|
85 |
+
q=query_states,
|
86 |
+
k=key_states,
|
87 |
+
v=value_states,
|
88 |
+
cu_seqlens_q=cu_seqlens,
|
89 |
+
cu_seqlens_k=cu_seqlens,
|
90 |
+
max_seqlen_q=max_seqlen,
|
91 |
+
max_seqlen_k=max_seqlen,
|
92 |
+
dropout_p=dropout,
|
93 |
+
softmax_scale=softmax_scale,
|
94 |
+
causal=causal,
|
95 |
+
window_size=(self.config.sliding_window, self.config.sliding_window),
|
96 |
+
)
|
97 |
+
|
98 |
+
query_states = query_states.unsqueeze(0)
|
99 |
+
key_states = key_states.unsqueeze(0)
|
100 |
+
value_states = value_states.unsqueeze(0)
|
101 |
+
return attn_output
|
102 |
+
|
103 |
+
|
104 |
+
def replace_llama_attention_class():
|
105 |
+
LLAMA_ATTENTION_CLASSES['flash_attention_2'] = LlamaFlashAttention2ForPackedTraining
|
106 |
+
print('Replace LLAMA_ATTENTION_CLASSES to support packed training!!')
|
src/third_party/InternVL/internvl_chat/internvl/patch/llama_rmsnorm_monkey_patch.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# InternVL
|
3 |
+
# Copyright (c) 2024 OpenGVLab
|
4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
5 |
+
# --------------------------------------------------------
|
6 |
+
|
7 |
+
import transformers
|
8 |
+
|
9 |
+
|
10 |
+
def replace_llama_rmsnorm_with_fused_rmsnorm():
|
11 |
+
try:
|
12 |
+
from functools import partial
|
13 |
+
|
14 |
+
from apex.normalization import FusedRMSNorm
|
15 |
+
LlamaRMSNorm = partial(FusedRMSNorm, eps=1e-6) # noqa
|
16 |
+
transformers.models.llama.modeling_llama.LlamaRMSNorm = LlamaRMSNorm
|
17 |
+
print('Discovered apex.normalization.FusedRMSNorm - will use it instead of LlamaRMSNorm')
|
18 |
+
except ImportError:
|
19 |
+
# using the normal LlamaRMSNorm
|
20 |
+
pass
|
21 |
+
except Exception:
|
22 |
+
print('discovered apex but it failed to load, falling back to LlamaRMSNorm')
|
23 |
+
pass
|
src/third_party/InternVL/internvl_chat/internvl/patch/pad_data_collator.py
ADDED
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# InternVL
|
3 |
+
# Copyright (c) 2024 OpenGVLab
|
4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
5 |
+
# --------------------------------------------------------
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
import torch
|
9 |
+
|
10 |
+
IGNORE_INDEX = -100
|
11 |
+
|
12 |
+
|
13 |
+
def pad_data_collator(features, pad_id=0):
|
14 |
+
|
15 |
+
first = features[0]
|
16 |
+
batch = {}
|
17 |
+
|
18 |
+
batch_lens = [feat['input_ids'].shape for feat in features]
|
19 |
+
max_item_length = max(batch_lens)[0]
|
20 |
+
for idx in range(len(features)):
|
21 |
+
feat = features[idx]
|
22 |
+
temp_input_ids = torch.LongTensor([pad_id] * max_item_length)
|
23 |
+
temp_input_ids[:feat['input_ids'].shape[0]] = feat['input_ids']
|
24 |
+
feat['input_ids'] = temp_input_ids
|
25 |
+
temp_labels = torch.LongTensor([IGNORE_INDEX] * max_item_length)
|
26 |
+
temp_labels[:feat['labels'].shape[0]] = feat['labels']
|
27 |
+
feat['labels'] = temp_labels
|
28 |
+
feat['attention_mask'] = feat['input_ids'].ne(pad_id)
|
29 |
+
|
30 |
+
# Special handling for labels.
|
31 |
+
# Ensure that tensor is created with the correct type
|
32 |
+
# (it should be automatically the case, but let's make sure of it.)
|
33 |
+
if 'label' in first and first['label'] is not None:
|
34 |
+
label = first['label'].item() if isinstance(first['label'], torch.Tensor) else first['label']
|
35 |
+
dtype = torch.long if isinstance(label, int) else torch.float
|
36 |
+
batch['labels'] = torch.tensor([f['label'] for f in features], dtype=dtype)
|
37 |
+
elif 'label_ids' in first and first['label_ids'] is not None:
|
38 |
+
if isinstance(first['label_ids'], torch.Tensor):
|
39 |
+
batch['labels'] = torch.stack([f['label_ids'] for f in features])
|
40 |
+
else:
|
41 |
+
dtype = torch.long if isinstance(first['label_ids'][0], int) else torch.float
|
42 |
+
batch['labels'] = torch.tensor([f['label_ids'] for f in features], dtype=dtype)
|
43 |
+
|
44 |
+
# Handling of all other possible keys.
|
45 |
+
# Again, we will use the first element to figure out which key/values are not None for this model.
|
46 |
+
for k, v in first.items():
|
47 |
+
if k not in ('label', 'label_ids') and v is not None and not isinstance(v, str):
|
48 |
+
if isinstance(v, torch.Tensor):
|
49 |
+
batch[k] = torch.stack([f[k] for f in features])
|
50 |
+
elif isinstance(v, np.ndarray):
|
51 |
+
batch[k] = torch.tensor(np.stack([f[k] for f in features]))
|
52 |
+
else:
|
53 |
+
batch[k] = torch.tensor([f[k] for f in features])
|
54 |
+
return batch
|
55 |
+
|
56 |
+
|
57 |
+
def concat_pad_data_collator(features, max_item_length=None, pad_id=0):
|
58 |
+
|
59 |
+
first = features[0]
|
60 |
+
batch = {}
|
61 |
+
|
62 |
+
batch_lens = [feat['input_ids'].shape for feat in features]
|
63 |
+
max_item_length = max_item_length or max(batch_lens)[0]
|
64 |
+
for idx in range(len(features)):
|
65 |
+
feat = features[idx]
|
66 |
+
temp_input_ids = torch.LongTensor([pad_id] * max_item_length)
|
67 |
+
temp_input_ids[:feat['input_ids'].shape[0]] = feat['input_ids']
|
68 |
+
feat['input_ids'] = temp_input_ids
|
69 |
+
temp_labels = torch.LongTensor([IGNORE_INDEX] * max_item_length)
|
70 |
+
temp_labels[:feat['labels'].shape[0]] = feat['labels']
|
71 |
+
feat['labels'] = temp_labels
|
72 |
+
feat['attention_mask'] = feat['input_ids'].ne(pad_id)
|
73 |
+
|
74 |
+
if 'position_ids' in feat:
|
75 |
+
temp_position_ids = torch.LongTensor([pad_id] * max_item_length)
|
76 |
+
temp_position_ids[:feat['position_ids'].shape[0]] = feat['position_ids']
|
77 |
+
feat['position_ids'] = temp_position_ids
|
78 |
+
|
79 |
+
if 'loss_weight' in feat:
|
80 |
+
temp_loss_weight = torch.FloatTensor([pad_id] * max_item_length)
|
81 |
+
temp_loss_weight[:feat['loss_weight'].shape[0]] = feat['loss_weight']
|
82 |
+
feat['loss_weight'] = temp_loss_weight
|
83 |
+
|
84 |
+
# Special handling for labels.
|
85 |
+
# Ensure that tensor is created with the correct type
|
86 |
+
# (it should be automatically the case, but let's make sure of it.)
|
87 |
+
if 'label' in first and first['label'] is not None:
|
88 |
+
label = first['label'].item() if isinstance(first['label'], torch.Tensor) else first['label']
|
89 |
+
dtype = torch.long if isinstance(label, int) else torch.float
|
90 |
+
batch['labels'] = torch.tensor([f['label'] for f in features], dtype=dtype)
|
91 |
+
elif 'label_ids' in first and first['label_ids'] is not None:
|
92 |
+
if isinstance(first['label_ids'], torch.Tensor):
|
93 |
+
batch['labels'] = torch.stack([f['label_ids'] for f in features])
|
94 |
+
else:
|
95 |
+
dtype = torch.long if isinstance(first['label_ids'][0], int) else torch.float
|
96 |
+
batch['labels'] = torch.tensor([f['label_ids'] for f in features], dtype=dtype)
|
97 |
+
|
98 |
+
# Handling of all other possible keys.
|
99 |
+
# Again, we will use the first element to figure out which key/values are not None for this model.
|
100 |
+
for k, v in first.items():
|
101 |
+
if k not in ('label', 'label_ids', 'pixel_values', 'image_flags') and \
|
102 |
+
v is not None and not isinstance(v, str):
|
103 |
+
if isinstance(v, torch.Tensor):
|
104 |
+
batch[k] = torch.stack([f[k] for f in features])
|
105 |
+
elif isinstance(v, np.ndarray):
|
106 |
+
batch[k] = torch.tensor(np.stack([f[k] for f in features]))
|
107 |
+
else:
|
108 |
+
batch[k] = torch.tensor([f[k] for f in features])
|
109 |
+
if k in ('pixel_values', 'image_flags'):
|
110 |
+
if isinstance(v, torch.Tensor):
|
111 |
+
batch[k] = torch.concat([f[k] for f in features])
|
112 |
+
elif isinstance(v, np.ndarray):
|
113 |
+
batch[k] = torch.concat(np.stack([f[k] for f in features]))
|
114 |
+
else:
|
115 |
+
batch[k] = torch.concat([f[k] for f in features])
|
116 |
+
return batch
|
117 |
+
|
118 |
+
|
119 |
+
def dpo_concat_pad_data_collator(features, pad_id=0):
|
120 |
+
|
121 |
+
first = features[0]
|
122 |
+
batch = {}
|
123 |
+
|
124 |
+
for prefix in ['chosen_', 'rejected_']:
|
125 |
+
batch_lens = [feat[f'{prefix}input_ids'].shape[0] for feat in features]
|
126 |
+
max_item_length = max(batch_lens)
|
127 |
+
for idx in range(len(features)):
|
128 |
+
feat = features[idx]
|
129 |
+
temp_input_ids = torch.LongTensor([pad_id] * max_item_length)
|
130 |
+
temp_input_ids[:feat[f'{prefix}input_ids'].shape[0]] = feat[f'{prefix}input_ids']
|
131 |
+
feat[f'{prefix}input_ids'] = temp_input_ids
|
132 |
+
temp_labels = torch.LongTensor([IGNORE_INDEX] * max_item_length)
|
133 |
+
temp_labels[:feat[f'{prefix}labels'].shape[0]] = feat[f'{prefix}labels']
|
134 |
+
feat[f'{prefix}labels'] = temp_labels
|
135 |
+
feat[f'{prefix}attention_mask'] = feat[f'{prefix}input_ids'].ne(pad_id)
|
136 |
+
|
137 |
+
# Handling of all other possible keys.
|
138 |
+
# Again, we will use the first element to figure out which key/values are not None for this model.
|
139 |
+
for k, v in first.items():
|
140 |
+
if k not in ('pixel_values', 'image_flags') and \
|
141 |
+
v is not None and not isinstance(v, str):
|
142 |
+
if isinstance(v, torch.Tensor):
|
143 |
+
batch[k] = torch.stack([f[k] for f in features])
|
144 |
+
elif isinstance(v, np.ndarray):
|
145 |
+
batch[k] = torch.tensor(np.stack([f[k] for f in features]))
|
146 |
+
else:
|
147 |
+
batch[k] = torch.tensor([f[k] for f in features])
|
148 |
+
if k in ('pixel_values', 'image_flags'):
|
149 |
+
if isinstance(v, torch.Tensor):
|
150 |
+
batch[k] = torch.concat([f[k] for f in features])
|
151 |
+
elif isinstance(v, np.ndarray):
|
152 |
+
batch[k] = torch.concat(np.stack([f[k] for f in features]))
|
153 |
+
else:
|
154 |
+
batch[k] = torch.concat([f[k] for f in features])
|
155 |
+
return batch
|
src/third_party/InternVL/internvl_chat/internvl/patch/phi3_packed_training_patch.py
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# InternVL
|
3 |
+
# Copyright (c) 2024 OpenGVLab
|
4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
5 |
+
# --------------------------------------------------------
|
6 |
+
|
7 |
+
import torch
|
8 |
+
from flash_attn.flash_attn_interface import flash_attn_varlen_func
|
9 |
+
from internvl.model.phi3.modeling_phi3 import (PHI3_ATTENTION_CLASSES,
|
10 |
+
Phi3FlashAttention2)
|
11 |
+
|
12 |
+
|
13 |
+
class Phi3FlashAttention2ForPackedTraining(Phi3FlashAttention2):
|
14 |
+
|
15 |
+
def _flash_attention_forward(
|
16 |
+
self,
|
17 |
+
query_states,
|
18 |
+
key_states,
|
19 |
+
value_states,
|
20 |
+
attention_mask,
|
21 |
+
query_length,
|
22 |
+
dropout=0.0,
|
23 |
+
softmax_scale=None,
|
24 |
+
use_sliding_windows=False,
|
25 |
+
):
|
26 |
+
"""
|
27 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
28 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
29 |
+
|
30 |
+
Args:
|
31 |
+
query_states (`torch.Tensor`):
|
32 |
+
Input query states to be passed to Flash Attention API
|
33 |
+
key_states (`torch.Tensor`):
|
34 |
+
Input key states to be passed to Flash Attention API
|
35 |
+
value_states (`torch.Tensor`):
|
36 |
+
Input value states to be passed to Flash Attention API
|
37 |
+
attention_mask (`torch.Tensor`):
|
38 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
39 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
40 |
+
dropout (`float`):
|
41 |
+
Attention dropout
|
42 |
+
softmax_scale (`float`, *optional*):
|
43 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
44 |
+
use_sliding_windows (`bool`, *optional*):
|
45 |
+
Whether to activate sliding window attention.
|
46 |
+
"""
|
47 |
+
assert query_states.size(0) == key_states.size(0) == value_states.size(0) == 1
|
48 |
+
query_states = query_states.squeeze(0)
|
49 |
+
key_states = key_states.squeeze(0)
|
50 |
+
value_states = value_states.squeeze(0)
|
51 |
+
cu_seqlens = attention_mask.squeeze(0)
|
52 |
+
|
53 |
+
with torch.no_grad():
|
54 |
+
max_seqlen = max([
|
55 |
+
cu_seqlens[idx+1] - cu_seqlens[idx]
|
56 |
+
for idx in range(cu_seqlens.size(0) - 1)
|
57 |
+
]).item()
|
58 |
+
|
59 |
+
if not self._flash_attn_uses_top_left_mask:
|
60 |
+
causal = self.is_causal
|
61 |
+
else:
|
62 |
+
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
|
63 |
+
causal = self.is_causal and query_length != 1
|
64 |
+
|
65 |
+
# Decide whether to use SWA or not by layer index.
|
66 |
+
if use_sliding_windows and self.layer_idx >= self.config.max_window_layers:
|
67 |
+
use_sliding_windows = False
|
68 |
+
|
69 |
+
if not use_sliding_windows:
|
70 |
+
attn_output = flash_attn_varlen_func(
|
71 |
+
q=query_states,
|
72 |
+
k=key_states,
|
73 |
+
v=value_states,
|
74 |
+
cu_seqlens_q=cu_seqlens,
|
75 |
+
cu_seqlens_k=cu_seqlens,
|
76 |
+
max_seqlen_q=max_seqlen,
|
77 |
+
max_seqlen_k=max_seqlen,
|
78 |
+
dropout_p=dropout,
|
79 |
+
softmax_scale=softmax_scale,
|
80 |
+
causal=causal,
|
81 |
+
)
|
82 |
+
else:
|
83 |
+
attn_output = flash_attn_varlen_func(
|
84 |
+
q=query_states,
|
85 |
+
k=key_states,
|
86 |
+
v=value_states,
|
87 |
+
cu_seqlens_q=cu_seqlens,
|
88 |
+
cu_seqlens_k=cu_seqlens,
|
89 |
+
max_seqlen_q=max_seqlen,
|
90 |
+
max_seqlen_k=max_seqlen,
|
91 |
+
dropout_p=dropout,
|
92 |
+
softmax_scale=softmax_scale,
|
93 |
+
causal=causal,
|
94 |
+
window_size=(self.config.sliding_window, self.config.sliding_window),
|
95 |
+
)
|
96 |
+
|
97 |
+
query_states = query_states.unsqueeze(0)
|
98 |
+
key_states = key_states.unsqueeze(0)
|
99 |
+
value_states = value_states.unsqueeze(0)
|
100 |
+
return attn_output
|
101 |
+
|
102 |
+
|
103 |
+
def replace_phi3_attention_class():
|
104 |
+
PHI3_ATTENTION_CLASSES['flash_attention_2'] = Phi3FlashAttention2ForPackedTraining
|
105 |
+
print('Replace PHI3_ATTENTION_CLASSES to support packed training!!')
|
src/third_party/InternVL/internvl_chat/internvl/patch/qwen2_packed_training_patch.py
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# InternVL
|
3 |
+
# Copyright (c) 2024 OpenGVLab
|
4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
5 |
+
# --------------------------------------------------------
|
6 |
+
|
7 |
+
import torch
|
8 |
+
from flash_attn.flash_attn_interface import flash_attn_varlen_func
|
9 |
+
from transformers.models.qwen2.modeling_qwen2 import (QWEN2_ATTENTION_CLASSES,
|
10 |
+
Qwen2FlashAttention2)
|
11 |
+
|
12 |
+
|
13 |
+
# Modified from transformers.models.qwen2.modeling_qwen2.Qwen2FlashAttention2
|
14 |
+
class Qwen2FlashAttention2ForPackedTraining(Qwen2FlashAttention2):
|
15 |
+
|
16 |
+
def _flash_attention_forward(
|
17 |
+
self,
|
18 |
+
query_states,
|
19 |
+
key_states,
|
20 |
+
value_states,
|
21 |
+
attention_mask,
|
22 |
+
query_length,
|
23 |
+
dropout=0.0,
|
24 |
+
softmax_scale=None,
|
25 |
+
use_sliding_windows=False,
|
26 |
+
):
|
27 |
+
"""
|
28 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
29 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
30 |
+
|
31 |
+
Args:
|
32 |
+
query_states (`torch.Tensor`):
|
33 |
+
Input query states to be passed to Flash Attention API
|
34 |
+
key_states (`torch.Tensor`):
|
35 |
+
Input key states to be passed to Flash Attention API
|
36 |
+
value_states (`torch.Tensor`):
|
37 |
+
Input value states to be passed to Flash Attention API
|
38 |
+
attention_mask (`torch.Tensor`):
|
39 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
40 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
41 |
+
dropout (`int`, *optional*):
|
42 |
+
Attention dropout
|
43 |
+
softmax_scale (`float`, *optional*):
|
44 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
45 |
+
use_sliding_windows (`bool`, *optional*):
|
46 |
+
Whether to activate sliding window attention.
|
47 |
+
"""
|
48 |
+
assert query_states.size(0) == key_states.size(0) == value_states.size(0) == 1
|
49 |
+
query_states = query_states.squeeze(0)
|
50 |
+
key_states = key_states.squeeze(0)
|
51 |
+
value_states = value_states.squeeze(0)
|
52 |
+
cu_seqlens = attention_mask.squeeze(0)
|
53 |
+
|
54 |
+
with torch.no_grad():
|
55 |
+
max_seqlen = max([
|
56 |
+
cu_seqlens[idx+1] - cu_seqlens[idx]
|
57 |
+
for idx in range(cu_seqlens.size(0) - 1)
|
58 |
+
]).item()
|
59 |
+
|
60 |
+
if not self._flash_attn_uses_top_left_mask:
|
61 |
+
causal = self.is_causal
|
62 |
+
else:
|
63 |
+
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
|
64 |
+
causal = self.is_causal and query_length != 1
|
65 |
+
|
66 |
+
# Decide whether to use SWA or not by layer index.
|
67 |
+
if use_sliding_windows and self.layer_idx >= self.config.max_window_layers:
|
68 |
+
use_sliding_windows = False
|
69 |
+
|
70 |
+
if not use_sliding_windows:
|
71 |
+
attn_output = flash_attn_varlen_func(
|
72 |
+
q=query_states,
|
73 |
+
k=key_states,
|
74 |
+
v=value_states,
|
75 |
+
cu_seqlens_q=cu_seqlens,
|
76 |
+
cu_seqlens_k=cu_seqlens,
|
77 |
+
max_seqlen_q=max_seqlen,
|
78 |
+
max_seqlen_k=max_seqlen,
|
79 |
+
dropout_p=dropout,
|
80 |
+
softmax_scale=softmax_scale,
|
81 |
+
causal=causal,
|
82 |
+
)
|
83 |
+
else:
|
84 |
+
attn_output = flash_attn_varlen_func(
|
85 |
+
q=query_states,
|
86 |
+
k=key_states,
|
87 |
+
v=value_states,
|
88 |
+
cu_seqlens_q=cu_seqlens,
|
89 |
+
cu_seqlens_k=cu_seqlens,
|
90 |
+
max_seqlen_q=max_seqlen,
|
91 |
+
max_seqlen_k=max_seqlen,
|
92 |
+
dropout_p=dropout,
|
93 |
+
softmax_scale=softmax_scale,
|
94 |
+
causal=causal,
|
95 |
+
window_size=(self.config.sliding_window, self.config.sliding_window),
|
96 |
+
)
|
97 |
+
|
98 |
+
query_states = query_states.unsqueeze(0)
|
99 |
+
key_states = key_states.unsqueeze(0)
|
100 |
+
value_states = value_states.unsqueeze(0)
|
101 |
+
return attn_output
|
102 |
+
|
103 |
+
|
104 |
+
def replace_qwen2_attention_class():
|
105 |
+
QWEN2_ATTENTION_CLASSES['flash_attention_2'] = Qwen2FlashAttention2ForPackedTraining
|
106 |
+
print('Replace QWEN2_ATTENTION_CLASSES to support packed training!!')
|
src/third_party/InternVL/internvl_chat/internvl/patch/train_dataloader_patch.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# InternVL
|
3 |
+
# Copyright (c) 2024 OpenGVLab
|
4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
5 |
+
# --------------------------------------------------------
|
6 |
+
|
7 |
+
import datasets
|
8 |
+
import torch
|
9 |
+
import transformers
|
10 |
+
from torch.utils.data import DataLoader
|
11 |
+
from transformers.trainer import is_datasets_available, seed_worker
|
12 |
+
|
13 |
+
|
14 |
+
def get_train_dataloader(self) -> DataLoader:
|
15 |
+
"""
|
16 |
+
Returns the training [`~torch.utils.data.DataLoader`].
|
17 |
+
|
18 |
+
Will use no sampler if `train_dataset` does not implement `__len__`, a random sampler (adapted to distributed
|
19 |
+
training if necessary) otherwise.
|
20 |
+
|
21 |
+
Subclass and override this method if you want to inject some custom behavior.
|
22 |
+
"""
|
23 |
+
if self.train_dataset is None:
|
24 |
+
raise ValueError('Trainer: training requires a train_dataset.')
|
25 |
+
|
26 |
+
train_dataset = self.train_dataset
|
27 |
+
data_collator = self.data_collator
|
28 |
+
if is_datasets_available() and isinstance(train_dataset, datasets.Dataset):
|
29 |
+
train_dataset = self._remove_unused_columns(train_dataset, description='training')
|
30 |
+
else:
|
31 |
+
data_collator = self._get_collator_with_removed_columns(data_collator, description='training')
|
32 |
+
|
33 |
+
dataloader_params = {
|
34 |
+
'batch_size': self._train_batch_size,
|
35 |
+
'collate_fn': data_collator,
|
36 |
+
'num_workers': self.args.dataloader_num_workers,
|
37 |
+
'pin_memory': self.args.dataloader_pin_memory,
|
38 |
+
'persistent_workers': self.args.dataloader_persistent_workers,
|
39 |
+
}
|
40 |
+
|
41 |
+
if not isinstance(train_dataset, torch.utils.data.IterableDataset):
|
42 |
+
dataloader_params['sampler'] = self._get_train_sampler()
|
43 |
+
dataloader_params['drop_last'] = self.args.dataloader_drop_last
|
44 |
+
dataloader_params['worker_init_fn'] = seed_worker
|
45 |
+
|
46 |
+
if self.args.use_packed_ds:
|
47 |
+
return DataLoader(train_dataset, **dataloader_params)
|
48 |
+
return self.accelerator.prepare(DataLoader(train_dataset, **dataloader_params))
|
49 |
+
|
50 |
+
|
51 |
+
def replace_train_dataloader():
|
52 |
+
transformers.Trainer.get_train_dataloader = get_train_dataloader
|
53 |
+
# print('Replace train dataloader!!')
|
src/third_party/InternVL/internvl_chat/internvl/patch/train_sampler_patch.py
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# InternVL
|
3 |
+
# Copyright (c) 2024 OpenGVLab
|
4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
5 |
+
# --------------------------------------------------------
|
6 |
+
|
7 |
+
from typing import List, Optional
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import transformers
|
11 |
+
from torch.utils.data import Dataset, Sampler
|
12 |
+
from transformers.tokenization_utils_base import BatchEncoding
|
13 |
+
from transformers.trainer import (LengthGroupedSampler, RandomSampler,
|
14 |
+
has_length)
|
15 |
+
from transformers.trainer_pt_utils import logger
|
16 |
+
|
17 |
+
|
18 |
+
# copy from https://github.com/haotian-liu/LLaVA/blob/main/llava/train/llava_trainer.py#L38
|
19 |
+
def split_to_even_chunks(indices, lengths, num_chunks):
|
20 |
+
"""
|
21 |
+
Split a list of indices into `chunks` chunks of roughly equal lengths.
|
22 |
+
"""
|
23 |
+
|
24 |
+
if len(indices) % num_chunks != 0:
|
25 |
+
return [indices[i::num_chunks] for i in range(num_chunks)]
|
26 |
+
|
27 |
+
num_indices_per_chunk = len(indices) // num_chunks
|
28 |
+
|
29 |
+
chunks = [[] for _ in range(num_chunks)]
|
30 |
+
chunks_lengths = [0 for _ in range(num_chunks)]
|
31 |
+
for index in indices:
|
32 |
+
shortest_chunk = chunks_lengths.index(min(chunks_lengths))
|
33 |
+
chunks[shortest_chunk].append(index)
|
34 |
+
chunks_lengths[shortest_chunk] += lengths[index]
|
35 |
+
if len(chunks[shortest_chunk]) == num_indices_per_chunk:
|
36 |
+
chunks_lengths[shortest_chunk] = float('inf')
|
37 |
+
|
38 |
+
return chunks
|
39 |
+
|
40 |
+
|
41 |
+
# copy from https://github.com/haotian-liu/LLaVA/blob/main/llava/train/llava_trainer.py#L88
|
42 |
+
def get_length_grouped_indices(lengths, batch_size, world_size, generator=None, merge=True):
|
43 |
+
# We need to use torch for the random part as a distributed sampler will set the random seed for torch.
|
44 |
+
indices = torch.randperm(len(lengths), generator=generator)
|
45 |
+
megabatch_size = world_size * batch_size
|
46 |
+
megabatches = [indices[i : i + megabatch_size].tolist() for i in range(0, len(lengths), megabatch_size)]
|
47 |
+
megabatches = [sorted(megabatch, key=lambda i: lengths[i], reverse=True) for megabatch in megabatches]
|
48 |
+
megabatches = [split_to_even_chunks(megabatch, lengths, world_size) for megabatch in megabatches]
|
49 |
+
|
50 |
+
return [i for megabatch in megabatches for batch in megabatch for i in batch]
|
51 |
+
|
52 |
+
|
53 |
+
# modified from https://github.com/haotian-liu/LLaVA/blob/main/llava/train/llava_trainer.py#L99
|
54 |
+
class LengthGroupedSampler(Sampler):
|
55 |
+
r"""
|
56 |
+
Sampler that samples indices in a way that groups together features of the dataset of roughly the same length while
|
57 |
+
keeping a bit of randomness.
|
58 |
+
"""
|
59 |
+
|
60 |
+
def __init__(
|
61 |
+
self,
|
62 |
+
batch_size: int,
|
63 |
+
world_size: int,
|
64 |
+
dataset: Optional[Dataset] = None,
|
65 |
+
lengths: Optional[List[int]] = None,
|
66 |
+
model_input_name: Optional[str] = None,
|
67 |
+
generator=None,
|
68 |
+
):
|
69 |
+
if dataset is None and lengths is None:
|
70 |
+
raise ValueError('One of dataset and lengths must be provided.')
|
71 |
+
|
72 |
+
self.batch_size = batch_size
|
73 |
+
if lengths is None:
|
74 |
+
model_input_name = model_input_name if model_input_name is not None else 'input_ids'
|
75 |
+
if (
|
76 |
+
not (isinstance(dataset[0], dict) or isinstance(dataset[0], BatchEncoding))
|
77 |
+
or model_input_name not in dataset[0]
|
78 |
+
):
|
79 |
+
raise ValueError(
|
80 |
+
'Can only automatically infer lengths for datasets whose items are dictionaries with an '
|
81 |
+
f"'{model_input_name}' key."
|
82 |
+
)
|
83 |
+
lengths = [len(feature[model_input_name]) for feature in dataset]
|
84 |
+
elif isinstance(lengths, torch.Tensor):
|
85 |
+
logger.info(
|
86 |
+
'If lengths is a torch.Tensor, LengthGroupedSampler will be slow. Converting lengths to List[int]...'
|
87 |
+
)
|
88 |
+
lengths = lengths.tolist()
|
89 |
+
self.world_size = world_size
|
90 |
+
self.lengths = lengths
|
91 |
+
self.generator = generator
|
92 |
+
|
93 |
+
def __len__(self):
|
94 |
+
return len(self.lengths)
|
95 |
+
|
96 |
+
def __iter__(self):
|
97 |
+
indices = get_length_grouped_indices(self.lengths, self.batch_size, self.world_size, generator=self.generator)
|
98 |
+
return iter(indices)
|
99 |
+
|
100 |
+
|
101 |
+
# patch trainer
|
102 |
+
def _get_train_sampler(self) -> Optional[torch.utils.data.Sampler]:
|
103 |
+
if self.train_dataset is None or not has_length(self.train_dataset):
|
104 |
+
return None
|
105 |
+
# Build the sampler.
|
106 |
+
if self.args.group_by_length:
|
107 |
+
lengths = []
|
108 |
+
for dataset in self.train_dataset.datasets:
|
109 |
+
lengths = lengths + dataset.length
|
110 |
+
model_input_name = self.tokenizer.model_input_names[0] if self.tokenizer is not None else None
|
111 |
+
return LengthGroupedSampler(
|
112 |
+
self.args.train_batch_size,
|
113 |
+
world_size=self.args.world_size * self.args.gradient_accumulation_steps,
|
114 |
+
# self.args.train_batch_size * self.args.gradient_accumulation_steps,
|
115 |
+
dataset=self.train_dataset,
|
116 |
+
lengths=lengths,
|
117 |
+
model_input_name=model_input_name,
|
118 |
+
)
|
119 |
+
else:
|
120 |
+
return RandomSampler(self.train_dataset)
|
121 |
+
|
122 |
+
|
123 |
+
def replace_train_sampler():
|
124 |
+
transformers.Trainer._get_train_sampler = _get_train_sampler
|
125 |
+
# print('Replace train sampler!!')
|
src/third_party/InternVL/internvl_chat/internvl/train/__init__.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# InternVL
|
3 |
+
# Copyright (c) 2024 OpenGVLab
|
4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
5 |
+
# --------------------------------------------------------
|
src/third_party/InternVL/internvl_chat/internvl/train/constants.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# InternVL
|
3 |
+
# Copyright (c) 2024 OpenGVLab
|
4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
5 |
+
# --------------------------------------------------------
|
6 |
+
|
7 |
+
IMG_CONTEXT_TOKEN = '<IMG_CONTEXT>'
|
8 |
+
IMG_START_TOKEN = '<img>'
|
9 |
+
IMG_END_TOKEN = '</img>'
|
10 |
+
QUAD_START_TOKEN = '<quad>'
|
11 |
+
QUAD_END_TOKEN = '</quad>'
|
12 |
+
REF_START_TOKEN = '<ref>'
|
13 |
+
REF_END_TOKEN = '</ref>'
|
14 |
+
BOX_START_TOKEN = '<box>'
|
15 |
+
BOX_END_TOKEN = '</box>'
|
16 |
+
IMAGENET_MEAN = (0.485, 0.456, 0.406)
|
17 |
+
IMAGENET_STD = (0.229, 0.224, 0.225)
|
18 |
+
CLIP_MEAN = (0.4814546, 0.4578275, 0.40821073)
|
19 |
+
CLIP_STD = (0.2686295, 0.2613025, 0.2757711)
|
20 |
+
SIGLIP_MEAN = (0.5, 0.5, 0.5)
|
21 |
+
SIGLIP_STD = (0.5, 0.5, 0.5)
|
src/third_party/InternVL/internvl_chat/internvl/train/dataset.py
ADDED
@@ -0,0 +1,866 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# InternVL
|
3 |
+
# Copyright (c) 2024 OpenGVLab
|
4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
5 |
+
# --------------------------------------------------------
|
6 |
+
|
7 |
+
import io
|
8 |
+
|
9 |
+
from transformers.trainer_pt_utils import LabelSmoother
|
10 |
+
|
11 |
+
IGNORE_TOKEN_ID = LabelSmoother.ignore_index
|
12 |
+
import os
|
13 |
+
import random
|
14 |
+
import re
|
15 |
+
from collections import Counter
|
16 |
+
from typing import Dict
|
17 |
+
|
18 |
+
import cv2
|
19 |
+
import imageio
|
20 |
+
import numpy as np
|
21 |
+
import torch
|
22 |
+
import torch.nn.functional as F
|
23 |
+
import torchvision.transforms as T
|
24 |
+
import transformers
|
25 |
+
from decord import VideoReader
|
26 |
+
from internvl.conversation import get_conv_template
|
27 |
+
from PIL import Image
|
28 |
+
from torch.utils.data import ConcatDataset, WeightedRandomSampler
|
29 |
+
from torchvision.transforms.functional import InterpolationMode
|
30 |
+
|
31 |
+
from .constants import (CLIP_MEAN, CLIP_STD, IMAGENET_MEAN, IMAGENET_STD,
|
32 |
+
IMG_CONTEXT_TOKEN, IMG_END_TOKEN, IMG_START_TOKEN,
|
33 |
+
SIGLIP_MEAN, SIGLIP_STD)
|
34 |
+
|
35 |
+
try:
|
36 |
+
from petrel_client.client import Client
|
37 |
+
from petrel_client.common.config import Config
|
38 |
+
except ImportError as E:
|
39 |
+
print('petrel_client is not installed. If you read data locally instead of from ceph, ignore it.')
|
40 |
+
import sys
|
41 |
+
|
42 |
+
|
43 |
+
def calculate_ngram_repetition(text, n):
|
44 |
+
words = text.split()
|
45 |
+
ngrams = [tuple(words[i:i+n]) for i in range(len(words)-n+1)]
|
46 |
+
ngram_counts = Counter(ngrams)
|
47 |
+
total_ngrams = len(ngrams)
|
48 |
+
repeated_ngrams = sum(1 for count in ngram_counts.values() if count > 1)
|
49 |
+
return repeated_ngrams / total_ngrams if total_ngrams > 0 else 0
|
50 |
+
|
51 |
+
|
52 |
+
def check_conversations_repetition(conversations, repeat_threshold=0.4, ngram=10):
|
53 |
+
for conversation in conversations:
|
54 |
+
if conversation['from'] == 'gpt':
|
55 |
+
model_answer = conversation['value']
|
56 |
+
repeat_ratio = calculate_ngram_repetition(model_answer, ngram)
|
57 |
+
if repeat_ratio > repeat_threshold:
|
58 |
+
raise Exception
|
59 |
+
|
60 |
+
|
61 |
+
def get_frame_indices(num_frames, vlen, sample='rand', fix_start=None, input_fps=1, max_num_frames=-1):
|
62 |
+
if sample in ['rand', 'middle']: # uniform sampling
|
63 |
+
acc_samples = min(num_frames, vlen)
|
64 |
+
# split the video into `acc_samples` intervals, and sample from each interval.
|
65 |
+
intervals = np.linspace(start=0, stop=vlen, num=acc_samples + 1).astype(int)
|
66 |
+
ranges = []
|
67 |
+
for idx, interv in enumerate(intervals[:-1]):
|
68 |
+
ranges.append((interv, intervals[idx + 1] - 1))
|
69 |
+
if sample == 'rand':
|
70 |
+
try:
|
71 |
+
frame_indices = [random.choice(range(x[0], x[1])) for x in ranges]
|
72 |
+
except:
|
73 |
+
frame_indices = np.random.permutation(vlen)[:acc_samples]
|
74 |
+
frame_indices.sort()
|
75 |
+
frame_indices = list(frame_indices)
|
76 |
+
elif fix_start is not None:
|
77 |
+
frame_indices = [x[0] + fix_start for x in ranges]
|
78 |
+
elif sample == 'middle':
|
79 |
+
frame_indices = [(x[0] + x[1]) // 2 for x in ranges]
|
80 |
+
else:
|
81 |
+
raise NotImplementedError
|
82 |
+
|
83 |
+
if len(frame_indices) < num_frames: # padded with last frame
|
84 |
+
padded_frame_indices = [frame_indices[-1]] * num_frames
|
85 |
+
padded_frame_indices[:len(frame_indices)] = frame_indices
|
86 |
+
frame_indices = padded_frame_indices
|
87 |
+
elif 'fps' in sample: # fps0.5, sequentially sample frames at 0.5 fps
|
88 |
+
output_fps = float(sample[3:])
|
89 |
+
duration = float(vlen) / input_fps
|
90 |
+
delta = 1 / output_fps # gap between frames, this is also the clip length each frame represents
|
91 |
+
frame_seconds = np.arange(0 + delta / 2, duration + delta / 2, delta)
|
92 |
+
frame_indices = np.around(frame_seconds * input_fps).astype(int)
|
93 |
+
frame_indices = [e for e in frame_indices if e < vlen]
|
94 |
+
if max_num_frames > 0 and len(frame_indices) > max_num_frames:
|
95 |
+
frame_indices = frame_indices[:max_num_frames]
|
96 |
+
# frame_indices = np.linspace(0 + delta / 2, duration + delta / 2, endpoint=False, num=max_num_frames)
|
97 |
+
else:
|
98 |
+
raise ValueError
|
99 |
+
return frame_indices
|
100 |
+
|
101 |
+
|
102 |
+
def read_frames_gif(
|
103 |
+
video_path, num_frames, sample='rand', fix_start=None,
|
104 |
+
client=None, min_num_frames=4
|
105 |
+
):
|
106 |
+
if 's3://' in video_path:
|
107 |
+
video_bytes = client.get(video_path)
|
108 |
+
gif = imageio.get_reader(io.BytesIO(video_bytes))
|
109 |
+
else:
|
110 |
+
gif = imageio.get_reader(video_path)
|
111 |
+
vlen = len(gif)
|
112 |
+
|
113 |
+
t_num_frames = np.random.randint(min_num_frames, num_frames + 1)
|
114 |
+
frame_indices = get_frame_indices(
|
115 |
+
t_num_frames, vlen, sample=sample, fix_start=fix_start
|
116 |
+
)
|
117 |
+
frames = []
|
118 |
+
for index, frame in enumerate(gif):
|
119 |
+
if index in frame_indices:
|
120 |
+
frame = cv2.cvtColor(frame, cv2.COLOR_RGBA2RGB).astype(np.uint8)
|
121 |
+
frame = Image.fromarray(frame)
|
122 |
+
frames.append(frame)
|
123 |
+
return frames
|
124 |
+
|
125 |
+
|
126 |
+
def read_frames_decord(
|
127 |
+
video_path, num_frames, sample='rand', fix_start=None,
|
128 |
+
client=None, clip=None, min_num_frames=4
|
129 |
+
):
|
130 |
+
if 's3://' in video_path:
|
131 |
+
video_bytes = client.get(video_path)
|
132 |
+
video_reader = VideoReader(io.BytesIO(video_bytes), num_threads=1)
|
133 |
+
else:
|
134 |
+
video_reader = VideoReader(video_path, num_threads=1)
|
135 |
+
vlen = len(video_reader)
|
136 |
+
fps = video_reader.get_avg_fps()
|
137 |
+
duration = vlen / float(fps)
|
138 |
+
if clip:
|
139 |
+
start, end = clip
|
140 |
+
duration = end - start
|
141 |
+
vlen = int(duration * fps)
|
142 |
+
start_index = int(start * fps)
|
143 |
+
|
144 |
+
# t_num_frames = min(max(int(duration * sample_fps), min_num_frames), num_frames)
|
145 |
+
t_num_frames = np.random.randint(min_num_frames, num_frames + 1)
|
146 |
+
|
147 |
+
frame_indices = get_frame_indices(
|
148 |
+
t_num_frames, vlen, sample=sample, fix_start=fix_start,
|
149 |
+
input_fps=fps
|
150 |
+
)
|
151 |
+
if clip:
|
152 |
+
frame_indices = [f + start_index for f in frame_indices]
|
153 |
+
frames = video_reader.get_batch(frame_indices).asnumpy() # (T, H, W, C), np.uint8
|
154 |
+
frames = [Image.fromarray(frames[i]) for i in range(frames.shape[0])]
|
155 |
+
return frames
|
156 |
+
|
157 |
+
|
158 |
+
def extract_frame_number(filename):
|
159 |
+
# Extract the numeric part from the filename using regular expressions
|
160 |
+
match = re.search(r'_(\d+).jpg$', filename)
|
161 |
+
return int(match.group(1)) if match else -1
|
162 |
+
|
163 |
+
|
164 |
+
def sort_frames(frame_paths):
|
165 |
+
# Extract filenames from each path and sort by their numeric part
|
166 |
+
return sorted(frame_paths, key=lambda x: extract_frame_number(os.path.basename(x)))
|
167 |
+
|
168 |
+
|
169 |
+
def read_frames_folder(
|
170 |
+
video_path, num_frames, sample='rand', fix_start=None,
|
171 |
+
client=None, clip=None, min_num_frames=4
|
172 |
+
):
|
173 |
+
if 's3://' in video_path:
|
174 |
+
image_list = sort_frames(client.list(video_path))
|
175 |
+
frames = []
|
176 |
+
for image in image_list:
|
177 |
+
fp = os.path.join(video_path, image)
|
178 |
+
frame = Image.open(io.BytesIO(client.get(fp)))
|
179 |
+
frames.append(frame)
|
180 |
+
else:
|
181 |
+
image_list = sort_frames(list(os.listdir(video_path)))
|
182 |
+
frames = []
|
183 |
+
for image in image_list:
|
184 |
+
fp = os.path.join(video_path, image)
|
185 |
+
frame = Image.open(fp).convert('RGB')
|
186 |
+
frames.append(frame)
|
187 |
+
vlen = len(frames)
|
188 |
+
|
189 |
+
t_num_frames = np.random.randint(min_num_frames, num_frames + 1)
|
190 |
+
|
191 |
+
if vlen > t_num_frames:
|
192 |
+
frame_indices = get_frame_indices(
|
193 |
+
t_num_frames, vlen, sample=sample, fix_start=fix_start
|
194 |
+
)
|
195 |
+
frames = [frames[i] for i in frame_indices]
|
196 |
+
return frames
|
197 |
+
|
198 |
+
|
199 |
+
class WeightedConcatDataset(ConcatDataset):
|
200 |
+
def __init__(self, datasets, weights):
|
201 |
+
super().__init__(datasets)
|
202 |
+
self.weights = torch.DoubleTensor(weights)
|
203 |
+
self.total_size = sum(len(d) for d in datasets)
|
204 |
+
self.sampler = WeightedRandomSampler(weights=self.weights, num_samples=self.total_size, replacement=True)
|
205 |
+
|
206 |
+
def __iter__(self):
|
207 |
+
return iter(self.sampler)
|
208 |
+
|
209 |
+
def __len__(self):
|
210 |
+
return self.total_size
|
211 |
+
|
212 |
+
|
213 |
+
def pil_loader(img_str):
|
214 |
+
buff = io.BytesIO(img_str)
|
215 |
+
img = Image.open(buff)
|
216 |
+
return img.convert('RGB')
|
217 |
+
|
218 |
+
|
219 |
+
class TCSLoader(object):
|
220 |
+
|
221 |
+
def __init__(self, conf_path, sc_config_key='sensecore'):
|
222 |
+
print(f'[TCSLoader] config_path: {conf_path}')
|
223 |
+
print('--> before Client(conf_path)')
|
224 |
+
self.client = Client(conf_path)
|
225 |
+
self.sc_config_key = sc_config_key
|
226 |
+
print('--> after Client(conf_path)')
|
227 |
+
|
228 |
+
def __call__(self, fn, image_type='image', max_num_frames=-1, min_num_frames=8, sample='rand', clip=None):
|
229 |
+
if image_type == 'image':
|
230 |
+
img_value_str = self.client.get(fn)
|
231 |
+
img = pil_loader(img_value_str)
|
232 |
+
return img
|
233 |
+
|
234 |
+
elif image_type == 'video':
|
235 |
+
if fn.endswith('/'):
|
236 |
+
frames = read_frames_folder(fn, num_frames=max_num_frames, min_num_frames=min_num_frames,
|
237 |
+
client=self.client, sample=sample)
|
238 |
+
elif fn.endswith('.gif'):
|
239 |
+
frames = read_frames_gif(fn, num_frames=max_num_frames, min_num_frames=min_num_frames,
|
240 |
+
client=self.client, sample=sample)
|
241 |
+
else:
|
242 |
+
frames = read_frames_decord(fn, num_frames=max_num_frames, min_num_frames=min_num_frames,
|
243 |
+
client=self.client, sample=sample, clip=clip)
|
244 |
+
return frames
|
245 |
+
|
246 |
+
|
247 |
+
def expand2square(pil_img, background_color):
|
248 |
+
width, height = pil_img.size
|
249 |
+
if width == height:
|
250 |
+
return pil_img
|
251 |
+
elif width > height:
|
252 |
+
result = Image.new(pil_img.mode, (width, width), background_color)
|
253 |
+
result.paste(pil_img, (0, (width - height) // 2))
|
254 |
+
return result
|
255 |
+
else:
|
256 |
+
result = Image.new(pil_img.mode, (height, height), background_color)
|
257 |
+
result.paste(pil_img, ((height - width) // 2, 0))
|
258 |
+
return result
|
259 |
+
|
260 |
+
|
261 |
+
def simulate_jpeg_degradation(quality):
|
262 |
+
def jpeg_degrade(img):
|
263 |
+
with io.BytesIO() as output:
|
264 |
+
img.convert('RGB').save(output, format='JPEG', quality=quality)
|
265 |
+
output.seek(0) # Move the reading cursor to the start of the stream
|
266 |
+
img_jpeg = Image.open(output).copy() # Use .copy() to make sure the image is loaded in memory
|
267 |
+
return img_jpeg
|
268 |
+
return jpeg_degrade
|
269 |
+
|
270 |
+
|
271 |
+
# Define the JPEG compression quality range, pre-create all JPEG compression functions
|
272 |
+
qualities = list(range(75, 101))
|
273 |
+
jpeg_degrade_functions = {quality: simulate_jpeg_degradation(quality) for quality in qualities}
|
274 |
+
|
275 |
+
|
276 |
+
def build_transform(is_train, input_size, pad2square=False, normalize_type='imagenet'):
|
277 |
+
if normalize_type == 'imagenet':
|
278 |
+
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
|
279 |
+
elif normalize_type == 'clip':
|
280 |
+
MEAN, STD = CLIP_MEAN, CLIP_STD
|
281 |
+
elif normalize_type == 'siglip':
|
282 |
+
MEAN, STD = SIGLIP_MEAN, SIGLIP_STD
|
283 |
+
else:
|
284 |
+
raise NotImplementedError
|
285 |
+
if is_train: # use data augumentation
|
286 |
+
transform = T.Compose([
|
287 |
+
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
|
288 |
+
T.RandomChoice([T.Lambda(jpeg_degrade_functions[quality]) for quality in qualities]),
|
289 |
+
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
|
290 |
+
T.ToTensor(),
|
291 |
+
T.Normalize(mean=MEAN, std=STD)
|
292 |
+
])
|
293 |
+
else:
|
294 |
+
if pad2square is False: # now we use this transform function by default
|
295 |
+
transform = T.Compose([
|
296 |
+
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
|
297 |
+
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
|
298 |
+
T.ToTensor(),
|
299 |
+
T.Normalize(mean=MEAN, std=STD)
|
300 |
+
])
|
301 |
+
else:
|
302 |
+
transform = T.Compose([
|
303 |
+
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
|
304 |
+
T.Lambda(lambda img: expand2square(img, tuple(int(x * 255) for x in MEAN))),
|
305 |
+
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
|
306 |
+
T.ToTensor(),
|
307 |
+
T.Normalize(mean=MEAN, std=STD)
|
308 |
+
])
|
309 |
+
|
310 |
+
return transform
|
311 |
+
|
312 |
+
|
313 |
+
def preprocess(
|
314 |
+
template_name,
|
315 |
+
sources,
|
316 |
+
tokenizer: transformers.PreTrainedTokenizer,
|
317 |
+
num_image_token_list: list,
|
318 |
+
text_only: bool = False,
|
319 |
+
group_by_length: bool = False,
|
320 |
+
use_packed_ds: bool = False,
|
321 |
+
ds_name: str = None,
|
322 |
+
num_image: int = 1
|
323 |
+
) -> Dict:
|
324 |
+
conv = get_conv_template(template_name)
|
325 |
+
roles = {'human': conv.roles[0], 'gpt': conv.roles[1]}
|
326 |
+
|
327 |
+
# Apply prompt templates
|
328 |
+
conversations = []
|
329 |
+
for i, source in enumerate(sources):
|
330 |
+
if roles[source[0]['from']] != conv.roles[0]:
|
331 |
+
# Skip the first one if it is not from human
|
332 |
+
source = source[1:]
|
333 |
+
|
334 |
+
conv.messages = []
|
335 |
+
for j, sentence in enumerate(source):
|
336 |
+
role = roles[sentence['from']]
|
337 |
+
assert role == conv.roles[j % 2], f'{i}'
|
338 |
+
conv.append_message(role, sentence['value'])
|
339 |
+
conversations.append(conv.get_prompt())
|
340 |
+
|
341 |
+
if not text_only:
|
342 |
+
new_conversations = []
|
343 |
+
for conversation in conversations:
|
344 |
+
for i in range(num_image):
|
345 |
+
image_tokens = f'{IMG_START_TOKEN}{IMG_CONTEXT_TOKEN * num_image_token_list[i]}{IMG_END_TOKEN}'
|
346 |
+
conversation = conversation.replace('<image>', image_tokens, 1)
|
347 |
+
new_conversations.append(conversation)
|
348 |
+
conversations = new_conversations
|
349 |
+
|
350 |
+
# Tokenize conversations
|
351 |
+
input_ids = tokenizer(
|
352 |
+
conversations,
|
353 |
+
return_tensors='pt',
|
354 |
+
padding=False if group_by_length or use_packed_ds else 'max_length',
|
355 |
+
max_length=tokenizer.model_max_length,
|
356 |
+
truncation=True,
|
357 |
+
).input_ids
|
358 |
+
targets = input_ids.clone()
|
359 |
+
|
360 |
+
# assert conv.sep_style == SeparatorStyle.ADD_COLON_TWO
|
361 |
+
|
362 |
+
# Mask targets. Only compute loss on the assistant outputs.
|
363 |
+
sep = conv.sep + conv.roles[1] + ': '
|
364 |
+
for conversation, target in zip(conversations, targets):
|
365 |
+
total_len = int(target.ne(tokenizer.pad_token_id).sum())
|
366 |
+
|
367 |
+
turns = conversation.split(conv.sep2)
|
368 |
+
cur_len = 1
|
369 |
+
target[:cur_len] = IGNORE_TOKEN_ID
|
370 |
+
for i, turn in enumerate(turns):
|
371 |
+
if turn == '':
|
372 |
+
break
|
373 |
+
turn_len = len(tokenizer(turn).input_ids)
|
374 |
+
|
375 |
+
parts = turn.split(sep)
|
376 |
+
if len(parts) != 2:
|
377 |
+
break
|
378 |
+
parts[0] += sep
|
379 |
+
# "-2" is hardcoded for the Llama tokenizer to make the offset correct.
|
380 |
+
instruction_len = len(tokenizer(parts[0]).input_ids) - 2
|
381 |
+
|
382 |
+
if i != 0 and not tokenizer.legacy:
|
383 |
+
# The legacy and non-legacy modes handle special tokens differently
|
384 |
+
instruction_len -= 1
|
385 |
+
|
386 |
+
# Ignore the user instructions
|
387 |
+
target[cur_len: cur_len + instruction_len] = IGNORE_TOKEN_ID
|
388 |
+
cur_len += turn_len
|
389 |
+
|
390 |
+
if i != 0 and not tokenizer.legacy:
|
391 |
+
# The legacy and non-legacy modes handle special tokens differently
|
392 |
+
cur_len -= 1
|
393 |
+
|
394 |
+
target[cur_len:] = IGNORE_TOKEN_ID
|
395 |
+
|
396 |
+
if False: # Inspect and check the correctness of masking
|
397 |
+
z = target.clone()
|
398 |
+
z = torch.where(z == IGNORE_TOKEN_ID, tokenizer.unk_token_id, z)
|
399 |
+
logger.info(tokenizer.decode(z))
|
400 |
+
exit()
|
401 |
+
|
402 |
+
if cur_len < tokenizer.model_max_length:
|
403 |
+
if cur_len != total_len:
|
404 |
+
target[:] = IGNORE_TOKEN_ID
|
405 |
+
print(
|
406 |
+
f'WARNING: tokenization mismatch: {cur_len} vs. {total_len}.'
|
407 |
+
f' #turn = {len(turns) - 1}. (ignored). This dataset is {ds_name}.'
|
408 |
+
)
|
409 |
+
sys.stdout.flush()
|
410 |
+
|
411 |
+
return dict(
|
412 |
+
input_ids=input_ids,
|
413 |
+
labels=targets,
|
414 |
+
attention_mask=input_ids.ne(tokenizer.pad_token_id),
|
415 |
+
)
|
416 |
+
|
417 |
+
|
418 |
+
def preprocess_mpt(
|
419 |
+
template_name,
|
420 |
+
sources,
|
421 |
+
tokenizer: transformers.PreTrainedTokenizer,
|
422 |
+
num_image_token_list: list,
|
423 |
+
text_only: bool = False,
|
424 |
+
group_by_length: bool = False,
|
425 |
+
use_packed_ds: bool = False,
|
426 |
+
ds_name: str = None,
|
427 |
+
num_image: int = 1
|
428 |
+
) -> Dict:
|
429 |
+
conv = get_conv_template(template_name)
|
430 |
+
roles = {'human': conv.roles[0], 'gpt': conv.roles[1]}
|
431 |
+
|
432 |
+
# Apply prompt templates
|
433 |
+
conversations = []
|
434 |
+
for i, source in enumerate(sources):
|
435 |
+
if roles[source[0]['from']] != conv.roles[0]:
|
436 |
+
# Skip the first one if it is not from human
|
437 |
+
source = source[1:]
|
438 |
+
|
439 |
+
conv.messages = []
|
440 |
+
for j, sentence in enumerate(source):
|
441 |
+
role = roles[sentence['from']]
|
442 |
+
assert role == conv.roles[j % 2], f'{i}'
|
443 |
+
conv.append_message(role, sentence['value'])
|
444 |
+
conversations.append(conv.get_prompt())
|
445 |
+
|
446 |
+
if not text_only:
|
447 |
+
new_conversations = []
|
448 |
+
for conversation in conversations:
|
449 |
+
for i in range(num_image):
|
450 |
+
image_tokens = f'{IMG_START_TOKEN}{IMG_CONTEXT_TOKEN * num_image_token_list[i]}{IMG_END_TOKEN}'
|
451 |
+
conversation = conversation.replace('<image>', image_tokens, 1)
|
452 |
+
new_conversations.append(conversation)
|
453 |
+
conversations = new_conversations
|
454 |
+
|
455 |
+
# Tokenize conversations
|
456 |
+
input_ids = tokenizer(
|
457 |
+
conversations,
|
458 |
+
return_tensors='pt',
|
459 |
+
padding=False if group_by_length or use_packed_ds else 'max_length',
|
460 |
+
max_length=tokenizer.model_max_length,
|
461 |
+
truncation=True,
|
462 |
+
).input_ids
|
463 |
+
targets = input_ids.clone()
|
464 |
+
|
465 |
+
# Mask targets. Only compute loss on the assistant outputs.
|
466 |
+
sep = conv.sep + conv.roles[1] # <|im_end|><|im_start|>assistant\n
|
467 |
+
for conversation, target in zip(conversations, targets):
|
468 |
+
total_len = int(target.ne(tokenizer.pad_token_id).sum())
|
469 |
+
|
470 |
+
turns = conversation.split(conv.sep)
|
471 |
+
re_turns = [conv.sep.join(turns[:3])] # system + user + gpt
|
472 |
+
for conv_idx in range(3, len(turns), 2):
|
473 |
+
re_turns.append(conv.sep.join(turns[conv_idx:conv_idx + 2])) # user + gpt
|
474 |
+
cur_len = 0
|
475 |
+
target[:cur_len] = IGNORE_TOKEN_ID
|
476 |
+
for i, turn in enumerate(re_turns):
|
477 |
+
if turn == '':
|
478 |
+
break
|
479 |
+
turn_len = len(tokenizer(turn).input_ids) + 1
|
480 |
+
|
481 |
+
parts = turn.split(sep)
|
482 |
+
if len(parts) != 2:
|
483 |
+
break
|
484 |
+
parts[0] += sep
|
485 |
+
instruction_len = len(tokenizer(parts[0]).input_ids)
|
486 |
+
|
487 |
+
# Ignore the user instructions
|
488 |
+
target[cur_len: cur_len + instruction_len] = IGNORE_TOKEN_ID
|
489 |
+
# print(f'[question {i}]', tokenizer.decode(input_ids[:, cur_len: cur_len + instruction_len][0]))
|
490 |
+
# print(f'[answer {i}]', tokenizer.decode(input_ids[:, cur_len + instruction_len: cur_len + turn_len][0]))
|
491 |
+
# print(f'[label {i}]', target[cur_len + instruction_len: cur_len + turn_len])
|
492 |
+
cur_len += turn_len
|
493 |
+
|
494 |
+
target[cur_len:] = IGNORE_TOKEN_ID
|
495 |
+
|
496 |
+
if cur_len < tokenizer.model_max_length:
|
497 |
+
if cur_len != total_len:
|
498 |
+
target[:] = IGNORE_TOKEN_ID
|
499 |
+
print(
|
500 |
+
f'WARNING: tokenization mismatch: {cur_len} vs. {total_len}.'
|
501 |
+
f' #turn = {len(turns) - 1}. (ignored). This dataset is {ds_name}.'
|
502 |
+
)
|
503 |
+
sys.stdout.flush()
|
504 |
+
|
505 |
+
return dict(
|
506 |
+
input_ids=input_ids,
|
507 |
+
labels=targets,
|
508 |
+
attention_mask=input_ids.ne(tokenizer.pad_token_id),
|
509 |
+
)
|
510 |
+
|
511 |
+
|
512 |
+
def preprocess_phi3(
|
513 |
+
template_name,
|
514 |
+
sources,
|
515 |
+
tokenizer: transformers.PreTrainedTokenizer,
|
516 |
+
num_image_token_list: list,
|
517 |
+
text_only: bool = False,
|
518 |
+
group_by_length: bool = False,
|
519 |
+
use_packed_ds: bool = False,
|
520 |
+
ds_name: str = None,
|
521 |
+
num_image: int = 1
|
522 |
+
) -> Dict:
|
523 |
+
conv = get_conv_template(template_name)
|
524 |
+
roles = {'human': conv.roles[0], 'gpt': conv.roles[1]}
|
525 |
+
|
526 |
+
# Apply prompt templates
|
527 |
+
conversations = []
|
528 |
+
for i, source in enumerate(sources):
|
529 |
+
if roles[source[0]['from']] != conv.roles[0]:
|
530 |
+
# Skip the first one if it is not from human
|
531 |
+
source = source[1:]
|
532 |
+
|
533 |
+
conv.messages = []
|
534 |
+
for j, sentence in enumerate(source):
|
535 |
+
role = roles[sentence['from']]
|
536 |
+
assert role == conv.roles[j % 2], f'{i}'
|
537 |
+
conv.append_message(role, sentence['value'])
|
538 |
+
conversations.append(conv.get_prompt())
|
539 |
+
|
540 |
+
if not text_only:
|
541 |
+
new_conversations = []
|
542 |
+
for conversation in conversations:
|
543 |
+
for i in range(num_image):
|
544 |
+
image_tokens = f'{IMG_START_TOKEN}{IMG_CONTEXT_TOKEN * num_image_token_list[i]}{IMG_END_TOKEN}'
|
545 |
+
conversation = conversation.replace('<image>', image_tokens, 1)
|
546 |
+
new_conversations.append(conversation)
|
547 |
+
conversations = new_conversations
|
548 |
+
|
549 |
+
# Tokenize conversations
|
550 |
+
tokenizer.padding_side = 'right'
|
551 |
+
input_ids = tokenizer(
|
552 |
+
conversations,
|
553 |
+
return_tensors='pt',
|
554 |
+
padding=False if group_by_length or use_packed_ds else 'max_length',
|
555 |
+
max_length=tokenizer.model_max_length,
|
556 |
+
truncation=True,
|
557 |
+
).input_ids
|
558 |
+
targets = input_ids.clone()
|
559 |
+
|
560 |
+
# Mask targets. Only compute loss on the assistant outputs.
|
561 |
+
sep = conv.sep + conv.roles[1] # <|end|>\n<|assistant|>
|
562 |
+
for conversation, target in zip(conversations, targets):
|
563 |
+
total_len = int(target.ne(int(tokenizer.pad_token_id)).sum())
|
564 |
+
|
565 |
+
turns = conversation.split(conv.sep)
|
566 |
+
re_turns = [conv.sep.join(turns[:3])] # system + user + gpt
|
567 |
+
for conv_idx in range(3, len(turns), 2):
|
568 |
+
re_turns.append(conv.sep.join(turns[conv_idx:conv_idx + 2])) # user + gpt
|
569 |
+
cur_len = 1
|
570 |
+
target[:cur_len] = IGNORE_TOKEN_ID
|
571 |
+
endoftext_id = tokenizer.convert_tokens_to_ids('<|endoftext|>')
|
572 |
+
target[target == endoftext_id] = IGNORE_TOKEN_ID
|
573 |
+
|
574 |
+
for i, turn in enumerate(re_turns):
|
575 |
+
if turn == '':
|
576 |
+
break
|
577 |
+
if i == 0:
|
578 |
+
turn_len = len(tokenizer(turn).input_ids)
|
579 |
+
else:
|
580 |
+
turn_len = len(tokenizer(turn).input_ids) - 1
|
581 |
+
parts = turn.split(sep)
|
582 |
+
if len(parts) != 2:
|
583 |
+
break
|
584 |
+
parts[0] += sep
|
585 |
+
|
586 |
+
if i == 0:
|
587 |
+
instruction_len = len(tokenizer(parts[0]).input_ids) - 1
|
588 |
+
else:
|
589 |
+
instruction_len = len(tokenizer(parts[0]).input_ids) - 2
|
590 |
+
|
591 |
+
# Ignore the user instructions
|
592 |
+
target[cur_len: cur_len + instruction_len] = IGNORE_TOKEN_ID
|
593 |
+
# print(f'[question {i}]', tokenizer.decode(input_ids[:, cur_len: cur_len + instruction_len][0]))
|
594 |
+
# print(f'[answer {i}]', tokenizer.decode(input_ids[:, cur_len + instruction_len: cur_len + turn_len][0]))
|
595 |
+
# print(f'[label {i}]', target[cur_len + instruction_len: cur_len + turn_len])
|
596 |
+
cur_len += turn_len
|
597 |
+
|
598 |
+
target[cur_len:] = IGNORE_TOKEN_ID
|
599 |
+
|
600 |
+
if False: # Inspect and check the correctness of masking
|
601 |
+
z = target.clone()
|
602 |
+
z = torch.where(z == IGNORE_TOKEN_ID, tokenizer.unk_token_id, z)
|
603 |
+
print(repr(tokenizer.decode(z)))
|
604 |
+
|
605 |
+
if cur_len < tokenizer.model_max_length:
|
606 |
+
if cur_len != total_len:
|
607 |
+
target[:] = IGNORE_TOKEN_ID
|
608 |
+
print(
|
609 |
+
f'WARNING: tokenization mismatch: {cur_len} vs. {total_len}.'
|
610 |
+
f' #turn = {len(turns) - 1}. (ignored). This dataset is {ds_name}.'
|
611 |
+
)
|
612 |
+
sys.stdout.flush()
|
613 |
+
|
614 |
+
return dict(
|
615 |
+
input_ids=input_ids,
|
616 |
+
labels=targets,
|
617 |
+
attention_mask=input_ids.ne(tokenizer.pad_token_id),
|
618 |
+
)
|
619 |
+
|
620 |
+
|
621 |
+
def preprocess_internlm(
|
622 |
+
template_name,
|
623 |
+
sources,
|
624 |
+
tokenizer: transformers.PreTrainedTokenizer,
|
625 |
+
num_image_token_list: list,
|
626 |
+
text_only: bool = False,
|
627 |
+
group_by_length: bool = False,
|
628 |
+
use_packed_ds: bool = False,
|
629 |
+
ds_name: str = None,
|
630 |
+
num_image: int = 1
|
631 |
+
) -> Dict:
|
632 |
+
conv = get_conv_template(template_name)
|
633 |
+
roles = {'human': conv.roles[0], 'gpt': conv.roles[1]}
|
634 |
+
|
635 |
+
# Apply prompt templates
|
636 |
+
conversations = []
|
637 |
+
for i, source in enumerate(sources):
|
638 |
+
if roles[source[0]['from']] != conv.roles[0]:
|
639 |
+
# Skip the first one if it is not from human
|
640 |
+
source = source[1:]
|
641 |
+
|
642 |
+
conv.messages = []
|
643 |
+
for j, sentence in enumerate(source):
|
644 |
+
role = roles[sentence['from']]
|
645 |
+
assert role == conv.roles[j % 2], f'{i}'
|
646 |
+
sentence['value'] = sentence['value'].strip()
|
647 |
+
conv.append_message(role, sentence['value'])
|
648 |
+
conversations.append(conv.get_prompt())
|
649 |
+
|
650 |
+
if not text_only:
|
651 |
+
new_conversations = []
|
652 |
+
for conversation in conversations:
|
653 |
+
for i in range(num_image):
|
654 |
+
image_tokens = f'{IMG_START_TOKEN}{IMG_CONTEXT_TOKEN * num_image_token_list[i]}{IMG_END_TOKEN}'
|
655 |
+
conversation = conversation.replace('<image>', image_tokens, 1)
|
656 |
+
new_conversations.append(conversation)
|
657 |
+
conversations = new_conversations
|
658 |
+
|
659 |
+
# Tokenize conversations
|
660 |
+
input_ids = tokenizer(
|
661 |
+
conversations,
|
662 |
+
return_tensors='pt',
|
663 |
+
padding=False if group_by_length or use_packed_ds else 'max_length',
|
664 |
+
max_length=tokenizer.model_max_length,
|
665 |
+
truncation=True,
|
666 |
+
).input_ids
|
667 |
+
targets = input_ids.clone()
|
668 |
+
|
669 |
+
for conversation, target in zip(conversations, targets):
|
670 |
+
total_len = int(target.ne(tokenizer.pad_token_id).sum()) # 浦语里面 pad_token_id = eos_token_id
|
671 |
+
cur_len = 1
|
672 |
+
target[:cur_len] = IGNORE_TOKEN_ID # <s>
|
673 |
+
parts = conversation.split(conv.roles[1]) # [UNUSED_TOKEN_146]assistant\n
|
674 |
+
info = parts[0] + conv.roles[1]
|
675 |
+
temp_len = len(tokenizer(info).input_ids) - 1 # 去除tokenizer的<s>
|
676 |
+
target[cur_len: cur_len + temp_len] = IGNORE_TOKEN_ID
|
677 |
+
cur_len = cur_len + temp_len
|
678 |
+
|
679 |
+
for index in range(1, len(parts) - 1):
|
680 |
+
info = parts[index]
|
681 |
+
part1, part2 = info.split(conv.roles[0])
|
682 |
+
temp_len = len(tokenizer(part1).input_ids) - 1
|
683 |
+
cur_len = cur_len + temp_len
|
684 |
+
part = conv.roles[0] + part2 + conv.roles[1]
|
685 |
+
temp_len = len(tokenizer(part).input_ids) - 1
|
686 |
+
target[cur_len: cur_len + temp_len] = IGNORE_TOKEN_ID
|
687 |
+
cur_len = cur_len + temp_len
|
688 |
+
last_info = parts[-1]
|
689 |
+
temp_len = len(tokenizer(last_info).input_ids) - 1
|
690 |
+
cur_len = cur_len + temp_len
|
691 |
+
|
692 |
+
target[cur_len:] = IGNORE_TOKEN_ID
|
693 |
+
if False: # Inspect and check the correctness of masking
|
694 |
+
z = target.clone()
|
695 |
+
z = torch.where(z == IGNORE_TOKEN_ID, tokenizer.unk_token_id, z)
|
696 |
+
print(repr(tokenizer.decode(z)))
|
697 |
+
|
698 |
+
if cur_len < tokenizer.model_max_length:
|
699 |
+
if cur_len != total_len:
|
700 |
+
target[:] = IGNORE_TOKEN_ID
|
701 |
+
print(f'WARNING: tokenization mismatch: {cur_len} vs. {total_len}. This dataset is {ds_name}.')
|
702 |
+
sys.stdout.flush()
|
703 |
+
|
704 |
+
return dict(
|
705 |
+
input_ids=input_ids,
|
706 |
+
labels=targets,
|
707 |
+
attention_mask=input_ids.ne(tokenizer.pad_token_id),
|
708 |
+
)
|
709 |
+
|
710 |
+
|
711 |
+
def preprocess_internvl2_5(
|
712 |
+
template_name,
|
713 |
+
sources,
|
714 |
+
tokenizer: transformers.PreTrainedTokenizer,
|
715 |
+
num_image_token_list: list,
|
716 |
+
text_only: bool = False,
|
717 |
+
group_by_length: bool = False,
|
718 |
+
use_packed_ds: bool = False,
|
719 |
+
ds_name: str = None,
|
720 |
+
num_image: int = 1
|
721 |
+
) -> Dict:
|
722 |
+
assert len(sources) == 1, 'process only the first conversations'
|
723 |
+
conversations = sources[0]
|
724 |
+
|
725 |
+
if conversations[0]['from'] == 'system':
|
726 |
+
system_prompt = conversations[0]['value']
|
727 |
+
conversations = conversations[1:] # remove system prompt
|
728 |
+
else:
|
729 |
+
conv = get_conv_template(template_name)
|
730 |
+
system_prompt = conv.system_message
|
731 |
+
# system_prompt = None
|
732 |
+
|
733 |
+
if not text_only:
|
734 |
+
new_conversations = []
|
735 |
+
current_image_idx = 0
|
736 |
+
for conversation in conversations:
|
737 |
+
if conversation['from'] == 'human':
|
738 |
+
image_cnt = conversation['value'].count('<image>')
|
739 |
+
for i in range(image_cnt):
|
740 |
+
if current_image_idx == num_image:
|
741 |
+
break
|
742 |
+
image_tokens = f'{IMG_START_TOKEN}{IMG_CONTEXT_TOKEN * num_image_token_list[current_image_idx]}{IMG_END_TOKEN}'
|
743 |
+
conversation['value'] = conversation['value'].replace('<image>', image_tokens, 1)
|
744 |
+
current_image_idx += 1
|
745 |
+
new_conversations.append(conversation)
|
746 |
+
conversations = new_conversations
|
747 |
+
assert current_image_idx == num_image, f'{current_image_idx} != {num_image}'
|
748 |
+
|
749 |
+
batches, roles = [], []
|
750 |
+
if system_prompt is not None:
|
751 |
+
batches.append(f'<|im_start|>system\n{system_prompt}<|im_end|>\n')
|
752 |
+
roles.append('system')
|
753 |
+
for conversation in conversations:
|
754 |
+
if conversation['from'] == 'human':
|
755 |
+
batches.append(f'<|im_start|>user\n{conversation["value"]}<|im_end|>\n')
|
756 |
+
roles.append('human')
|
757 |
+
elif conversation['from'] == 'gpt':
|
758 |
+
batches.append(f'<|im_start|>assistant\n{conversation["value"]}<|im_end|>\n')
|
759 |
+
roles.append('gpt')
|
760 |
+
else:
|
761 |
+
raise NotImplementedError
|
762 |
+
|
763 |
+
add_bos_token = getattr(tokenizer, 'add_bos_token', False)
|
764 |
+
if add_bos_token: # for InternLM series
|
765 |
+
batches[0] = tokenizer.bos_token + batches[0]
|
766 |
+
|
767 |
+
# Tokenize conversations
|
768 |
+
input_ids = tokenizer(
|
769 |
+
batches,
|
770 |
+
return_tensors='np',
|
771 |
+
padding=False,
|
772 |
+
max_length=tokenizer.model_max_length,
|
773 |
+
truncation=False,
|
774 |
+
).input_ids
|
775 |
+
|
776 |
+
if add_bos_token: # for InternLM series
|
777 |
+
input_ids = [item[1:] for item in input_ids]
|
778 |
+
|
779 |
+
final_input_ids, final_targets = [], []
|
780 |
+
ignore_ids = tokenizer('<|im_start|>assistant\n', return_tensors='np').input_ids[0]
|
781 |
+
ignore_len = ignore_ids.shape[0] - 1 if add_bos_token else ignore_ids.shape[0]
|
782 |
+
for role, input_id in zip(roles, input_ids):
|
783 |
+
final_input_ids.append(input_id)
|
784 |
+
if role == 'system' or role == 'human':
|
785 |
+
final_targets.append(np.full(input_id.shape, IGNORE_TOKEN_ID)) # ignore
|
786 |
+
elif role == 'gpt':
|
787 |
+
target = input_id.copy()
|
788 |
+
target[:ignore_len] = IGNORE_TOKEN_ID # ignore loss for `<|im_start|>assistant\n`
|
789 |
+
target[-1:] = IGNORE_TOKEN_ID # ignore loss for `\n`
|
790 |
+
final_targets.append(target)
|
791 |
+
else:
|
792 |
+
raise NotImplementedError
|
793 |
+
input_ids = torch.tensor(np.concatenate(final_input_ids))[:tokenizer.model_max_length]
|
794 |
+
targets = torch.tensor(np.concatenate(final_targets))[:tokenizer.model_max_length]
|
795 |
+
|
796 |
+
padding = False if group_by_length or use_packed_ds else True
|
797 |
+
if padding:
|
798 |
+
current_length = input_ids.size(0)
|
799 |
+
padding_length = tokenizer.model_max_length - current_length
|
800 |
+
input_ids = F.pad(input_ids, (0, padding_length), value=tokenizer.pad_token_id)
|
801 |
+
targets = F.pad(targets, (0, padding_length), value=IGNORE_TOKEN_ID)
|
802 |
+
|
803 |
+
input_ids = input_ids.unsqueeze(0)
|
804 |
+
targets = targets.unsqueeze(0)
|
805 |
+
|
806 |
+
return dict(
|
807 |
+
input_ids=input_ids,
|
808 |
+
labels=targets,
|
809 |
+
attention_mask=input_ids.ne(tokenizer.pad_token_id),
|
810 |
+
)
|
811 |
+
|
812 |
+
|
813 |
+
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
|
814 |
+
best_ratio_diff = float('inf')
|
815 |
+
best_ratio = (1, 1)
|
816 |
+
area = width * height
|
817 |
+
for ratio in target_ratios:
|
818 |
+
target_aspect_ratio = ratio[0] / ratio[1]
|
819 |
+
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
|
820 |
+
if ratio_diff < best_ratio_diff:
|
821 |
+
best_ratio_diff = ratio_diff
|
822 |
+
best_ratio = ratio
|
823 |
+
elif ratio_diff == best_ratio_diff:
|
824 |
+
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
|
825 |
+
best_ratio = ratio
|
826 |
+
# print(f'width: {width}, height: {height}, best_ratio: {best_ratio}')
|
827 |
+
return best_ratio
|
828 |
+
|
829 |
+
|
830 |
+
def dynamic_preprocess(image, min_num=1, max_num=6, image_size=448, use_thumbnail=False):
|
831 |
+
orig_width, orig_height = image.size
|
832 |
+
aspect_ratio = orig_width / orig_height
|
833 |
+
|
834 |
+
# calculate the existing image aspect ratio
|
835 |
+
target_ratios = set(
|
836 |
+
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
|
837 |
+
i * j <= max_num and i * j >= min_num)
|
838 |
+
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
|
839 |
+
|
840 |
+
# find the closest aspect ratio to the target
|
841 |
+
target_aspect_ratio = find_closest_aspect_ratio(
|
842 |
+
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
|
843 |
+
|
844 |
+
# calculate the target width and height
|
845 |
+
target_width = image_size * target_aspect_ratio[0]
|
846 |
+
target_height = image_size * target_aspect_ratio[1]
|
847 |
+
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
|
848 |
+
|
849 |
+
# resize the image
|
850 |
+
resized_img = image.resize((target_width, target_height))
|
851 |
+
processed_images = []
|
852 |
+
for i in range(blocks):
|
853 |
+
box = (
|
854 |
+
(i % (target_width // image_size)) * image_size,
|
855 |
+
(i // (target_width // image_size)) * image_size,
|
856 |
+
((i % (target_width // image_size)) + 1) * image_size,
|
857 |
+
((i // (target_width // image_size)) + 1) * image_size
|
858 |
+
)
|
859 |
+
# split the image
|
860 |
+
split_img = resized_img.crop(box)
|
861 |
+
processed_images.append(split_img)
|
862 |
+
assert len(processed_images) == blocks
|
863 |
+
if use_thumbnail and len(processed_images) != 1:
|
864 |
+
thumbnail_img = image.resize((image_size, image_size))
|
865 |
+
processed_images.append(thumbnail_img)
|
866 |
+
return processed_images
|
src/third_party/InternVL/internvl_chat/internvl/train/dataset_packed.py
ADDED
@@ -0,0 +1,634 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# InternVL
|
3 |
+
# Copyright (c) 2024 OpenGVLab
|
4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
5 |
+
# --------------------------------------------------------
|
6 |
+
|
7 |
+
import bisect
|
8 |
+
import copy
|
9 |
+
import logging
|
10 |
+
from collections import defaultdict
|
11 |
+
from typing import List, Union
|
12 |
+
|
13 |
+
import numpy as np
|
14 |
+
import torch
|
15 |
+
import torch.distributed as dist
|
16 |
+
from torch.utils.data import IterableDataset, get_worker_info
|
17 |
+
from transformers.trainer_pt_utils import LabelSmoother
|
18 |
+
|
19 |
+
from .constants import IMG_CONTEXT_TOKEN, IMG_END_TOKEN, IMG_START_TOKEN
|
20 |
+
|
21 |
+
IGNORE_TOKEN_ID = LabelSmoother.ignore_index
|
22 |
+
logger = logging.getLogger(__name__)
|
23 |
+
logger.setLevel(logging.INFO)
|
24 |
+
|
25 |
+
|
26 |
+
def is_dist_avail_and_initialized():
|
27 |
+
if not dist.is_available():
|
28 |
+
return False
|
29 |
+
if not dist.is_initialized():
|
30 |
+
return False
|
31 |
+
return True
|
32 |
+
|
33 |
+
|
34 |
+
def get_world_size():
|
35 |
+
if not is_dist_avail_and_initialized():
|
36 |
+
return 1
|
37 |
+
return dist.get_world_size()
|
38 |
+
|
39 |
+
|
40 |
+
def get_rank():
|
41 |
+
if not is_dist_avail_and_initialized():
|
42 |
+
return 0
|
43 |
+
return dist.get_rank()
|
44 |
+
|
45 |
+
|
46 |
+
class PackedDataset(IterableDataset):
|
47 |
+
def __init__(
|
48 |
+
self,
|
49 |
+
tokenizer,
|
50 |
+
data_rank,
|
51 |
+
data_world_size,
|
52 |
+
datasets: List,
|
53 |
+
dataset_weight: List[int] = None,
|
54 |
+
num_images_expected: int = 6,
|
55 |
+
max_packed_tokens: int = 32768,
|
56 |
+
max_buffer_size: int = 100,
|
57 |
+
log_freq: int = 1000000,
|
58 |
+
strict_mode: bool = False,
|
59 |
+
debug_mode: bool = False,
|
60 |
+
replacement: bool = True,
|
61 |
+
allow_overflow: bool = True,
|
62 |
+
allow_empty_data: bool = False,
|
63 |
+
allow_deduplicated_ds_name: bool = False,
|
64 |
+
):
|
65 |
+
super().__init__()
|
66 |
+
self.tokenizer = tokenizer
|
67 |
+
self.data_rank = data_rank
|
68 |
+
self.data_world_size = data_world_size
|
69 |
+
self.datasets = datasets
|
70 |
+
self.num_images_expected = num_images_expected
|
71 |
+
self.max_buffer_size = max_buffer_size
|
72 |
+
self.log_freq = log_freq
|
73 |
+
self.strict_mode = strict_mode
|
74 |
+
self.debug_mode = debug_mode
|
75 |
+
self.replacement = replacement
|
76 |
+
self.allow_overflow = allow_overflow
|
77 |
+
self.allow_empty_data = allow_empty_data
|
78 |
+
|
79 |
+
self.max_packed_tokens = max_packed_tokens
|
80 |
+
|
81 |
+
self.img_start_token_id = self.tokenizer.convert_tokens_to_ids(IMG_START_TOKEN)
|
82 |
+
self.img_token_id = self.tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
|
83 |
+
self.img_end_token_id = self.tokenizer.convert_tokens_to_ids(IMG_END_TOKEN)
|
84 |
+
|
85 |
+
assert self.img_start_token_id != self.tokenizer.unk_token_id
|
86 |
+
assert self.img_token_id != self.tokenizer.unk_token_id
|
87 |
+
assert self.img_end_token_id != self.tokenizer.unk_token_id
|
88 |
+
|
89 |
+
if dataset_weight is None:
|
90 |
+
dataset_weight = [1] * len(datasets)
|
91 |
+
self.dataset_type = [d.dataset_type for d in self.datasets]
|
92 |
+
|
93 |
+
self.datasets_orig = datasets
|
94 |
+
self.dataset_weight_orig = [w / sum(dataset_weight) for w in dataset_weight]
|
95 |
+
|
96 |
+
self.datasets = [ds for ds in self.datasets_orig]
|
97 |
+
self.dataset_weight = [w for w in self.dataset_weight_orig]
|
98 |
+
|
99 |
+
# lazy init
|
100 |
+
self.worker_id = None
|
101 |
+
self.worker_state_key = None
|
102 |
+
self.dataset_iter_list = None
|
103 |
+
self._state_dict = {
|
104 |
+
'sample_info': {d.ds_name:0 for d in self.datasets},
|
105 |
+
}
|
106 |
+
|
107 |
+
self.worker_custom_infos = None
|
108 |
+
|
109 |
+
ds_name_list = [d.ds_name for d in self.datasets]
|
110 |
+
if not allow_deduplicated_ds_name:
|
111 |
+
assert len(ds_name_list) == len(set(ds_name_list)), f'deduplicated ds_name: {ds_name_list}'
|
112 |
+
|
113 |
+
for ds in self.datasets:
|
114 |
+
if ds.max_num_images > self.num_images_expected:
|
115 |
+
logger.warning(f'{ds.max_num_images=} of {ds.ds_name} is larger than {self.num_images_expected=}')
|
116 |
+
ds.max_num_images = num_images_expected
|
117 |
+
|
118 |
+
if ds.max_tokens > self.max_packed_tokens:
|
119 |
+
logger.warning(f'{ds.max_tokens=} of {ds.ds_name} is larger than {self.max_packed_tokens=}')
|
120 |
+
ds.max_tokens = self.max_packed_tokens
|
121 |
+
|
122 |
+
self._state_dict[ds.ds_name] = {}
|
123 |
+
|
124 |
+
if get_rank() == 0:
|
125 |
+
logger.info(
|
126 |
+
f'Loaded dataset to pack: {ds_name_list}, '
|
127 |
+
f'{self.num_images_expected=}, {self.max_packed_tokens=}, '
|
128 |
+
f'{self.replacement=}, {self.allow_overflow=}',
|
129 |
+
)
|
130 |
+
|
131 |
+
temp = []
|
132 |
+
for ds, ds_w in zip(self.datasets, self.dataset_weight):
|
133 |
+
temp.append(f'{ds.ds_name:<25}: {ds_w*100:.2f}%')
|
134 |
+
temp = '\n'.join(temp)
|
135 |
+
logger.info(
|
136 |
+
f'Sampling prob for each dataset:\n{temp}'
|
137 |
+
)
|
138 |
+
|
139 |
+
if self.allow_empty_data:
|
140 |
+
logger.warning('allow_empty_data is enabled, note that empty data may be generated!')
|
141 |
+
|
142 |
+
def load_state_dict(self, state_dict, custom_infos=None):
|
143 |
+
|
144 |
+
self.worker_custom_infos = custom_infos
|
145 |
+
|
146 |
+
self._state_dict.update(state_dict)
|
147 |
+
for ds in self.datasets:
|
148 |
+
if ds.ds_name in self._state_dict:
|
149 |
+
ds.load_state_dict(self._state_dict[ds.ds_name])
|
150 |
+
logger.info(f'{ds.ds_name=} is resumed.')
|
151 |
+
else:
|
152 |
+
logger.warning(f'{ds.ds_name=} is not resumed.')
|
153 |
+
|
154 |
+
def _should_log(self):
|
155 |
+
worker_id = 0 if get_worker_info() is None else get_worker_info().id
|
156 |
+
num_workers = 1 if get_worker_info() is None else get_worker_info().num_workers
|
157 |
+
|
158 |
+
worker_id = num_workers * get_rank() + worker_id
|
159 |
+
num_workers = num_workers * get_world_size()
|
160 |
+
|
161 |
+
return worker_id == 0
|
162 |
+
|
163 |
+
def next_data(self, current_dataset_idx):
|
164 |
+
while True:
|
165 |
+
try:
|
166 |
+
current_sample = next(self.dataset_iter_list[current_dataset_idx])
|
167 |
+
break # Exit loop if successful
|
168 |
+
except StopIteration:
|
169 |
+
if self.replacement:
|
170 |
+
# logger.info(f'[Worker id {self.worker_id}] Dataset {self.datasets[current_dataset_idx].ds_name} is exhausted, restart it.')
|
171 |
+
try:
|
172 |
+
self.dataset_iter_list[current_dataset_idx] = iter(self.datasets[current_dataset_idx])
|
173 |
+
current_sample = next(self.dataset_iter_list[current_dataset_idx])
|
174 |
+
break
|
175 |
+
except:
|
176 |
+
# logger.error(f'{self.worker_id=} Fail to get any data from {self.datasets[current_dataset_idx].ds_name}! length={len(self.datasets)}')
|
177 |
+
self.datasets.pop(current_dataset_idx)
|
178 |
+
self.dataset_iter_list.pop(current_dataset_idx)
|
179 |
+
self.dataset_weight.pop(current_dataset_idx)
|
180 |
+
|
181 |
+
if len(self.datasets) == 0:
|
182 |
+
raise StopIteration
|
183 |
+
current_dataset_idx = np.random.choice(len(self.datasets))
|
184 |
+
else:
|
185 |
+
# logger.error(f'{self.worker_id=} Fail to get any data from {self.datasets[current_dataset_idx].ds_name}! length={len(self.datasets)}')
|
186 |
+
self.datasets.pop(current_dataset_idx)
|
187 |
+
self.dataset_iter_list.pop(current_dataset_idx)
|
188 |
+
self.dataset_weight.pop(current_dataset_idx)
|
189 |
+
|
190 |
+
if len(self.datasets) == 0:
|
191 |
+
raise StopIteration
|
192 |
+
current_dataset_idx = np.random.choice(len(self.datasets))
|
193 |
+
except:
|
194 |
+
logger.error('Unexpected error!')
|
195 |
+
if len(self.datasets) == 0:
|
196 |
+
raise StopIteration
|
197 |
+
current_dataset_idx = np.random.choice(len(self.datasets))
|
198 |
+
|
199 |
+
current_ds_name = self.datasets[current_dataset_idx].ds_name
|
200 |
+
current_sample['type_ids'] = torch.zeros_like(current_sample['input_ids']) + current_dataset_idx
|
201 |
+
|
202 |
+
if self.worker_state_key not in self._state_dict[current_ds_name]:
|
203 |
+
self._state_dict[current_ds_name][self.worker_state_key] = {}
|
204 |
+
|
205 |
+
meta_info = current_sample.pop('meta_info', {})
|
206 |
+
self._state_dict[current_ds_name][self.worker_state_key].update(**meta_info)
|
207 |
+
self._state_dict['sample_info'][self.datasets[current_dataset_idx].ds_name] += 1
|
208 |
+
return current_sample
|
209 |
+
|
210 |
+
def find_buffer(self, buffer_list, new_sample):
|
211 |
+
# NOTE: use `bisect` to search might be faster
|
212 |
+
|
213 |
+
find = False
|
214 |
+
find_idx = -1
|
215 |
+
num_images_current = new_sample['pixel_values'].size(0)
|
216 |
+
for buffer_idx, buffer in enumerate(buffer_list):
|
217 |
+
num_images_buffer = buffer['pixel_values'].size(0)
|
218 |
+
if num_images_buffer + num_images_current <= self.num_images_expected:
|
219 |
+
num_merged_tokens = new_sample['input_ids'].size(0) + buffer['input_ids'].size(0)
|
220 |
+
|
221 |
+
if num_merged_tokens <= self.max_packed_tokens:
|
222 |
+
find = True
|
223 |
+
find_idx = buffer_idx
|
224 |
+
break
|
225 |
+
|
226 |
+
if self.allow_overflow and len(buffer_list) >= self.max_buffer_size // 2:
|
227 |
+
find = True
|
228 |
+
find_idx = buffer_idx
|
229 |
+
|
230 |
+
if find:
|
231 |
+
return buffer_list.pop(find_idx)
|
232 |
+
return None
|
233 |
+
|
234 |
+
def update_buffer(self, buffer, new_sample):
|
235 |
+
if buffer is None:
|
236 |
+
new_sample['data_index'] = torch.zeros_like(new_sample['input_ids'])
|
237 |
+
return new_sample
|
238 |
+
|
239 |
+
new_sample['data_index'] = torch.ones_like(new_sample['input_ids']) + buffer['data_index'][-1].item()
|
240 |
+
|
241 |
+
assert buffer.keys() == new_sample.keys()
|
242 |
+
for k in buffer:
|
243 |
+
buffer[k] = torch.cat([buffer[k], new_sample[k]])
|
244 |
+
return buffer
|
245 |
+
|
246 |
+
@staticmethod
|
247 |
+
def check_valid(sample_to_check, min_active_tokens_ratio=1/256):
|
248 |
+
num_ignore_tokens = (sample_to_check['labels'] == IGNORE_TOKEN_ID).sum()
|
249 |
+
num_tokens = sample_to_check['labels'].numel()
|
250 |
+
return (1 - num_ignore_tokens / num_tokens) > min_active_tokens_ratio
|
251 |
+
|
252 |
+
@staticmethod
|
253 |
+
def split_buffer(buffer, max_tokens, img_start_token_id, img_token_id, img_end_token_id):
|
254 |
+
if buffer['input_ids'].size(0) <= max_tokens:
|
255 |
+
return [buffer]
|
256 |
+
|
257 |
+
def _image_is_splitted(input_ids, cut_idx):
|
258 |
+
is_image_start = input_ids[cut_idx].item() == img_start_token_id
|
259 |
+
is_image_token = input_ids[cut_idx].item() == img_token_id
|
260 |
+
is_image_end = input_ids[cut_idx].item() == img_end_token_id
|
261 |
+
return is_image_start or is_image_token or is_image_end
|
262 |
+
|
263 |
+
def _split(sample_to_split, left_idx, right_idx, left_img_idx, right_img_idx):
|
264 |
+
assert (right_idx is None) == (right_img_idx is None)
|
265 |
+
|
266 |
+
left_sample = {}
|
267 |
+
right_sample = {} if right_idx is not None else None
|
268 |
+
for k in sample_to_split:
|
269 |
+
if k in ['input_ids', 'labels', 'attention_mask', 'position_ids', 'data_index', 'type_ids']:
|
270 |
+
left_sample[k] = sample_to_split[k][:left_idx]
|
271 |
+
if right_sample is not None:
|
272 |
+
right_sample[k] = sample_to_split[k][right_idx:]
|
273 |
+
elif k in ['pixel_values', 'image_flags']:
|
274 |
+
left_sample[k] = sample_to_split[k][:left_img_idx]
|
275 |
+
if right_sample is not None:
|
276 |
+
right_sample[k] = sample_to_split[k][right_img_idx:]
|
277 |
+
else:
|
278 |
+
raise NotImplementedError(f'find unsupported keys: {k} from {sample_to_split.keys()}')
|
279 |
+
return left_sample, right_sample
|
280 |
+
|
281 |
+
splitted_buffer = []
|
282 |
+
while buffer['input_ids'].size(0) > max_tokens:
|
283 |
+
img_start_idx_list = (buffer['input_ids'] == img_start_token_id).nonzero().squeeze(1).tolist()
|
284 |
+
img_end_idx_list = (buffer['input_ids'] == img_end_token_id).nonzero().squeeze(1).tolist()
|
285 |
+
assert len(img_start_idx_list) == len(img_end_idx_list)
|
286 |
+
|
287 |
+
if _image_is_splitted(buffer['input_ids'], max_tokens):
|
288 |
+
cut_idx = bisect.bisect_left(img_start_idx_list, max_tokens)
|
289 |
+
if buffer['input_ids'][max_tokens] == img_start_token_id:
|
290 |
+
assert max_tokens == img_start_idx_list[cut_idx]
|
291 |
+
cut_left_idx = img_start_idx_list[cut_idx]
|
292 |
+
cut_left_img_idx = cut_idx
|
293 |
+
else:
|
294 |
+
cut_left_idx = img_start_idx_list[cut_idx - 1]
|
295 |
+
cut_left_img_idx = cut_idx - 1
|
296 |
+
cut_right_idx = cut_left_idx
|
297 |
+
cut_right_img_idx = cut_left_img_idx
|
298 |
+
else:
|
299 |
+
cut_img_idx = bisect.bisect(img_start_idx_list, max_tokens)
|
300 |
+
if cut_img_idx < len(img_start_idx_list):
|
301 |
+
cut_right_idx = img_start_idx_list[cut_img_idx]
|
302 |
+
cut_right_img_idx = cut_img_idx
|
303 |
+
else:
|
304 |
+
cut_right_idx = None
|
305 |
+
cut_right_img_idx = None
|
306 |
+
|
307 |
+
cut_left_idx = max_tokens
|
308 |
+
cut_left_img_idx = cut_right_img_idx if cut_right_img_idx is not None else buffer['pixel_values'].size(0)
|
309 |
+
|
310 |
+
left, right = _split(
|
311 |
+
sample_to_split=buffer,
|
312 |
+
left_idx=cut_left_idx,
|
313 |
+
left_img_idx=cut_left_img_idx,
|
314 |
+
right_idx=cut_right_idx,
|
315 |
+
right_img_idx=cut_right_img_idx,
|
316 |
+
)
|
317 |
+
|
318 |
+
assert (left['input_ids'] == img_end_token_id).sum() == (left['input_ids'] == img_start_token_id).sum() == left['pixel_values'].size(0)
|
319 |
+
if right is not None:
|
320 |
+
assert (right['input_ids'] == img_end_token_id).sum() == (right['input_ids'] == img_start_token_id).sum() == right['pixel_values'].size(0)
|
321 |
+
|
322 |
+
if left['pixel_values'].size(0) >= 1 and PackedDataset.check_valid(left):
|
323 |
+
splitted_buffer.append(left)
|
324 |
+
|
325 |
+
if right is None or right['pixel_values'].size(0) == 0:
|
326 |
+
break
|
327 |
+
|
328 |
+
buffer = right
|
329 |
+
if buffer['input_ids'].size(0) <= max_tokens and PackedDataset.check_valid(buffer):
|
330 |
+
splitted_buffer.append(buffer)
|
331 |
+
break
|
332 |
+
|
333 |
+
logger.debug(
|
334 |
+
f'split a sample into {len(splitted_buffer)} samples, '
|
335 |
+
f'current max_tokens={max_tokens}'
|
336 |
+
)
|
337 |
+
return splitted_buffer
|
338 |
+
|
339 |
+
def update_buffer_list(self, buffer_list, buffer_max_len_list, buffer):
|
340 |
+
# NOTE: in-place operation
|
341 |
+
|
342 |
+
splitted_buffer = PackedDataset.split_buffer(
|
343 |
+
buffer=buffer,
|
344 |
+
max_tokens=self.max_packed_tokens,
|
345 |
+
img_start_token_id=self.img_start_token_id,
|
346 |
+
img_token_id=self.img_token_id,
|
347 |
+
img_end_token_id=self.img_end_token_id,
|
348 |
+
)
|
349 |
+
|
350 |
+
for each_buffer in splitted_buffer:
|
351 |
+
if each_buffer['pixel_values'].size(0) > self.num_images_expected:
|
352 |
+
logger.error(
|
353 |
+
f"Find a sample with {each_buffer['pixel_values'].size(0)} images, "
|
354 |
+
f'which exceeds {self.num_images_expected}'
|
355 |
+
)
|
356 |
+
continue
|
357 |
+
|
358 |
+
if each_buffer['input_ids'].size(0) >= self.max_packed_tokens:
|
359 |
+
assert each_buffer['input_ids'].size(0) == self.max_packed_tokens
|
360 |
+
buffer_max_len_list.append(each_buffer)
|
361 |
+
continue
|
362 |
+
|
363 |
+
find_idx = len(buffer_list)
|
364 |
+
num_images_new_sample = each_buffer['pixel_values'].size(0)
|
365 |
+
for buffer_idx in range(len(buffer_list)):
|
366 |
+
if buffer_list[buffer_idx]['pixel_values'].size(0) < num_images_new_sample:
|
367 |
+
find_idx = buffer_idx
|
368 |
+
break
|
369 |
+
buffer_list.insert(find_idx, each_buffer)
|
370 |
+
|
371 |
+
for i in range(1, len(buffer_list)):
|
372 |
+
assert buffer_list[i-1]['pixel_values'].size(0) >= buffer_list[i]['pixel_values'].size(0)
|
373 |
+
|
374 |
+
return buffer_list, buffer_max_len_list
|
375 |
+
|
376 |
+
def pad_buffer(self, buffer):
|
377 |
+
if buffer['pixel_values'].size(0) == self.num_images_expected:
|
378 |
+
return buffer
|
379 |
+
|
380 |
+
num_pad_images = self.num_images_expected - buffer['pixel_values'].size(0)
|
381 |
+
pad_images = torch.stack([
|
382 |
+
torch.zeros_like(buffer['pixel_values'][0])
|
383 |
+
for _ in range(num_pad_images)
|
384 |
+
])
|
385 |
+
pad_image_flags = torch.tensor([0] * num_pad_images, dtype=torch.long)
|
386 |
+
|
387 |
+
buffer['pixel_values'] = torch.cat([buffer['pixel_values'], pad_images])
|
388 |
+
buffer['image_flags'] = torch.cat([buffer['image_flags'], pad_image_flags])
|
389 |
+
|
390 |
+
return buffer
|
391 |
+
|
392 |
+
def postprocess_buffer(self, buffer, custom_infos=None):
|
393 |
+
buffer['worker_state_key'] = self.worker_state_key
|
394 |
+
buffer['worker_state_dict'] = self._state_dict
|
395 |
+
if custom_infos is not None:
|
396 |
+
buffer['custom_infos'] = {self.worker_state_key: copy.deepcopy(custom_infos)}
|
397 |
+
return buffer
|
398 |
+
|
399 |
+
def print_log(self, iter_idx, buffer_list):
|
400 |
+
if iter_idx % self.log_freq != 0:
|
401 |
+
return
|
402 |
+
|
403 |
+
if self._should_log():
|
404 |
+
logger.info(
|
405 |
+
f"{iter_idx=}, {len(buffer_list)=}, {self._state_dict['sample_info']}"
|
406 |
+
)
|
407 |
+
|
408 |
+
def __iter__(self):
|
409 |
+
iter_idx = 0
|
410 |
+
buffer_list = []
|
411 |
+
buffer_max_len_list = []
|
412 |
+
|
413 |
+
if self._should_log():
|
414 |
+
logger.info(f'Begin to iter, {len(buffer_list)=}')
|
415 |
+
|
416 |
+
worker_id = 0 if get_worker_info() is None else get_worker_info().id
|
417 |
+
num_workers = 1 if get_worker_info() is None else get_worker_info().num_workers
|
418 |
+
|
419 |
+
worker_id = num_workers * self.data_rank + worker_id
|
420 |
+
num_workers = num_workers * self.data_world_size
|
421 |
+
|
422 |
+
rng = np.random.default_rng(seed=worker_id)
|
423 |
+
|
424 |
+
# reset states of each dataset
|
425 |
+
self.worker_id = worker_id
|
426 |
+
self.worker_state_key = f'work_state_{self.worker_id}'
|
427 |
+
self.datasets = [d for d in self.datasets_orig]
|
428 |
+
self.dataset_weight = [w for w in self.dataset_weight_orig]
|
429 |
+
self.dataset_iter_list = [iter(d) for d in self.datasets]
|
430 |
+
|
431 |
+
for ds in self.datasets:
|
432 |
+
# if not isinstance(ds, (ImageTextPairDataset, InterleavedDataset)):
|
433 |
+
ds.worker_id = worker_id
|
434 |
+
ds.worker_state_key = f'work_state_{self.worker_id}'
|
435 |
+
ds.num_workers = num_workers
|
436 |
+
if self._should_log() and worker_id == 0:
|
437 |
+
logger.info(f'set worker_id and num_workers of {ds.__class__.__name__} {ds.ds_name}')
|
438 |
+
|
439 |
+
if self.worker_custom_infos is not None and self.worker_state_key in self.worker_custom_infos:
|
440 |
+
custom_infos = self.worker_custom_infos[self.worker_state_key]
|
441 |
+
# buffer list
|
442 |
+
if 'buffer_list' in custom_infos and isinstance(custom_infos['buffer_list'], list):
|
443 |
+
buffer_list = custom_infos['buffer_list']
|
444 |
+
if self._should_log() and worker_id == 0:
|
445 |
+
logger.info(f'[{self.worker_state_key}] load buffer list --> {len(buffer_list)=}')
|
446 |
+
# other infos
|
447 |
+
|
448 |
+
# reset
|
449 |
+
self.worker_custom_infos = None
|
450 |
+
|
451 |
+
logger.debug(
|
452 |
+
f'{self.__class__.__name__} Rank {self.data_rank} '
|
453 |
+
f'Worker {worker_id} begin to load data'
|
454 |
+
)
|
455 |
+
|
456 |
+
while True:
|
457 |
+
self.dataset_weight = [w / sum(self.dataset_weight) for w in self.dataset_weight]
|
458 |
+
current_dataset_idx = rng.choice(len(self.dataset_iter_list), p=self.dataset_weight)
|
459 |
+
|
460 |
+
try:
|
461 |
+
current_sample = self.next_data(current_dataset_idx)
|
462 |
+
except:
|
463 |
+
logger.info(f'All datasets are exhausted, begin to empty the buffer_list ({len(buffer_list)=})')
|
464 |
+
while len(buffer_list) > 0:
|
465 |
+
if self.strict_mode:
|
466 |
+
yield self.postprocess_buffer(self.pad_buffer(buffer_list.pop(0)))
|
467 |
+
else:
|
468 |
+
yield self.postprocess_buffer(buffer_list.pop(0))
|
469 |
+
logger.info(f'buffer_list is empty! ({len(buffer_list)=})')
|
470 |
+
return
|
471 |
+
|
472 |
+
buffer = self.find_buffer(buffer_list, current_sample)
|
473 |
+
buffer = self.update_buffer(buffer, current_sample)
|
474 |
+
buffer_list, buffer_max_len_list = self.update_buffer_list(buffer_list, buffer_max_len_list, buffer)
|
475 |
+
|
476 |
+
while len(buffer_max_len_list) > 0:
|
477 |
+
if buffer_max_len_list[0]['pixel_values'].size(0) != self.max_packed_tokens:
|
478 |
+
logger.debug(
|
479 |
+
f'num tokens of a buffer exceed {self.max_packed_tokens=}, '
|
480 |
+
f"yield a sample with {buffer_max_len_list[0]['pixel_values'].size(0)} images"
|
481 |
+
)
|
482 |
+
if self.strict_mode and buffer_max_len_list[0]['pixel_values'].size(0) != self.num_images_expected:
|
483 |
+
# buffer_max_len_list.pop(0)
|
484 |
+
yield self.postprocess_buffer(self.pad_buffer(buffer_max_len_list.pop(0)), {'buffer_list': buffer_list})
|
485 |
+
else:
|
486 |
+
yield self.postprocess_buffer(buffer_max_len_list.pop(0), {'buffer_list': buffer_list})
|
487 |
+
|
488 |
+
while len(buffer_list) > 0 and buffer_list[0]['pixel_values'].size(0) > self.num_images_expected:
|
489 |
+
logger.error(
|
490 |
+
f"num images of a buffer ({buffer_list[0]['pixel_values'].size(0)}) "
|
491 |
+
f'is larger than num_images_expected({self.num_images_expected})'
|
492 |
+
)
|
493 |
+
buffer_list.pop(0)
|
494 |
+
|
495 |
+
while len(buffer_list) > 0 and buffer_list[0]['pixel_values'].size(0) == self.num_images_expected:
|
496 |
+
if self.debug_mode:
|
497 |
+
debug_data = self.postprocess_buffer(buffer_list.pop(0), {'buffer_list': buffer_list})
|
498 |
+
while True:
|
499 |
+
yield debug_data.copy()
|
500 |
+
|
501 |
+
yield self.postprocess_buffer(buffer_list.pop(0), {'buffer_list': buffer_list})
|
502 |
+
|
503 |
+
while len(buffer_list) > self.max_buffer_size:
|
504 |
+
logger.debug(
|
505 |
+
f'Failed to pack data to exactly {self.num_images_expected} images, '
|
506 |
+
f"yield a data sample with {buffer_list[0]['pixel_values'].size(0)} images."
|
507 |
+
)
|
508 |
+
if self.strict_mode:
|
509 |
+
yield self.postprocess_buffer(self.pad_buffer(buffer_list.pop(0)), {'buffer_list': buffer_list})
|
510 |
+
else:
|
511 |
+
yield self.postprocess_buffer(buffer_list.pop(0), {'buffer_list': buffer_list})
|
512 |
+
|
513 |
+
self.print_log(iter_idx=iter_idx, buffer_list=buffer_list)
|
514 |
+
iter_idx += 1
|
515 |
+
|
516 |
+
@staticmethod
|
517 |
+
def get_cu_seqlens_and_indexes(
|
518 |
+
data_index: torch.LongTensor, # (seq_len,)
|
519 |
+
input_ids: torch.LongTensor, # (seq_len,)
|
520 |
+
labels: torch.LongTensor, # (seq_len,)
|
521 |
+
len2weight: callable,
|
522 |
+
):
|
523 |
+
indexes = []
|
524 |
+
cu_seqlens = [0]
|
525 |
+
loss_weight = []
|
526 |
+
|
527 |
+
start = data_index.min()
|
528 |
+
end = data_index.max() + 1
|
529 |
+
for i in range(start, end):
|
530 |
+
num_tokens = (data_index == i).sum().item()
|
531 |
+
indexes.extend(list(range(num_tokens)))
|
532 |
+
cu_seqlens.append(cu_seqlens[-1] + num_tokens)
|
533 |
+
assert num_tokens > 0
|
534 |
+
|
535 |
+
curr_data_index = data_index[cu_seqlens[-2]:cu_seqlens[-2]+num_tokens]
|
536 |
+
assert (curr_data_index == i).all(), data_index
|
537 |
+
|
538 |
+
curr_labels = labels[cu_seqlens[-2]:cu_seqlens[-2]+num_tokens]
|
539 |
+
num_effective_tokens = (curr_labels != IGNORE_TOKEN_ID).sum().item()
|
540 |
+
loss_weight.extend([len2weight(num_effective_tokens)] * num_tokens)
|
541 |
+
|
542 |
+
assert len(indexes) == data_index.size(0), f'{len(indexes)=}, {data_index.size(0)=}'
|
543 |
+
|
544 |
+
loss_weight = torch.tensor(loss_weight, dtype=torch.float32)
|
545 |
+
return cu_seqlens, indexes, loss_weight
|
546 |
+
|
547 |
+
|
548 |
+
WARNING_CNT = defaultdict(int)
|
549 |
+
|
550 |
+
|
551 |
+
def packed_collate_fn(
|
552 |
+
features,
|
553 |
+
data_collator,
|
554 |
+
len2weight: callable,
|
555 |
+
max_item_length: int,
|
556 |
+
micro_num: int = 1,
|
557 |
+
loss_reduction_all_gather: bool = False,
|
558 |
+
pad_id: int = 0,
|
559 |
+
):
|
560 |
+
if not isinstance(features, list):
|
561 |
+
features = [features]
|
562 |
+
|
563 |
+
if len(features) > micro_num:
|
564 |
+
raise NotImplementedError(f'{len(features)=} > {micro_num=}')
|
565 |
+
|
566 |
+
if len(features) < micro_num and WARNING_CNT['micro_num_warning'] < 5:
|
567 |
+
logger.warning(
|
568 |
+
f'{len(features)=} > {micro_num=}, '
|
569 |
+
f'the features will be padded to satisfy micro_num requirement'
|
570 |
+
)
|
571 |
+
WARNING_CNT['micro_num_warning'] += 1
|
572 |
+
|
573 |
+
# ensure that the len(features) is equal to the required micro_num
|
574 |
+
num_features = len(features)
|
575 |
+
while len(features) < micro_num:
|
576 |
+
features.append(copy.deepcopy(features[0]))
|
577 |
+
features[-1]['labels'] = torch.full_like(features[-1]['labels'], IGNORE_TOKEN_ID)
|
578 |
+
|
579 |
+
indexes = []
|
580 |
+
cu_seqlens = []
|
581 |
+
cu_num_images_list = [0]
|
582 |
+
|
583 |
+
worker_state_key_list = []
|
584 |
+
worker_state_dict_list = []
|
585 |
+
worker_state_custom_infos_list = []
|
586 |
+
|
587 |
+
batch_lens = [feat['input_ids'].shape for feat in features]
|
588 |
+
max_item_length = max_item_length or max(batch_lens)[0]
|
589 |
+
|
590 |
+
num_samples = 0
|
591 |
+
num_padding_tokens = 0
|
592 |
+
for feat_idx, feat in enumerate(features):
|
593 |
+
data_index = feat.pop('data_index')
|
594 |
+
curr_cu_seqlens, curr_indexes, curr_loss_weight = PackedDataset.get_cu_seqlens_and_indexes(
|
595 |
+
data_index=data_index,
|
596 |
+
input_ids=feat['input_ids'],
|
597 |
+
labels=feat['labels'],
|
598 |
+
len2weight=len2weight,
|
599 |
+
)
|
600 |
+
|
601 |
+
feat['loss_weight'] = curr_loss_weight
|
602 |
+
|
603 |
+
if feat_idx < num_features:
|
604 |
+
num_samples += len(curr_cu_seqlens) - 1
|
605 |
+
|
606 |
+
if curr_cu_seqlens[-1] < max_item_length:
|
607 |
+
curr_cu_seqlens.append(max_item_length)
|
608 |
+
curr_indexes.extend(list(range(max_item_length - curr_cu_seqlens[-2])))
|
609 |
+
|
610 |
+
indexes.append(torch.tensor(curr_indexes, dtype=torch.long))
|
611 |
+
cu_seqlens.append(torch.tensor(curr_cu_seqlens, dtype=torch.int32))
|
612 |
+
|
613 |
+
worker_state_key_list.append(feat.pop('worker_state_key'))
|
614 |
+
worker_state_dict_list.append(feat.pop('worker_state_dict'))
|
615 |
+
worker_state_custom_infos_list.append(feat.pop('custom_infos', None))
|
616 |
+
|
617 |
+
num_padding_tokens += (max_item_length - feat['input_ids'].size(0))
|
618 |
+
cu_num_images_list.append(cu_num_images_list[-1] + feat['pixel_values'].size(0))
|
619 |
+
|
620 |
+
batch = data_collator(features=features, max_item_length=max_item_length, pad_id=pad_id)
|
621 |
+
# convert it to list in case it is converted into bf16
|
622 |
+
batch['loss_weight'] = torch.where(batch['labels'] == IGNORE_TOKEN_ID, 0, batch['loss_weight']).tolist()
|
623 |
+
batch['attention_mask'] = torch.stack(cu_seqlens)
|
624 |
+
batch['loss_reduction_all_gather'] = loss_reduction_all_gather
|
625 |
+
batch['statistics'] = torch.tensor(
|
626 |
+
[
|
627 |
+
num_samples,
|
628 |
+
num_padding_tokens,
|
629 |
+
batch['image_flags'].numel() - batch['image_flags'].sum().item(),
|
630 |
+
],
|
631 |
+
dtype=torch.long,
|
632 |
+
)
|
633 |
+
batch.pop('type_ids')
|
634 |
+
return batch
|
src/third_party/InternVL/internvl_chat/internvl/train/internvl_chat_dpo.py
ADDED
@@ -0,0 +1,1056 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# InternVL
|
3 |
+
# Copyright (c) 2024 OpenGVLab
|
4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
5 |
+
# --------------------------------------------------------
|
6 |
+
|
7 |
+
import warnings
|
8 |
+
|
9 |
+
warnings.filterwarnings('ignore', category=FutureWarning)
|
10 |
+
warnings.filterwarnings('ignore', category=DeprecationWarning)
|
11 |
+
|
12 |
+
import logging
|
13 |
+
import math
|
14 |
+
import os
|
15 |
+
import random
|
16 |
+
import shutil
|
17 |
+
import sys
|
18 |
+
import traceback
|
19 |
+
from copy import deepcopy
|
20 |
+
from dataclasses import dataclass, field
|
21 |
+
from typing import Dict, Literal, Optional
|
22 |
+
|
23 |
+
import numpy as np
|
24 |
+
|
25 |
+
try:
|
26 |
+
import orjson as json
|
27 |
+
except:
|
28 |
+
import json
|
29 |
+
|
30 |
+
import torch
|
31 |
+
import torch.distributed as dist
|
32 |
+
import transformers
|
33 |
+
from internvl.dist_utils import init_dist
|
34 |
+
from internvl.model.internlm2.modeling_internlm2 import InternLM2ForCausalLM
|
35 |
+
from internvl.model.internvl_chat import (InternVisionConfig,
|
36 |
+
InternVisionModel,
|
37 |
+
InternVLChatConfig,
|
38 |
+
InternVLChatModel)
|
39 |
+
from internvl.patch import (concat_pad_data_collator,
|
40 |
+
dpo_concat_pad_data_collator,
|
41 |
+
replace_llama_rmsnorm_with_fused_rmsnorm,
|
42 |
+
replace_train_sampler)
|
43 |
+
from internvl.train.constants import (BOX_END_TOKEN, BOX_START_TOKEN,
|
44 |
+
IMG_CONTEXT_TOKEN, IMG_END_TOKEN,
|
45 |
+
IMG_START_TOKEN, QUAD_END_TOKEN,
|
46 |
+
QUAD_START_TOKEN, REF_END_TOKEN,
|
47 |
+
REF_START_TOKEN)
|
48 |
+
from internvl.train.dataset import (ConcatDataset, TCSLoader,
|
49 |
+
WeightedConcatDataset, build_transform,
|
50 |
+
dynamic_preprocess, preprocess,
|
51 |
+
preprocess_internlm,
|
52 |
+
preprocess_internvl2_5, preprocess_mpt,
|
53 |
+
preprocess_phi3)
|
54 |
+
from internvl.train.trainer_dpo import MultimodalDPOTrainer
|
55 |
+
from PIL import Image, ImageFile, PngImagePlugin, UnidentifiedImageError
|
56 |
+
from torch.utils.data import Dataset
|
57 |
+
from transformers import (AutoConfig, AutoModelForCausalLM, AutoTokenizer,
|
58 |
+
HfArgumentParser, Trainer, TrainingArguments,
|
59 |
+
set_seed)
|
60 |
+
from transformers.trainer_utils import get_last_checkpoint
|
61 |
+
from transformers.utils.logging import (enable_default_handler,
|
62 |
+
enable_explicit_format, set_verbosity)
|
63 |
+
from trl import DPOConfig as DPOConfigTRL
|
64 |
+
|
65 |
+
# Try to import petrel_client for image loading, fallback to PIL if unavailable
|
66 |
+
try:
|
67 |
+
from petrel_client.client import Client
|
68 |
+
from petrel_client.common.config import Config
|
69 |
+
has_tcs_loader = True
|
70 |
+
except ImportError as E:
|
71 |
+
print('petrel_client is not installed. Using PIL to load images.')
|
72 |
+
has_tcs_loader = False
|
73 |
+
|
74 |
+
# Set constants for image processing and logging
|
75 |
+
IGNORE_INDEX = -100
|
76 |
+
Image.MAX_IMAGE_PIXELS = None
|
77 |
+
ImageFile.LOAD_TRUNCATED_IMAGES = True
|
78 |
+
MaximumDecompressedSize = 1024
|
79 |
+
MegaByte = 2 ** 20
|
80 |
+
PngImagePlugin.MAX_TEXT_CHUNK = MaximumDecompressedSize * MegaByte
|
81 |
+
|
82 |
+
warnings.filterwarnings('ignore')
|
83 |
+
logger = logging.getLogger(__name__)
|
84 |
+
|
85 |
+
os.environ['TOKENIZERS_PARALLELISM'] = 'true'
|
86 |
+
|
87 |
+
|
88 |
+
@dataclass
|
89 |
+
class ModelArguments:
|
90 |
+
"""
|
91 |
+
Arguments for specifying model, tokenizer, and configurations.
|
92 |
+
"""
|
93 |
+
model_name_or_path: Optional[str] = field(
|
94 |
+
default=None,
|
95 |
+
metadata={'help': 'Path to a pretrained model (local or from huggingface.co/models).'}
|
96 |
+
)
|
97 |
+
vision_path: Optional[str] = field(
|
98 |
+
default=None,
|
99 |
+
metadata={'help': 'Path to a pretrained model (local or from huggingface.co/models).'}
|
100 |
+
)
|
101 |
+
llm_path: Optional[str] = field(
|
102 |
+
default=None,
|
103 |
+
metadata={'help': 'Path to a pretrained model (local or from huggingface.co/models).'}
|
104 |
+
)
|
105 |
+
mlp_path: Optional[str] = field(
|
106 |
+
default=None,
|
107 |
+
metadata={'help': 'Path to a pretrained model (local or from huggingface.co/models).'}
|
108 |
+
)
|
109 |
+
freeze_llm: bool = field(
|
110 |
+
default=False,
|
111 |
+
metadata={'help': 'Set to True to freeze the LLM. Default is False.'},
|
112 |
+
)
|
113 |
+
freeze_backbone: bool = field(
|
114 |
+
default=False,
|
115 |
+
metadata={'help': 'Set to True to freeze the ViT. Default is False.'},
|
116 |
+
)
|
117 |
+
freeze_mlp: bool = field(
|
118 |
+
default=False,
|
119 |
+
metadata={'help': 'Set to True to freeze the MLP. Default is False.'},
|
120 |
+
)
|
121 |
+
unfreeze_vit_layers: int = field(
|
122 |
+
default=0,
|
123 |
+
metadata={'help': 'Specify the number of ViT layers to unfreeze. Default is 0.'},
|
124 |
+
)
|
125 |
+
vision_select_layer: int = field(
|
126 |
+
default=-1,
|
127 |
+
metadata={'help': 'Specify the layer of ViT feature map to use. Default is -1 for the last layer.'},
|
128 |
+
)
|
129 |
+
use_backbone_lora: int = field(
|
130 |
+
default=0,
|
131 |
+
metadata={'help': 'Set the LoRA adapter rank for the ViT. Default is 0.'}
|
132 |
+
)
|
133 |
+
use_llm_lora: int = field(
|
134 |
+
default=0,
|
135 |
+
metadata={'help': 'Set the LoRA adapter rank for the LLM. Default is 0.'}
|
136 |
+
)
|
137 |
+
unfreeze_lm_head: bool = field(
|
138 |
+
default=False,
|
139 |
+
metadata={'help': 'Set to True to unfreeze the head of LLM. Default is False.'},
|
140 |
+
)
|
141 |
+
grad_checkpoint: bool = field(
|
142 |
+
default=True,
|
143 |
+
metadata={'help': 'Set to True to use gradient checkpointing. Default is True.'},
|
144 |
+
)
|
145 |
+
drop_path_rate: float = field(
|
146 |
+
default=0.0,
|
147 |
+
metadata={'help': 'Set the drop path rate for the ViT. Default is 0.'},
|
148 |
+
)
|
149 |
+
ps_version: Literal['v1', 'v2'] = field(
|
150 |
+
default='v2',
|
151 |
+
metadata={'help': 'Specify the version of pixel shuffle implementation. Default is v2.'}
|
152 |
+
)
|
153 |
+
use_fast_tokenizer: bool = field(
|
154 |
+
default=False,
|
155 |
+
metadata={'help': 'Set to True to use the fast mode of the tokenizer.'}
|
156 |
+
)
|
157 |
+
use_liger: bool = field(
|
158 |
+
default=False,
|
159 |
+
metadata={'help': 'Set to True to use the liger kernel.'}
|
160 |
+
)
|
161 |
+
|
162 |
+
|
163 |
+
@dataclass
|
164 |
+
class DataTrainingArguments:
|
165 |
+
"""
|
166 |
+
Arguments for specifying data input for training and evaluation.
|
167 |
+
"""
|
168 |
+
max_seq_length: int = field(
|
169 |
+
default=8192,
|
170 |
+
metadata={
|
171 |
+
'help': (
|
172 |
+
'The maximum total input sequence length after tokenization. Sequences longer '
|
173 |
+
'than this will be truncated, sequences shorter will be padded.'
|
174 |
+
)
|
175 |
+
},
|
176 |
+
)
|
177 |
+
force_image_size: int = field(
|
178 |
+
default=448,
|
179 |
+
metadata={'help': 'Set the desired size for the image. Default is 448.'},
|
180 |
+
)
|
181 |
+
down_sample_ratio: float = field(
|
182 |
+
default=0.5,
|
183 |
+
metadata={'help': 'Set the desired down-sampling ratio for the image. Default is 0.5.'},
|
184 |
+
)
|
185 |
+
pad2square: bool = field(
|
186 |
+
default=False,
|
187 |
+
metadata={'help': 'Pad the image to a square shape if set to True. Default is False.'},
|
188 |
+
)
|
189 |
+
conv_style: str = field(
|
190 |
+
default='internlm2-chat', metadata={'help': 'Prompt style for a conversation.'}
|
191 |
+
)
|
192 |
+
meta_path: str = field(
|
193 |
+
default=None,
|
194 |
+
metadata={'help': 'The path of the meta file of datasets.'},
|
195 |
+
)
|
196 |
+
use_data_resampling: bool = field(
|
197 |
+
default=False,
|
198 |
+
metadata={'help': 'Set to True to use data resampling. Default is False.'},
|
199 |
+
)
|
200 |
+
dynamic_image_size: bool = field(
|
201 |
+
default=False,
|
202 |
+
metadata={'help': 'Set to True to use dynamic high resolution strategy. Default is False.'},
|
203 |
+
)
|
204 |
+
use_thumbnail: bool = field(
|
205 |
+
default=False,
|
206 |
+
metadata={'help': 'Set to True to add a thumbnail image. Default is False.'},
|
207 |
+
)
|
208 |
+
min_dynamic_patch: int = field(
|
209 |
+
default=1,
|
210 |
+
metadata={'help': 'The minimum number of dynamic patches. Default is 1.'},
|
211 |
+
)
|
212 |
+
max_dynamic_patch: int = field(
|
213 |
+
default=12,
|
214 |
+
metadata={'help': 'The maximum number of dynamic patches. Default is 12.'},
|
215 |
+
)
|
216 |
+
min_num_frame: int = field(
|
217 |
+
default=8,
|
218 |
+
metadata={'help': 'The minimum number of frames for video data. Default is 8.'},
|
219 |
+
)
|
220 |
+
max_num_frame: int = field(
|
221 |
+
default=32,
|
222 |
+
metadata={'help': 'The maximum number of frames for video data. Default is 32.'},
|
223 |
+
)
|
224 |
+
normalize_type: Literal['imagenet', 'clip', 'siglip'] = field(
|
225 |
+
default='imagenet',
|
226 |
+
metadata={'help': 'The normalization type for the image. Default is imagenet.'},
|
227 |
+
)
|
228 |
+
sigmoid_loss_weight: float = field(
|
229 |
+
default=1.0,
|
230 |
+
metadata={'help': 'Loss weight for DPO loss. Default is 1.0'},
|
231 |
+
)
|
232 |
+
bco_pair_loss_weight: float = field(
|
233 |
+
default=1.0,
|
234 |
+
metadata={'help': 'Loss weight for BCO loss. Default is 1.0'},
|
235 |
+
)
|
236 |
+
|
237 |
+
|
238 |
+
class DPOConfig(DPOConfigTRL):
|
239 |
+
loss_type: Literal[
|
240 |
+
'sigmoid', 'hinge', 'ipo', 'bco_pair', 'sppo_hard', 'nca_pair', 'robust', 'aot', 'aot_pair', 'exo_pair',
|
241 |
+
'sigmoid,bco_pair',
|
242 |
+
] = 'sigmoid'
|
243 |
+
|
244 |
+
|
245 |
+
class LazySupervisedDataset(Dataset):
|
246 |
+
"""Dataset for supervised fine-tuning."""
|
247 |
+
|
248 |
+
def __init__(
|
249 |
+
self,
|
250 |
+
template_name,
|
251 |
+
meta,
|
252 |
+
tokenizer,
|
253 |
+
tcs_loader,
|
254 |
+
ds_name,
|
255 |
+
num_image_token,
|
256 |
+
image_size=448,
|
257 |
+
is_train=True,
|
258 |
+
pad2square=False,
|
259 |
+
group_by_length=False,
|
260 |
+
dynamic_image_size=False,
|
261 |
+
use_thumbnail=False,
|
262 |
+
min_dynamic_patch=1,
|
263 |
+
max_dynamic_patch=12,
|
264 |
+
min_num_frame=8, # for video data
|
265 |
+
max_num_frame=32, # for video data
|
266 |
+
sampling_method='rand', # for video data
|
267 |
+
repeat_time=1,
|
268 |
+
normalize_type='imagenet',
|
269 |
+
random_seed=0,
|
270 |
+
):
|
271 |
+
super(LazySupervisedDataset, self).__init__()
|
272 |
+
self.ds_name = ds_name
|
273 |
+
self.tokenizer = tokenizer
|
274 |
+
self.template_name = template_name
|
275 |
+
self.num_image_token = num_image_token
|
276 |
+
logger.info(f'[Dataset] num_image_token: {num_image_token}')
|
277 |
+
logger.info(f'[Dataset] dynamic_image_size: {dynamic_image_size}')
|
278 |
+
logger.info(f'[Dataset] use_thumbnail: {use_thumbnail}')
|
279 |
+
logger.info(f'[Dataset] min_dynamic_patch: {min_dynamic_patch}, max_dynamic_patch: {max_dynamic_patch}')
|
280 |
+
|
281 |
+
self.image_size = image_size
|
282 |
+
self.is_train = is_train
|
283 |
+
self.pad2square = pad2square
|
284 |
+
self.max_num_frame = max_num_frame
|
285 |
+
self.min_num_frame = min_num_frame
|
286 |
+
self.sampling_method = sampling_method
|
287 |
+
|
288 |
+
logger.info('Formatting inputs...Skip in lazy mode')
|
289 |
+
assert meta['annotation'].endswith('jsonl'), f'annotation must be jsonl, but got {meta["annotation"]}'
|
290 |
+
|
291 |
+
with open(meta['annotation'], 'r') as f:
|
292 |
+
self.raw_data = f.readlines()
|
293 |
+
if repeat_time < 1:
|
294 |
+
# If repeat_time is less than 1, select a portion of the data
|
295 |
+
self.raw_data = random.sample(self.raw_data, k=int(len(self.raw_data) * repeat_time))
|
296 |
+
if repeat_time > 1:
|
297 |
+
repeat_time = int(repeat_time)
|
298 |
+
assert isinstance(repeat_time, int)
|
299 |
+
# Repeat the list if repeat_time is greater than 1
|
300 |
+
self.raw_data = self.raw_data * repeat_time
|
301 |
+
|
302 |
+
self.rng = np.random.default_rng(seed=random_seed)
|
303 |
+
self.rng.shuffle(self.raw_data)
|
304 |
+
|
305 |
+
self.root = meta['root']
|
306 |
+
self.cached_data_dict = {}
|
307 |
+
self.tcs_loader = tcs_loader
|
308 |
+
self.group_by_length = group_by_length
|
309 |
+
self.dynamic_image_size = dynamic_image_size
|
310 |
+
self.use_thumbnail = use_thumbnail
|
311 |
+
self.min_dynamic_patch = min_dynamic_patch
|
312 |
+
self.max_dynamic_patch = max_dynamic_patch
|
313 |
+
self.normalize_type = normalize_type
|
314 |
+
|
315 |
+
# If the precomputed length does not exist, roughly estimate the length of
|
316 |
+
# each sample to improve the efficiency of group_by_length.
|
317 |
+
if self.group_by_length:
|
318 |
+
self.conv2length = {} # Using a dictionary to speed up token length calculation
|
319 |
+
self.length = []
|
320 |
+
for data_item in self.raw_data:
|
321 |
+
data_item = json.loads(data_item)
|
322 |
+
if 'length' in data_item:
|
323 |
+
token_length = data_item['length'] # Use precomputed length if available
|
324 |
+
else:
|
325 |
+
# Compute token length using the tokenizer
|
326 |
+
conversations = '\n'.join([temp['value'] for temp in data_item['conversations']])
|
327 |
+
str_length = len(conversations)
|
328 |
+
if str_length not in self.conv2length:
|
329 |
+
token_length = tokenizer(
|
330 |
+
conversations, return_tensors='pt', padding=False, truncation=False,
|
331 |
+
).input_ids.size(1)
|
332 |
+
self.conv2length[str_length] = token_length + num_image_token * (
|
333 |
+
max_dynamic_patch + use_thumbnail)
|
334 |
+
else:
|
335 |
+
token_length = self.conv2length[str_length]
|
336 |
+
self.length.append(token_length)
|
337 |
+
|
338 |
+
def __len__(self):
|
339 |
+
return len(self.raw_data)
|
340 |
+
|
341 |
+
def get_preprocess_function(self):
|
342 |
+
# Select the appropriate preprocessing function based on the template name
|
343 |
+
if self.template_name == 'Hermes-2':
|
344 |
+
preprocess_function = preprocess_mpt
|
345 |
+
elif self.template_name == 'internlm2-chat':
|
346 |
+
preprocess_function = preprocess_internlm
|
347 |
+
elif self.template_name == 'phi3-chat':
|
348 |
+
preprocess_function = preprocess_phi3
|
349 |
+
elif self.template_name == 'internvl2_5':
|
350 |
+
preprocess_function = preprocess_internvl2_5
|
351 |
+
else:
|
352 |
+
preprocess_function = preprocess
|
353 |
+
return preprocess_function
|
354 |
+
|
355 |
+
def load_image(self, image_path):
|
356 |
+
# Load the image using tcs_loader if available, otherwise use PIL
|
357 |
+
if self.tcs_loader is not None and 's3://' in image_path:
|
358 |
+
return self.tcs_loader(image_path)
|
359 |
+
return Image.open(image_path).convert('RGB')
|
360 |
+
|
361 |
+
def get_image_path(self, image_path):
|
362 |
+
if image_path.startswith('s3://'): # for ceph
|
363 |
+
image_path = self.root + image_path
|
364 |
+
else: # for local image
|
365 |
+
image_path = os.path.join(self.root, image_path)
|
366 |
+
return image_path
|
367 |
+
|
368 |
+
def get_transform(self):
|
369 |
+
# Build transformation function
|
370 |
+
transform = build_transform(is_train=self.is_train, input_size=self.image_size,
|
371 |
+
pad2square=self.pad2square, normalize_type=self.normalize_type)
|
372 |
+
return transform
|
373 |
+
|
374 |
+
@staticmethod
|
375 |
+
def get_longest_common_prefix_index(tensor1, tensor2):
|
376 |
+
min_len = min(len(tensor1), len(tensor2))
|
377 |
+
|
378 |
+
for i in range(min_len):
|
379 |
+
if tensor1[i] != tensor2[i]:
|
380 |
+
return i
|
381 |
+
|
382 |
+
return min_len
|
383 |
+
|
384 |
+
def multi_modal_get_item(self, data_item):
|
385 |
+
# Build transformation function
|
386 |
+
transform = self.get_transform()
|
387 |
+
|
388 |
+
# Ensure the first conversation contains an image placeholder
|
389 |
+
if '<image>' not in data_item['question']:
|
390 |
+
data_item['question'] = '<image>\n' + data_item['question']
|
391 |
+
|
392 |
+
# Merge the image path
|
393 |
+
image_path = self.get_image_path(data_item['image'])
|
394 |
+
|
395 |
+
# Load the image using tcs_loader if available, otherwise use PIL
|
396 |
+
image = self.load_image(image_path)
|
397 |
+
|
398 |
+
if self.dynamic_image_size: # If dynamic image size is enabled, preprocess the image dynamically
|
399 |
+
images = dynamic_preprocess(image, min_num=self.min_dynamic_patch, max_num=self.max_dynamic_patch,
|
400 |
+
image_size=self.image_size, use_thumbnail=self.use_thumbnail)
|
401 |
+
else: # Otherwise, use the original image as a single patch
|
402 |
+
images = [image]
|
403 |
+
|
404 |
+
# Apply the transformation to each image and stack the results into a tensor
|
405 |
+
pixel_values = [transform(image) for image in images]
|
406 |
+
pixel_values = torch.stack(pixel_values)
|
407 |
+
|
408 |
+
# Ensure that there is only one patch if dynamic image size is not enabled
|
409 |
+
num_patches = pixel_values.size(0)
|
410 |
+
if not self.dynamic_image_size:
|
411 |
+
assert num_patches == 1, f'The number of patches should be 1, but got {num_patches}.'
|
412 |
+
|
413 |
+
# Select the appropriate preprocessing function based on the template name
|
414 |
+
preprocess_function = self.get_preprocess_function()
|
415 |
+
|
416 |
+
# Preprocess the conversations and generate the return dictionary
|
417 |
+
chosen_conversations = [
|
418 |
+
{'from': 'human', 'value': data_item['question']},
|
419 |
+
{'from': 'gpt', 'value': data_item['chosen']},
|
420 |
+
]
|
421 |
+
chosen_ret = preprocess_function(
|
422 |
+
self.template_name,
|
423 |
+
[deepcopy(chosen_conversations)],
|
424 |
+
self.tokenizer,
|
425 |
+
[self.num_image_token * num_patches],
|
426 |
+
group_by_length=True,
|
427 |
+
ds_name=self.ds_name,
|
428 |
+
)
|
429 |
+
|
430 |
+
rejected_conversations = [
|
431 |
+
{'from': 'human', 'value': data_item['question']},
|
432 |
+
{'from': 'gpt', 'value': data_item['rejected']},
|
433 |
+
]
|
434 |
+
rejected_ret = preprocess_function(
|
435 |
+
self.template_name,
|
436 |
+
[deepcopy(rejected_conversations)],
|
437 |
+
self.tokenizer,
|
438 |
+
[self.num_image_token * num_patches],
|
439 |
+
group_by_length=True,
|
440 |
+
ds_name=self.ds_name,
|
441 |
+
)
|
442 |
+
|
443 |
+
# Create the final return dictionary
|
444 |
+
ret = dict(
|
445 |
+
chosen_input_ids=chosen_ret['input_ids'][0],
|
446 |
+
chosen_labels=chosen_ret['labels'][0],
|
447 |
+
chosen_attention_mask=chosen_ret['attention_mask'][0],
|
448 |
+
rejected_input_ids=rejected_ret['input_ids'][0],
|
449 |
+
rejected_labels=rejected_ret['labels'][0],
|
450 |
+
rejected_attention_mask=rejected_ret['attention_mask'][0],
|
451 |
+
pixel_values=pixel_values,
|
452 |
+
image_flags=torch.tensor([1] * num_patches, dtype=torch.long),
|
453 |
+
)
|
454 |
+
return ret
|
455 |
+
|
456 |
+
def multi_modal_multi_image_get_item(self, data_item):
|
457 |
+
# Build transformation function
|
458 |
+
transform = self.get_transform()
|
459 |
+
|
460 |
+
images, num_tiles = [], []
|
461 |
+
num_image = len(data_item['image'])
|
462 |
+
for image_path in data_item['image']:
|
463 |
+
# Merge the image path
|
464 |
+
image_path = self.get_image_path(image_path)
|
465 |
+
# Load the image using tcs_loader if available, otherwise use PIL
|
466 |
+
image = self.load_image(image_path)
|
467 |
+
if self.dynamic_image_size: # If dynamic image size is enabled, preprocess the image dynamically
|
468 |
+
image = dynamic_preprocess(image, min_num=self.min_dynamic_patch,
|
469 |
+
max_num=max(1, self.max_dynamic_patch // num_image),
|
470 |
+
image_size=self.image_size, use_thumbnail=self.use_thumbnail)
|
471 |
+
images += image
|
472 |
+
num_tiles.append(len(image))
|
473 |
+
else: # Otherwise, use the original image as a single patch
|
474 |
+
images.append(image)
|
475 |
+
num_tiles.append(1)
|
476 |
+
pixel_values = [transform(image) for image in images]
|
477 |
+
pixel_values = torch.stack(pixel_values)
|
478 |
+
num_patches = pixel_values.size(0)
|
479 |
+
|
480 |
+
# Select the appropriate preprocessing function based on the template name
|
481 |
+
preprocess_function = self.get_preprocess_function()
|
482 |
+
|
483 |
+
# Preprocess the conversations and generate the return dictionary
|
484 |
+
num_image_tokens = [self.num_image_token * num_tile for num_tile in num_tiles]
|
485 |
+
|
486 |
+
chosen_conversations = [
|
487 |
+
{'from': 'human', 'value': data_item['question']},
|
488 |
+
{'from': 'gpt', 'value': data_item['chosen']},
|
489 |
+
]
|
490 |
+
chosen_ret = preprocess_function(
|
491 |
+
self.template_name,
|
492 |
+
[deepcopy(chosen_conversations)],
|
493 |
+
self.tokenizer,
|
494 |
+
num_image_tokens,
|
495 |
+
group_by_length=self.group_by_length,
|
496 |
+
ds_name=self.ds_name,
|
497 |
+
num_image=num_image,
|
498 |
+
)
|
499 |
+
|
500 |
+
rejected_conversations = [
|
501 |
+
{'from': 'human', 'value': data_item['question']},
|
502 |
+
{'from': 'gpt', 'value': data_item['rejected']},
|
503 |
+
]
|
504 |
+
rejected_ret = preprocess_function(
|
505 |
+
self.template_name,
|
506 |
+
[deepcopy(rejected_conversations)],
|
507 |
+
self.tokenizer,
|
508 |
+
num_image_tokens,
|
509 |
+
group_by_length=self.group_by_length,
|
510 |
+
ds_name=self.ds_name,
|
511 |
+
num_image=num_image,
|
512 |
+
)
|
513 |
+
|
514 |
+
# Create the final return dictionary
|
515 |
+
ret = dict(
|
516 |
+
chosen_input_ids=chosen_ret['input_ids'][0],
|
517 |
+
chosen_labels=chosen_ret['labels'][0],
|
518 |
+
chosen_attention_mask=chosen_ret['attention_mask'][0],
|
519 |
+
rejected_input_ids=rejected_ret['input_ids'][0],
|
520 |
+
rejected_labels=rejected_ret['labels'][0],
|
521 |
+
rejected_attention_mask=rejected_ret['attention_mask'][0],
|
522 |
+
pixel_values=pixel_values,
|
523 |
+
image_flags=torch.tensor([1] * num_patches, dtype=torch.long),
|
524 |
+
)
|
525 |
+
return ret
|
526 |
+
|
527 |
+
def video_get_item(self, data_item):
|
528 |
+
# Build transformation function
|
529 |
+
transform = self.get_transform()
|
530 |
+
|
531 |
+
# Ensure the first conversation contains a video placeholder
|
532 |
+
if '<video>' not in data_item['question']:
|
533 |
+
data_item['question'] = '<video>\n' + data_item['question']
|
534 |
+
|
535 |
+
# Get the video file path
|
536 |
+
video_file = data_item['video']
|
537 |
+
video_path = os.path.join(self.root, video_file)
|
538 |
+
|
539 |
+
# Load the video frames using tcs_loader
|
540 |
+
# TODO: Load videos without using tcsloader.
|
541 |
+
image_list = self.tcs_loader(
|
542 |
+
video_path,
|
543 |
+
image_type='video',
|
544 |
+
max_num_frames=self.max_num_frame,
|
545 |
+
min_num_frames=self.min_num_frame,
|
546 |
+
sample=self.sampling_method,
|
547 |
+
clip=data_item.get('clip', None))
|
548 |
+
|
549 |
+
# Generate special tokens for each video frame
|
550 |
+
special_tokens = '\n'.join(['Frame{}: <image>'.format(i + 1) for i in range(len(image_list))])
|
551 |
+
data_item['question'] = data_item['question'].replace('<video>\n', special_tokens)
|
552 |
+
|
553 |
+
# Transform each frame image and stack them into a tensor
|
554 |
+
pixel_values = [transform(image) for image in image_list]
|
555 |
+
pixel_values = torch.stack(pixel_values)
|
556 |
+
num_patches = pixel_values.size(0)
|
557 |
+
|
558 |
+
# Select the appropriate preprocessing function based on the template name
|
559 |
+
preprocess_function = self.get_preprocess_function()
|
560 |
+
|
561 |
+
# Preprocess the conversations and generate the return dictionary
|
562 |
+
num_image_tokens = [self.num_image_token] * num_patches
|
563 |
+
|
564 |
+
chosen_conversations = [
|
565 |
+
{'from': 'human', 'value': data_item['question']},
|
566 |
+
{'from': 'gpt', 'value': data_item['chosen']},
|
567 |
+
]
|
568 |
+
chosen_ret = preprocess_function(
|
569 |
+
self.template_name,
|
570 |
+
[deepcopy(chosen_conversations)],
|
571 |
+
self.tokenizer,
|
572 |
+
num_image_tokens,
|
573 |
+
group_by_length=True,
|
574 |
+
use_packed_ds=self.use_packed_ds,
|
575 |
+
ds_name=self.ds_name,
|
576 |
+
num_image=num_patches,
|
577 |
+
)
|
578 |
+
|
579 |
+
rejected_conversations = [
|
580 |
+
{'from': 'human', 'value': data_item['question']},
|
581 |
+
{'from': 'gpt', 'value': data_item['rejected']},
|
582 |
+
]
|
583 |
+
rejected_ret = preprocess_function(
|
584 |
+
self.template_name,
|
585 |
+
[deepcopy(rejected_conversations)],
|
586 |
+
self.tokenizer,
|
587 |
+
num_image_tokens,
|
588 |
+
group_by_length=True,
|
589 |
+
use_packed_ds=self.use_packed_ds,
|
590 |
+
ds_name=self.ds_name,
|
591 |
+
num_image=num_patches,
|
592 |
+
)
|
593 |
+
|
594 |
+
ret = dict(
|
595 |
+
chosen_input_ids=chosen_ret['input_ids'][0],
|
596 |
+
chosen_labels=chosen_ret['labels'][0],
|
597 |
+
chosen_attention_mask=chosen_ret['attention_mask'][0],
|
598 |
+
rejected_input_ids=rejected_ret['input_ids'][0],
|
599 |
+
rejected_labels=rejected_ret['labels'][0],
|
600 |
+
rejected_attention_mask=rejected_ret['attention_mask'][0],
|
601 |
+
pixel_values=pixel_values,
|
602 |
+
image_flags=torch.tensor([1] * num_patches, dtype=torch.long),
|
603 |
+
)
|
604 |
+
return ret
|
605 |
+
|
606 |
+
def pure_text_get_item(self, data_item):
|
607 |
+
# Build transformation function
|
608 |
+
transform = self.get_transform()
|
609 |
+
|
610 |
+
# Create a blank white image
|
611 |
+
image = Image.new('RGB', (224, 224), (255, 255, 255))
|
612 |
+
|
613 |
+
# Dynamically preprocess the image to generate patches
|
614 |
+
images = dynamic_preprocess(image, min_num=self.min_dynamic_patch, max_num=1,
|
615 |
+
image_size=self.image_size, use_thumbnail=self.use_thumbnail)
|
616 |
+
|
617 |
+
# Apply the transformation to each image patch and stack them into a tensor
|
618 |
+
pixel_values = [transform(image) for image in images]
|
619 |
+
pixel_values = torch.stack(pixel_values)
|
620 |
+
num_patches = pixel_values.size(0)
|
621 |
+
|
622 |
+
# Ensure there is only one patch
|
623 |
+
assert num_patches == 1, f'The number of patches should be 1, but got {num_patches}.'
|
624 |
+
|
625 |
+
# Select the appropriate preprocessing function based on the template name
|
626 |
+
preprocess_function = self.get_preprocess_function()
|
627 |
+
|
628 |
+
# Preprocess the conversations and generate the return dictionary
|
629 |
+
chosen_conversations = [
|
630 |
+
{'from': 'human', 'value': data_item['question']},
|
631 |
+
{'from': 'gpt', 'value': data_item['chosen']},
|
632 |
+
]
|
633 |
+
chosen_ret = preprocess_function(
|
634 |
+
self.template_name,
|
635 |
+
[deepcopy(chosen_conversations)],
|
636 |
+
self.tokenizer,
|
637 |
+
[self.num_image_token * num_patches],
|
638 |
+
text_only=True,
|
639 |
+
group_by_length=True,
|
640 |
+
ds_name=self.ds_name,
|
641 |
+
)
|
642 |
+
|
643 |
+
rejected_conversations = [
|
644 |
+
{'from': 'human', 'value': data_item['question']},
|
645 |
+
{'from': 'gpt', 'value': data_item['rejected']},
|
646 |
+
]
|
647 |
+
rejected_ret = preprocess_function(
|
648 |
+
self.template_name,
|
649 |
+
[deepcopy(rejected_conversations)],
|
650 |
+
self.tokenizer,
|
651 |
+
[self.num_image_token * num_patches],
|
652 |
+
text_only=True,
|
653 |
+
group_by_length=True,
|
654 |
+
ds_name=self.ds_name,
|
655 |
+
)
|
656 |
+
|
657 |
+
# Create the final return dictionary
|
658 |
+
ret = dict(
|
659 |
+
chosen_input_ids=chosen_ret['input_ids'][0],
|
660 |
+
chosen_labels=chosen_ret['labels'][0],
|
661 |
+
chosen_attention_mask=chosen_ret['attention_mask'][0],
|
662 |
+
rejected_input_ids=rejected_ret['input_ids'][0],
|
663 |
+
rejected_labels=rejected_ret['labels'][0],
|
664 |
+
rejected_attention_mask=rejected_ret['attention_mask'][0],
|
665 |
+
pixel_values=pixel_values,
|
666 |
+
image_flags=torch.tensor([0] * num_patches, dtype=torch.long),
|
667 |
+
)
|
668 |
+
return ret
|
669 |
+
|
670 |
+
def __getitem__(self, i) -> Dict[str, torch.Tensor]:
|
671 |
+
i = i % len(self.raw_data)
|
672 |
+
|
673 |
+
try_cnt, max_try = 0, 10
|
674 |
+
while True:
|
675 |
+
if try_cnt > max_try:
|
676 |
+
raise StopIteration
|
677 |
+
try:
|
678 |
+
data_item = json.loads(self.raw_data[i])
|
679 |
+
if 'image' in data_item and len(data_item['image']) != 0:
|
680 |
+
if type(data_item['image']) == list:
|
681 |
+
ret = self.multi_modal_multi_image_get_item(data_item)
|
682 |
+
else:
|
683 |
+
ret = self.multi_modal_get_item(data_item)
|
684 |
+
elif 'video' in data_item and data_item['video'] is not None and data_item['video'] != '':
|
685 |
+
ret = self.video_get_item(data_item)
|
686 |
+
else:
|
687 |
+
ret = self.pure_text_get_item(data_item)
|
688 |
+
break
|
689 |
+
except Exception as e:
|
690 |
+
try_cnt += 1
|
691 |
+
print(e, self.ds_name, flush=True)
|
692 |
+
if not isinstance(e, (UnidentifiedImageError, FileNotFoundError)):
|
693 |
+
traceback.print_exc()
|
694 |
+
data_item = json.loads(self.raw_data[i])
|
695 |
+
if 'image' in data_item:
|
696 |
+
if type(data_item['image']) == list:
|
697 |
+
images = [self.root + item for item in data_item['image']]
|
698 |
+
print(f'Failed to load image: {images}, the dataset is: {self.ds_name}')
|
699 |
+
else:
|
700 |
+
if data_item['image'].startswith('s3://'):
|
701 |
+
data_path = self.root + data_item['image']
|
702 |
+
else:
|
703 |
+
data_path = os.path.join(self.root, data_item['image'])
|
704 |
+
print(f'Failed to load image: {data_path}, the dataset is: {self.ds_name}')
|
705 |
+
elif 'video' in data_item:
|
706 |
+
data_path = os.path.join(self.root, data_item['video'])
|
707 |
+
print(f'Failed to load video: {data_path}, the dataset is: {self.ds_name}')
|
708 |
+
i = random.randint(0, len(self.raw_data) - 1)
|
709 |
+
return ret
|
710 |
+
|
711 |
+
|
712 |
+
def build_datasets(
|
713 |
+
data_args,
|
714 |
+
tokenizer,
|
715 |
+
tcs_loader,
|
716 |
+
model,
|
717 |
+
group_by_length=False,
|
718 |
+
dynamic_image_size=False,
|
719 |
+
use_thumbnail=False,
|
720 |
+
min_dynamic_patch=1,
|
721 |
+
max_dynamic_patch=12,
|
722 |
+
min_num_frame=8,
|
723 |
+
max_num_frame=32,
|
724 |
+
normalize_type='imagenet',
|
725 |
+
):
|
726 |
+
datasets = []
|
727 |
+
lengths = []
|
728 |
+
ds_collections = json.loads(open(data_args.meta_path).read())
|
729 |
+
for ds_idx, ds_name in enumerate(ds_collections.keys()):
|
730 |
+
repeat_time = ds_collections[ds_name]['repeat_time']
|
731 |
+
if 'max_dynamic_patch' in ds_collections[ds_name]:
|
732 |
+
max_num = ds_collections[ds_name]['max_dynamic_patch']
|
733 |
+
logger.info(f'max_dynamic_patch is set to {max_num} according to the meta file')
|
734 |
+
else:
|
735 |
+
max_num = max_dynamic_patch
|
736 |
+
dataset = LazySupervisedDataset(
|
737 |
+
data_args.conv_style, ds_collections[ds_name],
|
738 |
+
tokenizer,
|
739 |
+
tcs_loader,
|
740 |
+
ds_name=ds_name,
|
741 |
+
num_image_token=model.num_image_token,
|
742 |
+
image_size=data_args.force_image_size,
|
743 |
+
is_train=ds_collections[ds_name].get('data_augment', False),
|
744 |
+
pad2square=data_args.pad2square,
|
745 |
+
group_by_length=group_by_length,
|
746 |
+
dynamic_image_size=dynamic_image_size,
|
747 |
+
use_thumbnail=use_thumbnail,
|
748 |
+
min_dynamic_patch=min_dynamic_patch,
|
749 |
+
max_dynamic_patch=max_num,
|
750 |
+
min_num_frame=min_num_frame,
|
751 |
+
max_num_frame=max_num_frame,
|
752 |
+
repeat_time=repeat_time,
|
753 |
+
normalize_type=normalize_type,
|
754 |
+
random_seed=ds_idx,
|
755 |
+
)
|
756 |
+
logger.info(f'Add dataset: {ds_name} with length: {len(dataset)}')
|
757 |
+
datasets.append(dataset)
|
758 |
+
if data_args.use_data_resampling:
|
759 |
+
lengths.append(math.sqrt(len(dataset)))
|
760 |
+
else:
|
761 |
+
lengths.append(len(dataset))
|
762 |
+
|
763 |
+
if data_args.use_data_resampling:
|
764 |
+
total_length = sum(lengths)
|
765 |
+
weights = [l / total_length for l in lengths]
|
766 |
+
train_dataset = WeightedConcatDataset(datasets, weights)
|
767 |
+
else:
|
768 |
+
train_dataset = ConcatDataset(datasets)
|
769 |
+
return train_dataset
|
770 |
+
|
771 |
+
|
772 |
+
def main():
|
773 |
+
# Apply necessary patches for the transformers library
|
774 |
+
replace_llama_rmsnorm_with_fused_rmsnorm()
|
775 |
+
replace_train_sampler()
|
776 |
+
|
777 |
+
# Parse input arguments
|
778 |
+
# See all possible arguments in src/transformers/training_args.py
|
779 |
+
# If use DeepSpeed zero3, init_dist must before HfArgumentParser
|
780 |
+
launcher = os.environ.get('LAUNCHER', 'slurm')
|
781 |
+
init_dist(launcher=launcher, backend='nccl')
|
782 |
+
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, DPOConfig))
|
783 |
+
if len(sys.argv) == 2 and sys.argv[1].endswith('.json'):
|
784 |
+
# If we pass only one argument to the script, and it's the path to a json file,
|
785 |
+
# let's parse it to get our arguments.
|
786 |
+
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
|
787 |
+
else:
|
788 |
+
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
789 |
+
|
790 |
+
training_args.remove_unused_columns = False
|
791 |
+
training_args.gradient_checkpointing = model_args.grad_checkpoint
|
792 |
+
training_args.sigmoid_loss_weight = data_args.sigmoid_loss_weight
|
793 |
+
training_args.bco_pair_loss_weight = data_args.bco_pair_loss_weight
|
794 |
+
|
795 |
+
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
796 |
+
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
797 |
+
# send_example_telemetry('InternV-Chat', model_args, data_args)
|
798 |
+
|
799 |
+
# Setup logging
|
800 |
+
logging.basicConfig(
|
801 |
+
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
|
802 |
+
datefmt='%m/%d/%Y %H:%M:%S',
|
803 |
+
handlers=[logging.StreamHandler(sys.stdout)],
|
804 |
+
)
|
805 |
+
|
806 |
+
if training_args.should_log:
|
807 |
+
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
|
808 |
+
transformers.utils.logging.set_verbosity_info()
|
809 |
+
|
810 |
+
log_level = training_args.get_process_log_level()
|
811 |
+
logger.setLevel(log_level)
|
812 |
+
set_verbosity(log_level)
|
813 |
+
enable_default_handler()
|
814 |
+
enable_explicit_format()
|
815 |
+
|
816 |
+
# Log on each process the small summary:
|
817 |
+
logger.warning(
|
818 |
+
f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}'
|
819 |
+
+ f'distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}'
|
820 |
+
)
|
821 |
+
logger.info(f'Training/evaluation parameters {training_args}')
|
822 |
+
|
823 |
+
# Detecting last checkpoint and eventually continue from last checkpoint.
|
824 |
+
last_checkpoint = None
|
825 |
+
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
|
826 |
+
last_checkpoint = get_last_checkpoint(training_args.output_dir)
|
827 |
+
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
|
828 |
+
raise ValueError(
|
829 |
+
f'Output directory ({training_args.output_dir}) already exists and is not empty. '
|
830 |
+
'Use --overwrite_output_dir to overcome.'
|
831 |
+
)
|
832 |
+
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
|
833 |
+
logger.info(
|
834 |
+
f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change '
|
835 |
+
'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.'
|
836 |
+
)
|
837 |
+
# Set seed before initializing model.
|
838 |
+
set_seed(training_args.seed)
|
839 |
+
|
840 |
+
# Load pretrained model, tokenizer, and image processor
|
841 |
+
tokenizer_path = model_args.model_name_or_path or model_args.llm_path
|
842 |
+
logger.info(f'Loading Tokenizer: {tokenizer_path}')
|
843 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
844 |
+
tokenizer_path, add_eos_token=False, trust_remote_code=True, use_fast=model_args.use_fast_tokenizer)
|
845 |
+
tokenizer.tokenizer_path = tokenizer_path
|
846 |
+
tokenizer.model_max_length = data_args.max_seq_length
|
847 |
+
token_list = [IMG_START_TOKEN, IMG_END_TOKEN, IMG_CONTEXT_TOKEN,
|
848 |
+
QUAD_START_TOKEN, QUAD_END_TOKEN, REF_START_TOKEN,
|
849 |
+
REF_END_TOKEN, BOX_START_TOKEN, BOX_END_TOKEN]
|
850 |
+
num_new_tokens = tokenizer.add_tokens(token_list, special_tokens=True)
|
851 |
+
img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
|
852 |
+
tcs_loader = TCSLoader('~/petreloss.conf') if has_tcs_loader else None
|
853 |
+
|
854 |
+
if model_args.use_liger:
|
855 |
+
from internvl.patch import apply_liger_kernel_to_internvit
|
856 |
+
from liger_kernel.transformers import (apply_liger_kernel_to_llama,
|
857 |
+
apply_liger_kernel_to_qwen2)
|
858 |
+
apply_liger_kernel_to_llama()
|
859 |
+
apply_liger_kernel_to_qwen2()
|
860 |
+
# apply_liger_kernel_to_internvit()
|
861 |
+
|
862 |
+
if model_args.model_name_or_path is not None:
|
863 |
+
logger.info('Loading InternVLChatModel...')
|
864 |
+
config = InternVLChatConfig.from_pretrained(model_args.model_name_or_path)
|
865 |
+
config.vision_config.drop_path_rate = model_args.drop_path_rate
|
866 |
+
if config.llm_config.model_type == 'internlm2':
|
867 |
+
config.llm_config.attn_implementation = 'flash_attention_2' # for InternLM
|
868 |
+
logger.info('Using flash_attention_2 for InternLM')
|
869 |
+
else:
|
870 |
+
config.llm_config._attn_implementation = 'flash_attention_2' # for LLaMA
|
871 |
+
logger.info('Using flash_attention_2 for LLaMA')
|
872 |
+
config.template = data_args.conv_style
|
873 |
+
config.select_layer = model_args.vision_select_layer
|
874 |
+
config.dynamic_image_size = data_args.dynamic_image_size
|
875 |
+
config.use_thumbnail = data_args.use_thumbnail
|
876 |
+
config.ps_version = model_args.ps_version
|
877 |
+
config.min_dynamic_patch = data_args.min_dynamic_patch
|
878 |
+
config.max_dynamic_patch = data_args.max_dynamic_patch
|
879 |
+
model = InternVLChatModel.from_pretrained(
|
880 |
+
model_args.model_name_or_path, torch_dtype=torch.bfloat16, config=config)
|
881 |
+
ref_model = InternVLChatModel.from_pretrained(
|
882 |
+
model_args.model_name_or_path, torch_dtype=torch.bfloat16, config=config)
|
883 |
+
else:
|
884 |
+
logger.info('Loading ViT-6B...')
|
885 |
+
vision_config = InternVisionConfig.from_pretrained(model_args.vision_path)
|
886 |
+
vision_config.drop_path_rate = model_args.drop_path_rate
|
887 |
+
vision_model = InternVisionModel.from_pretrained(
|
888 |
+
model_args.vision_path, torch_dtype=torch.bfloat16, config=vision_config)
|
889 |
+
logger.info('Loading LLaMA...')
|
890 |
+
llm_config = AutoConfig.from_pretrained(model_args.llm_path, trust_remote_code=True)
|
891 |
+
if llm_config.model_type == 'internlm2':
|
892 |
+
model_type = InternLM2ForCausalLM
|
893 |
+
llm_config.attn_implementation = 'flash_attention_2' # for InternLM
|
894 |
+
logger.info('Using flash_attention_2 for InternLM')
|
895 |
+
else:
|
896 |
+
model_type = AutoModelForCausalLM
|
897 |
+
llm_config._attn_implementation = 'flash_attention_2' # for LLaMA
|
898 |
+
logger.info('Using flash_attention_2 for LLaMA')
|
899 |
+
llm = model_type.from_pretrained(
|
900 |
+
model_args.llm_path, torch_dtype=torch.bfloat16,
|
901 |
+
config=llm_config, trust_remote_code=True)
|
902 |
+
logger.info('Building InternVLChatConfig...')
|
903 |
+
internvl_chat_config = InternVLChatConfig(
|
904 |
+
vision_config.to_dict(), llm_config.to_dict(), downsample_ratio=data_args.down_sample_ratio,
|
905 |
+
pad2square=data_args.pad2square, template=data_args.conv_style,
|
906 |
+
select_layer=model_args.vision_select_layer, dynamic_image_size=data_args.dynamic_image_size,
|
907 |
+
use_thumbnail=data_args.use_thumbnail, ps_version=model_args.ps_version,
|
908 |
+
min_dynamic_patch=data_args.min_dynamic_patch, max_dynamic_patch=data_args.max_dynamic_patch)
|
909 |
+
internvl_chat_config.force_image_size = data_args.force_image_size
|
910 |
+
logger.info('Building InternVLChatModel...')
|
911 |
+
model = InternVLChatModel(internvl_chat_config, vision_model, llm)
|
912 |
+
model.img_context_token_id = img_context_token_id
|
913 |
+
ref_model.img_context_token_id = img_context_token_id
|
914 |
+
|
915 |
+
assert model.config.downsample_ratio == data_args.down_sample_ratio
|
916 |
+
assert ref_model.config.downsample_ratio == data_args.down_sample_ratio
|
917 |
+
|
918 |
+
if model_args.mlp_path is not None:
|
919 |
+
logger.info('Loading pretrained MLP projector...')
|
920 |
+
state_dict = torch.load(model_args.mlp_path, map_location='cpu')
|
921 |
+
message = model.mlp1.load_state_dict(state_dict)
|
922 |
+
logger.info(message)
|
923 |
+
logger.info('Finished')
|
924 |
+
|
925 |
+
patch_size = model.config.vision_config.patch_size
|
926 |
+
logger.info(f'model.config.force_image_size: {model.config.force_image_size}')
|
927 |
+
logger.info(f'data_args.force_image_size: {data_args.force_image_size}')
|
928 |
+
logger.info(f'model.config.vision_config.image_size: {model.config.vision_config.image_size}')
|
929 |
+
if model.config.vision_config.image_size != data_args.force_image_size:
|
930 |
+
logger.info(f'Resizing position embedding from '
|
931 |
+
f'{model.config.vision_config.image_size} '
|
932 |
+
f'to {data_args.force_image_size}...')
|
933 |
+
model.vision_model.resize_pos_embeddings(old_size=model.config.vision_config.image_size,
|
934 |
+
new_size=data_args.force_image_size,
|
935 |
+
patch_size=patch_size)
|
936 |
+
model.config.vision_config.image_size = data_args.force_image_size
|
937 |
+
model.config.force_image_size = data_args.force_image_size
|
938 |
+
model.num_image_token = int((data_args.force_image_size // patch_size) ** 2 * (data_args.down_sample_ratio ** 2))
|
939 |
+
|
940 |
+
ref_model.config.force_image_size = model.config.force_image_size
|
941 |
+
ref_model.num_image_token = model.num_image_token
|
942 |
+
|
943 |
+
if num_new_tokens > 0:
|
944 |
+
model.language_model.resize_token_embeddings(len(tokenizer))
|
945 |
+
output_embeddings = model.language_model.get_output_embeddings().weight.data
|
946 |
+
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True)
|
947 |
+
output_embeddings[-num_new_tokens:] = output_embeddings_avg
|
948 |
+
|
949 |
+
model.config.llm_config.vocab_size = len(tokenizer)
|
950 |
+
model.language_model.config.vocab_size = len(tokenizer)
|
951 |
+
|
952 |
+
model.language_model.config.use_cache = False
|
953 |
+
model.vision_model.gradient_checkpointing = True
|
954 |
+
model.vision_model.encoder.gradient_checkpointing = True
|
955 |
+
if model_args.grad_checkpoint:
|
956 |
+
model.language_model._set_gradient_checkpointing()
|
957 |
+
|
958 |
+
train_dataset = build_datasets(
|
959 |
+
data_args, tokenizer, tcs_loader, model, group_by_length=training_args.group_by_length,
|
960 |
+
dynamic_image_size=data_args.dynamic_image_size, use_thumbnail=data_args.use_thumbnail,
|
961 |
+
min_dynamic_patch=data_args.min_dynamic_patch, max_dynamic_patch=data_args.max_dynamic_patch,
|
962 |
+
normalize_type=data_args.normalize_type, min_num_frame=data_args.min_num_frame,
|
963 |
+
max_num_frame=data_args.max_num_frame)
|
964 |
+
|
965 |
+
def _freeze_params(module):
|
966 |
+
for param in module.parameters():
|
967 |
+
param.requires_grad = False
|
968 |
+
|
969 |
+
ref_model.eval()
|
970 |
+
# _freeze_params(ref_model)
|
971 |
+
|
972 |
+
if model_args.freeze_backbone:
|
973 |
+
# model.vision_model = model.vision_model.eval()
|
974 |
+
_freeze_params(model.vision_model)
|
975 |
+
|
976 |
+
if model_args.freeze_llm:
|
977 |
+
model.language_model = model.language_model.eval()
|
978 |
+
_freeze_params(model.language_model)
|
979 |
+
|
980 |
+
if model_args.unfreeze_lm_head:
|
981 |
+
model.language_model.lm_head.requires_grad = True
|
982 |
+
|
983 |
+
if model_args.use_backbone_lora:
|
984 |
+
model.wrap_backbone_lora(r=model_args.use_backbone_lora, lora_alpha=2 * model_args.use_backbone_lora)
|
985 |
+
model.config.use_backbone_lora = model_args.use_backbone_lora
|
986 |
+
|
987 |
+
if model_args.use_llm_lora:
|
988 |
+
model.wrap_llm_lora(r=model_args.use_llm_lora, lora_alpha=2 * model_args.use_llm_lora)
|
989 |
+
model.config.use_llm_lora = model_args.use_llm_lora
|
990 |
+
|
991 |
+
if model_args.freeze_mlp:
|
992 |
+
_freeze_params(model.mlp1)
|
993 |
+
|
994 |
+
if model_args.unfreeze_vit_layers != 0:
|
995 |
+
layers = model.vision_model.encoder.layers[model_args.unfreeze_vit_layers:]
|
996 |
+
for k, v in layers.named_parameters():
|
997 |
+
logger.info(f'Unfreezing ViT layer: {k}')
|
998 |
+
v.requires_grad = True
|
999 |
+
|
1000 |
+
# print trainable parameters
|
1001 |
+
if dist.get_rank() == 0:
|
1002 |
+
for name, param in model.named_parameters():
|
1003 |
+
if param.requires_grad:
|
1004 |
+
logger.info(name)
|
1005 |
+
|
1006 |
+
# set seed for torch dataloaders
|
1007 |
+
set_seed(training_args.seed)
|
1008 |
+
|
1009 |
+
trainer = MultimodalDPOTrainer(
|
1010 |
+
model=model,
|
1011 |
+
ref_model=ref_model,
|
1012 |
+
args=training_args,
|
1013 |
+
train_dataset=train_dataset if training_args.do_train else None,
|
1014 |
+
eval_dataset=None,
|
1015 |
+
tokenizer=tokenizer,
|
1016 |
+
data_collator=dpo_concat_pad_data_collator,
|
1017 |
+
)
|
1018 |
+
|
1019 |
+
# Training
|
1020 |
+
if training_args.do_train:
|
1021 |
+
checkpoint = None
|
1022 |
+
if training_args.resume_from_checkpoint is not None:
|
1023 |
+
checkpoint = training_args.resume_from_checkpoint
|
1024 |
+
elif last_checkpoint is not None:
|
1025 |
+
checkpoint = last_checkpoint
|
1026 |
+
print(f'[Memory Usage before training] {torch.cuda.memory_allocated()/1024/1024/1024:.2f}GB')
|
1027 |
+
train_result = trainer.train(resume_from_checkpoint=checkpoint)
|
1028 |
+
trainer.save_model() # Saves the tokenizer too for easy upload
|
1029 |
+
|
1030 |
+
metrics = train_result.metrics
|
1031 |
+
try:
|
1032 |
+
metrics['train_samples'] = len(train_dataset)
|
1033 |
+
except:
|
1034 |
+
metrics['train_samples'] = -1
|
1035 |
+
|
1036 |
+
trainer.log_metrics('train', metrics)
|
1037 |
+
trainer.save_metrics('train', metrics)
|
1038 |
+
trainer.save_state()
|
1039 |
+
|
1040 |
+
model_dir = model_args.model_name_or_path
|
1041 |
+
output_dir = training_args.output_dir
|
1042 |
+
for filename in [
|
1043 |
+
'conversation.py',
|
1044 |
+
'modeling_internvl_chat.py',
|
1045 |
+
'modeling_intern_vit.py',
|
1046 |
+
'modeling_internlm2.py',
|
1047 |
+
'configuration_internvl_chat.py',
|
1048 |
+
'configuration_intern_vit.py',
|
1049 |
+
'configuration_internlm2.py',
|
1050 |
+
]:
|
1051 |
+
if os.path.exists(os.path.join(model_dir, filename)):
|
1052 |
+
shutil.copy(os.path.join(model_dir, filename), output_dir)
|
1053 |
+
|
1054 |
+
|
1055 |
+
if __name__ == '__main__':
|
1056 |
+
main()
|
src/third_party/InternVL/internvl_chat/internvl/train/internvl_chat_finetune.py
ADDED
@@ -0,0 +1,1072 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# InternVL
|
3 |
+
# Copyright (c) 2024 OpenGVLab
|
4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
5 |
+
# --------------------------------------------------------
|
6 |
+
|
7 |
+
import logging
|
8 |
+
import math
|
9 |
+
import os
|
10 |
+
import random
|
11 |
+
import sys
|
12 |
+
import traceback
|
13 |
+
import warnings
|
14 |
+
from copy import deepcopy
|
15 |
+
from dataclasses import dataclass, field
|
16 |
+
from functools import partial
|
17 |
+
from typing import Dict, Literal, Optional
|
18 |
+
|
19 |
+
import numpy as np
|
20 |
+
|
21 |
+
try:
|
22 |
+
import orjson as json
|
23 |
+
except:
|
24 |
+
import json
|
25 |
+
|
26 |
+
import torch
|
27 |
+
import torch.distributed as dist
|
28 |
+
import transformers
|
29 |
+
from internvl.dist_utils import init_dist
|
30 |
+
from internvl.model.internlm2.modeling_internlm2 import InternLM2ForCausalLM
|
31 |
+
from internvl.model.internvl_chat import (InternVisionConfig,
|
32 |
+
InternVisionModel,
|
33 |
+
InternVLChatConfig,
|
34 |
+
InternVLChatModel)
|
35 |
+
from internvl.patch import (concat_pad_data_collator,
|
36 |
+
replace_internlm2_attention_class,
|
37 |
+
replace_llama_attention_class,
|
38 |
+
replace_llama_rmsnorm_with_fused_rmsnorm,
|
39 |
+
replace_phi3_attention_class,
|
40 |
+
replace_qwen2_attention_class,
|
41 |
+
replace_train_dataloader, replace_train_sampler)
|
42 |
+
from internvl.train.constants import (BOX_END_TOKEN, BOX_START_TOKEN,
|
43 |
+
IMG_CONTEXT_TOKEN, IMG_END_TOKEN,
|
44 |
+
IMG_START_TOKEN, QUAD_END_TOKEN,
|
45 |
+
QUAD_START_TOKEN, REF_END_TOKEN,
|
46 |
+
REF_START_TOKEN)
|
47 |
+
from internvl.train.dataset import (ConcatDataset, TCSLoader,
|
48 |
+
WeightedConcatDataset, build_transform,
|
49 |
+
check_conversations_repetition,
|
50 |
+
dynamic_preprocess, preprocess,
|
51 |
+
preprocess_internlm,
|
52 |
+
preprocess_internvl2_5, preprocess_mpt,
|
53 |
+
preprocess_phi3)
|
54 |
+
from internvl.train.dataset_packed import PackedDataset, packed_collate_fn
|
55 |
+
from PIL import Image, ImageFile, PngImagePlugin, UnidentifiedImageError
|
56 |
+
from torch.utils.data import Dataset
|
57 |
+
from transformers import (AutoConfig, AutoModelForCausalLM, AutoTokenizer,
|
58 |
+
HfArgumentParser, Trainer, TrainingArguments,
|
59 |
+
set_seed)
|
60 |
+
from transformers.trainer_utils import get_last_checkpoint
|
61 |
+
from transformers.utils.logging import (enable_default_handler,
|
62 |
+
enable_explicit_format, set_verbosity)
|
63 |
+
|
64 |
+
# Try to import petrel_client for image loading, fallback to PIL if unavailable
|
65 |
+
try:
|
66 |
+
from petrel_client.client import Client
|
67 |
+
from petrel_client.common.config import Config
|
68 |
+
has_tcs_loader = True
|
69 |
+
except ImportError as E:
|
70 |
+
print('petrel_client is not installed. Using PIL to load images.')
|
71 |
+
has_tcs_loader = False
|
72 |
+
|
73 |
+
# Set constants for image processing and logging
|
74 |
+
IGNORE_INDEX = -100
|
75 |
+
Image.MAX_IMAGE_PIXELS = None
|
76 |
+
ImageFile.LOAD_TRUNCATED_IMAGES = True
|
77 |
+
MaximumDecompressedSize = 1024
|
78 |
+
MegaByte = 2 ** 20
|
79 |
+
PngImagePlugin.MAX_TEXT_CHUNK = MaximumDecompressedSize * MegaByte
|
80 |
+
|
81 |
+
warnings.filterwarnings('ignore')
|
82 |
+
logger = logging.getLogger(__name__)
|
83 |
+
|
84 |
+
os.environ['TOKENIZERS_PARALLELISM'] = 'true'
|
85 |
+
|
86 |
+
|
87 |
+
@dataclass
|
88 |
+
class ModelArguments:
|
89 |
+
"""
|
90 |
+
Arguments for specifying model, tokenizer, and configurations.
|
91 |
+
"""
|
92 |
+
model_name_or_path: Optional[str] = field(
|
93 |
+
default=None,
|
94 |
+
metadata={'help': 'Path to a pretrained model (local or from huggingface.co/models).'}
|
95 |
+
)
|
96 |
+
vision_path: Optional[str] = field(
|
97 |
+
default=None,
|
98 |
+
metadata={'help': 'Path to a pretrained model (local or from huggingface.co/models).'}
|
99 |
+
)
|
100 |
+
llm_path: Optional[str] = field(
|
101 |
+
default=None,
|
102 |
+
metadata={'help': 'Path to a pretrained model (local or from huggingface.co/models).'}
|
103 |
+
)
|
104 |
+
mlp_path: Optional[str] = field(
|
105 |
+
default=None,
|
106 |
+
metadata={'help': 'Path to a pretrained model (local or from huggingface.co/models).'}
|
107 |
+
)
|
108 |
+
freeze_llm: bool = field(
|
109 |
+
default=False,
|
110 |
+
metadata={'help': 'Set to True to freeze the LLM. Default is False.'},
|
111 |
+
)
|
112 |
+
freeze_backbone: bool = field(
|
113 |
+
default=False,
|
114 |
+
metadata={'help': 'Set to True to freeze the ViT. Default is False.'},
|
115 |
+
)
|
116 |
+
freeze_mlp: bool = field(
|
117 |
+
default=False,
|
118 |
+
metadata={'help': 'Set to True to freeze the MLP. Default is False.'},
|
119 |
+
)
|
120 |
+
unfreeze_vit_layers: int = field(
|
121 |
+
default=0,
|
122 |
+
metadata={'help': 'Specify the number of ViT layers to unfreeze. Default is 0.'},
|
123 |
+
)
|
124 |
+
vision_select_layer: int = field(
|
125 |
+
default=-1,
|
126 |
+
metadata={'help': 'Specify the layer of ViT feature map to use. Default is -1 for the last layer.'},
|
127 |
+
)
|
128 |
+
use_backbone_lora: int = field(
|
129 |
+
default=0,
|
130 |
+
metadata={'help': 'Set the LoRA adapter rank for the ViT. Default is 0.'}
|
131 |
+
)
|
132 |
+
use_llm_lora: int = field(
|
133 |
+
default=0,
|
134 |
+
metadata={'help': 'Set the LoRA adapter rank for the LLM. Default is 0.'}
|
135 |
+
)
|
136 |
+
unfreeze_lm_head: bool = field(
|
137 |
+
default=False,
|
138 |
+
metadata={'help': 'Set to True to unfreeze the head of LLM. Default is False.'},
|
139 |
+
)
|
140 |
+
grad_checkpoint: bool = field(
|
141 |
+
default=True,
|
142 |
+
metadata={'help': 'Set to True to use gradient checkpointing. Default is True.'},
|
143 |
+
)
|
144 |
+
drop_path_rate: float = field(
|
145 |
+
default=0.0,
|
146 |
+
metadata={'help': 'Set the drop path rate for the ViT. Default is 0.'},
|
147 |
+
)
|
148 |
+
ps_version: Literal['v1', 'v2'] = field(
|
149 |
+
default='v2',
|
150 |
+
metadata={'help': 'Specify the version of pixel shuffle implementation. Default is v2.'}
|
151 |
+
)
|
152 |
+
use_fast_tokenizer: bool = field(
|
153 |
+
default=False,
|
154 |
+
metadata={'help': 'Set to True to use the fast mode of the tokenizer.'}
|
155 |
+
)
|
156 |
+
use_liger: bool = field(
|
157 |
+
default=False,
|
158 |
+
metadata={'help': 'Set to True to use the liger kernel.'}
|
159 |
+
)
|
160 |
+
|
161 |
+
|
162 |
+
@dataclass
|
163 |
+
class DataTrainingArguments:
|
164 |
+
"""
|
165 |
+
Arguments for specifying data input for training and evaluation.
|
166 |
+
"""
|
167 |
+
max_seq_length: int = field(
|
168 |
+
default=8192,
|
169 |
+
metadata={
|
170 |
+
'help': (
|
171 |
+
'The maximum total input sequence length after tokenization. Sequences longer '
|
172 |
+
'than this will be truncated, sequences shorter will be padded.'
|
173 |
+
)
|
174 |
+
},
|
175 |
+
)
|
176 |
+
force_image_size: int = field(
|
177 |
+
default=448,
|
178 |
+
metadata={'help': 'Set the desired size for the image. Default is 448.'},
|
179 |
+
)
|
180 |
+
down_sample_ratio: float = field(
|
181 |
+
default=0.5,
|
182 |
+
metadata={'help': 'Set the desired down-sampling ratio for the image. Default is 0.5.'},
|
183 |
+
)
|
184 |
+
pad2square: bool = field(
|
185 |
+
default=False,
|
186 |
+
metadata={'help': 'Pad the image to a square shape if set to True. Default is False.'},
|
187 |
+
)
|
188 |
+
conv_style: str = field(
|
189 |
+
default='internlm2-chat', metadata={'help': 'Prompt style for a conversation.'}
|
190 |
+
)
|
191 |
+
meta_path: str = field(
|
192 |
+
default=None,
|
193 |
+
metadata={'help': 'The path of the meta file of datasets.'},
|
194 |
+
)
|
195 |
+
use_data_resampling: bool = field(
|
196 |
+
default=False,
|
197 |
+
metadata={'help': 'Set to True to use data resampling. Default is False.'},
|
198 |
+
)
|
199 |
+
dynamic_image_size: bool = field(
|
200 |
+
default=False,
|
201 |
+
metadata={'help': 'Set to True to use dynamic high resolution strategy. Default is False.'},
|
202 |
+
)
|
203 |
+
use_thumbnail: bool = field(
|
204 |
+
default=False,
|
205 |
+
metadata={'help': 'Set to True to add a thumbnail image. Default is False.'},
|
206 |
+
)
|
207 |
+
min_dynamic_patch: int = field(
|
208 |
+
default=1,
|
209 |
+
metadata={'help': 'The minimum number of dynamic patches. Default is 1.'},
|
210 |
+
)
|
211 |
+
max_dynamic_patch: int = field(
|
212 |
+
default=12,
|
213 |
+
metadata={'help': 'The maximum number of dynamic patches. Default is 12.'},
|
214 |
+
)
|
215 |
+
min_num_frame: int = field(
|
216 |
+
default=8,
|
217 |
+
metadata={'help': 'The minimum number of frames for video data. Default is 8.'},
|
218 |
+
)
|
219 |
+
max_num_frame: int = field(
|
220 |
+
default=32,
|
221 |
+
metadata={'help': 'The maximum number of frames for video data. Default is 32.'},
|
222 |
+
)
|
223 |
+
normalize_type: Literal['imagenet', 'clip', 'siglip'] = field(
|
224 |
+
default='imagenet',
|
225 |
+
metadata={'help': 'The normalization type for the image. Default is imagenet.'},
|
226 |
+
)
|
227 |
+
use_packed_ds: bool = field(
|
228 |
+
default=False,
|
229 |
+
metadata={'help': 'Whether to use packed dataset for efficient training. Default is False.'},
|
230 |
+
)
|
231 |
+
num_images_expected: int = field(
|
232 |
+
default=40,
|
233 |
+
metadata={'help': 'The maximum number of images per packed sample. Default is 40.'},
|
234 |
+
)
|
235 |
+
max_packed_tokens: int = field(
|
236 |
+
default=8192,
|
237 |
+
metadata={'help': 'The required token length of per packed sample. Default is 8192.'},
|
238 |
+
)
|
239 |
+
max_buffer_size: int = field(
|
240 |
+
default=20,
|
241 |
+
metadata={'help': 'The buffer size of the packed dataset. Default is 20.'},
|
242 |
+
)
|
243 |
+
log_freq: int = field(
|
244 |
+
default=1000,
|
245 |
+
metadata={'help': 'The log frequency of the packed dataset. Default is 1000.'},
|
246 |
+
)
|
247 |
+
strict_mode: bool = field(
|
248 |
+
default=True,
|
249 |
+
metadata={'help': 'Whether to pad the number of images to satisfy num_images_expected. Default is True.'},
|
250 |
+
)
|
251 |
+
replacement: bool = field(
|
252 |
+
default=False,
|
253 |
+
metadata={'help': 'Whether to restart the dataset after it is exhausted. Default is False.'},
|
254 |
+
)
|
255 |
+
allow_overflow: bool = field(
|
256 |
+
default=False,
|
257 |
+
metadata={'help': 'Whether to drop the sample over the specified max_packed_tokens. Default is False.'},
|
258 |
+
)
|
259 |
+
loss_reduction: str = field(
|
260 |
+
default='token',
|
261 |
+
metadata={'help': 'Loss reduction method. Default is token.'},
|
262 |
+
)
|
263 |
+
loss_reduction_all_gather: bool = field(
|
264 |
+
default=False,
|
265 |
+
metadata={'help': 'Whether to gather all during loss reduction. Default is False.'},
|
266 |
+
)
|
267 |
+
|
268 |
+
|
269 |
+
class LazySupervisedDataset(Dataset):
|
270 |
+
"""Dataset for supervised fine-tuning."""
|
271 |
+
|
272 |
+
def __init__(
|
273 |
+
self,
|
274 |
+
template_name,
|
275 |
+
meta,
|
276 |
+
tokenizer,
|
277 |
+
tcs_loader,
|
278 |
+
ds_name,
|
279 |
+
num_image_token,
|
280 |
+
image_size=448,
|
281 |
+
is_train=True,
|
282 |
+
pad2square=False,
|
283 |
+
group_by_length=False,
|
284 |
+
dynamic_image_size=False,
|
285 |
+
use_thumbnail=False,
|
286 |
+
min_dynamic_patch=1,
|
287 |
+
max_dynamic_patch=12,
|
288 |
+
min_num_frame=8, # for video data
|
289 |
+
max_num_frame=32, # for video data
|
290 |
+
sampling_method='rand', # for video data
|
291 |
+
repeat_time=1,
|
292 |
+
normalize_type='imagenet',
|
293 |
+
# hyperparameters for packed training
|
294 |
+
use_packed_ds=False,
|
295 |
+
data_rank=0,
|
296 |
+
data_world_size=1,
|
297 |
+
distributed_mode=False,
|
298 |
+
force_shuffle=False,
|
299 |
+
random_seed=0,
|
300 |
+
):
|
301 |
+
super(LazySupervisedDataset, self).__init__()
|
302 |
+
self.ds_name = ds_name
|
303 |
+
self.tokenizer = tokenizer
|
304 |
+
self.template_name = template_name
|
305 |
+
self.num_image_token = num_image_token
|
306 |
+
logger.info(f'[Dataset] num_image_token: {num_image_token}')
|
307 |
+
logger.info(f'[Dataset] dynamic_image_size: {dynamic_image_size}')
|
308 |
+
logger.info(f'[Dataset] use_thumbnail: {use_thumbnail}')
|
309 |
+
logger.info(f'[Dataset] min_dynamic_patch: {min_dynamic_patch}, max_dynamic_patch: {max_dynamic_patch}')
|
310 |
+
|
311 |
+
self.image_size = image_size
|
312 |
+
self.is_train = is_train
|
313 |
+
self.pad2square = pad2square
|
314 |
+
self.max_num_frame = max_num_frame
|
315 |
+
self.min_num_frame = min_num_frame
|
316 |
+
self.sampling_method = sampling_method
|
317 |
+
|
318 |
+
# hyperparameters for distributed training
|
319 |
+
self.use_packed_ds = use_packed_ds
|
320 |
+
self.data_rank = data_rank
|
321 |
+
self.data_world_size = data_world_size
|
322 |
+
self.worker_id = None
|
323 |
+
self.worker_state_key = None
|
324 |
+
self.worker_distributed = False
|
325 |
+
self.distributed_mode = distributed_mode
|
326 |
+
# hyperparameters for packed dataset
|
327 |
+
self.dataset_type = 'pair'
|
328 |
+
self.max_num_images = 1
|
329 |
+
self.max_tokens = tokenizer.model_max_length
|
330 |
+
self.force_shuffle = force_shuffle
|
331 |
+
# TODO: quick resume
|
332 |
+
self._state_dict = {}
|
333 |
+
|
334 |
+
logger.info('Formatting inputs...Skip in lazy mode')
|
335 |
+
assert meta['annotation'].endswith('jsonl'), f'annotation must be jsonl, but got {meta["annotation"]}'
|
336 |
+
|
337 |
+
with open(meta['annotation'], 'r') as f:
|
338 |
+
self.raw_data = f.readlines()
|
339 |
+
if repeat_time < 1:
|
340 |
+
# If repeat_time is less than 1, select a portion of the data
|
341 |
+
self.raw_data = self.raw_data[:int(len(self.raw_data) * repeat_time)]
|
342 |
+
if repeat_time > 1:
|
343 |
+
assert isinstance(repeat_time, int)
|
344 |
+
# Repeat the list if repeat_time is greater than 1
|
345 |
+
self.raw_data = self.raw_data * repeat_time
|
346 |
+
|
347 |
+
self.rng = np.random.default_rng(seed=random_seed)
|
348 |
+
if self.force_shuffle:
|
349 |
+
self.rng.shuffle(self.raw_data)
|
350 |
+
|
351 |
+
self.root = meta['root']
|
352 |
+
self.cached_data_dict = {}
|
353 |
+
self.tcs_loader = tcs_loader
|
354 |
+
self.group_by_length = group_by_length
|
355 |
+
self.dynamic_image_size = dynamic_image_size
|
356 |
+
self.use_thumbnail = use_thumbnail
|
357 |
+
self.min_dynamic_patch = min_dynamic_patch
|
358 |
+
self.max_dynamic_patch = max_dynamic_patch
|
359 |
+
self.normalize_type = normalize_type
|
360 |
+
|
361 |
+
# If the precomputed length does not exist, roughly estimate the length of
|
362 |
+
# each sample to improve the efficiency of group_by_length.
|
363 |
+
if self.group_by_length:
|
364 |
+
self.conv2length = {} # Using a dictionary to speed up token length calculation
|
365 |
+
self.length = []
|
366 |
+
for data_item in self.raw_data:
|
367 |
+
data_item = json.loads(data_item)
|
368 |
+
if 'length' in data_item:
|
369 |
+
token_length = data_item['length'] # Use precomputed length if available
|
370 |
+
else:
|
371 |
+
# Compute token length using the tokenizer
|
372 |
+
conversations = '\n'.join([temp['value'] for temp in data_item['conversations']])
|
373 |
+
str_length = len(conversations)
|
374 |
+
if str_length not in self.conv2length:
|
375 |
+
token_length = tokenizer(
|
376 |
+
conversations, return_tensors='pt', padding=False, truncation=False,
|
377 |
+
).input_ids.size(1)
|
378 |
+
self.conv2length[str_length] = token_length + num_image_token * (
|
379 |
+
max_dynamic_patch + use_thumbnail)
|
380 |
+
else:
|
381 |
+
token_length = self.conv2length[str_length]
|
382 |
+
self.length.append(token_length)
|
383 |
+
|
384 |
+
def __len__(self):
|
385 |
+
return len(self.raw_data)
|
386 |
+
|
387 |
+
def get_preprocess_function(self):
|
388 |
+
# Select the appropriate preprocessing function based on the template name
|
389 |
+
if self.template_name == 'Hermes-2':
|
390 |
+
preprocess_function = preprocess_mpt
|
391 |
+
elif self.template_name == 'internlm2-chat':
|
392 |
+
preprocess_function = preprocess_internlm
|
393 |
+
elif self.template_name == 'phi3-chat':
|
394 |
+
preprocess_function = preprocess_phi3
|
395 |
+
elif self.template_name == 'internvl2_5':
|
396 |
+
preprocess_function = preprocess_internvl2_5
|
397 |
+
else:
|
398 |
+
preprocess_function = preprocess
|
399 |
+
return preprocess_function
|
400 |
+
|
401 |
+
def load_image(self, image_path):
|
402 |
+
# Load the image using tcs_loader if available, otherwise use PIL
|
403 |
+
if self.tcs_loader is not None and 's3://' in image_path:
|
404 |
+
return self.tcs_loader(image_path)
|
405 |
+
return Image.open(image_path).convert('RGB')
|
406 |
+
|
407 |
+
def get_image_path(self, image_path):
|
408 |
+
if image_path.startswith('s3://'): # for ceph
|
409 |
+
image_path = self.root + image_path
|
410 |
+
else: # for local image
|
411 |
+
image_path = os.path.join(self.root, image_path)
|
412 |
+
return image_path
|
413 |
+
|
414 |
+
def get_transform(self):
|
415 |
+
# Build transformation function
|
416 |
+
transform = build_transform(is_train=self.is_train, input_size=self.image_size,
|
417 |
+
pad2square=self.pad2square, normalize_type=self.normalize_type)
|
418 |
+
return transform
|
419 |
+
|
420 |
+
def multi_modal_get_item(self, data_item):
|
421 |
+
# Build transformation function
|
422 |
+
transform = self.get_transform()
|
423 |
+
|
424 |
+
# Ensure the first conversation contains an image placeholder
|
425 |
+
if '<image>' not in data_item['conversations'][0]['value']:
|
426 |
+
data_item['conversations'][0]['value'] = '<image>\n' + data_item['conversations'][0]['value']
|
427 |
+
|
428 |
+
# Merge the image path
|
429 |
+
image_path = self.get_image_path(data_item['image'])
|
430 |
+
|
431 |
+
# Load the image using tcs_loader if available, otherwise use PIL
|
432 |
+
image = self.load_image(image_path)
|
433 |
+
|
434 |
+
if self.dynamic_image_size: # If dynamic image size is enabled, preprocess the image dynamically
|
435 |
+
images = dynamic_preprocess(image, min_num=self.min_dynamic_patch, max_num=self.max_dynamic_patch,
|
436 |
+
image_size=self.image_size, use_thumbnail=self.use_thumbnail)
|
437 |
+
else: # Otherwise, use the original image as a single patch
|
438 |
+
images = [image]
|
439 |
+
|
440 |
+
# Apply the transformation to each image and stack the results into a tensor
|
441 |
+
pixel_values = [transform(image) for image in images]
|
442 |
+
pixel_values = torch.stack(pixel_values)
|
443 |
+
|
444 |
+
# Ensure that there is only one patch if dynamic image size is not enabled
|
445 |
+
num_patches = pixel_values.size(0)
|
446 |
+
if not self.dynamic_image_size:
|
447 |
+
assert num_patches == 1, f'The number of patches should be 1, but got {num_patches}.'
|
448 |
+
|
449 |
+
# Select the appropriate preprocessing function based on the template name
|
450 |
+
preprocess_function = self.get_preprocess_function()
|
451 |
+
|
452 |
+
# Preprocess the conversations and generate the return dictionary
|
453 |
+
ret = preprocess_function(self.template_name, [deepcopy(data_item['conversations'])],
|
454 |
+
self.tokenizer, [self.num_image_token * num_patches],
|
455 |
+
group_by_length=self.group_by_length,
|
456 |
+
use_packed_ds=self.use_packed_ds, ds_name=self.ds_name)
|
457 |
+
|
458 |
+
# Calculate position_ids for packed dataset
|
459 |
+
position_ids = ret['attention_mask'].long().cumsum(-1) - 1
|
460 |
+
position_ids.masked_fill_(ret['attention_mask'] == 0, 1)
|
461 |
+
image_end_token_id = self.tokenizer.convert_tokens_to_ids(IMG_END_TOKEN)
|
462 |
+
assert (ret['input_ids'][0] == image_end_token_id).sum() == 1, f'image tokens are truncated, this dataset is {self.ds_name}'
|
463 |
+
|
464 |
+
# Create the final return dictionary
|
465 |
+
ret = dict(
|
466 |
+
input_ids=ret['input_ids'][0],
|
467 |
+
labels=ret['labels'][0],
|
468 |
+
attention_mask=ret['attention_mask'][0],
|
469 |
+
position_ids=position_ids[0],
|
470 |
+
pixel_values=pixel_values,
|
471 |
+
image_flags=torch.tensor([1] * num_patches, dtype=torch.long)
|
472 |
+
)
|
473 |
+
return ret
|
474 |
+
|
475 |
+
def multi_modal_multi_image_get_item(self, data_item):
|
476 |
+
# Build transformation function
|
477 |
+
transform = self.get_transform()
|
478 |
+
|
479 |
+
images, num_tiles = [], []
|
480 |
+
num_image = len(data_item['image'])
|
481 |
+
for image_path in data_item['image']:
|
482 |
+
# Merge the image path
|
483 |
+
image_path = self.get_image_path(image_path)
|
484 |
+
# Load the image using tcs_loader if available, otherwise use PIL
|
485 |
+
image = self.load_image(image_path)
|
486 |
+
if self.dynamic_image_size: # If dynamic image size is enabled, preprocess the image dynamically
|
487 |
+
image = dynamic_preprocess(image, min_num=self.min_dynamic_patch,
|
488 |
+
max_num=max(1, self.max_dynamic_patch // num_image),
|
489 |
+
image_size=self.image_size, use_thumbnail=self.use_thumbnail)
|
490 |
+
images += image
|
491 |
+
num_tiles.append(len(image))
|
492 |
+
else: # Otherwise, use the original image as a single patch
|
493 |
+
images.append(image)
|
494 |
+
num_tiles.append(1)
|
495 |
+
pixel_values = [transform(image) for image in images]
|
496 |
+
pixel_values = torch.stack(pixel_values)
|
497 |
+
num_patches = pixel_values.size(0)
|
498 |
+
|
499 |
+
# Select the appropriate preprocessing function based on the template name
|
500 |
+
preprocess_function = self.get_preprocess_function()
|
501 |
+
|
502 |
+
# Preprocess the conversations and generate the return dictionary
|
503 |
+
num_image_tokens = [self.num_image_token * num_tile for num_tile in num_tiles]
|
504 |
+
ret = preprocess_function(self.template_name, [deepcopy(data_item['conversations'])],
|
505 |
+
self.tokenizer, num_image_tokens, group_by_length=self.group_by_length,
|
506 |
+
use_packed_ds=self.use_packed_ds, ds_name=self.ds_name, num_image=num_image)
|
507 |
+
|
508 |
+
# Calculate position_ids for packed dataset
|
509 |
+
position_ids = ret['attention_mask'].long().cumsum(-1) - 1
|
510 |
+
position_ids.masked_fill_(ret['attention_mask'] == 0, 1)
|
511 |
+
image_end_token_id = self.tokenizer.convert_tokens_to_ids(IMG_END_TOKEN)
|
512 |
+
assert (ret['input_ids'][0] == image_end_token_id).sum() == num_image, f'image tokens are truncated, this dataset is {self.ds_name}'
|
513 |
+
|
514 |
+
# Create the final return dictionary
|
515 |
+
ret = dict(
|
516 |
+
input_ids=ret['input_ids'][0],
|
517 |
+
labels=ret['labels'][0],
|
518 |
+
attention_mask=ret['attention_mask'][0],
|
519 |
+
position_ids=position_ids[0],
|
520 |
+
pixel_values=pixel_values,
|
521 |
+
image_flags=torch.tensor([1] * num_patches, dtype=torch.long)
|
522 |
+
)
|
523 |
+
return ret
|
524 |
+
|
525 |
+
def video_get_item(self, data_item):
|
526 |
+
# Build transformation function
|
527 |
+
transform = self.get_transform()
|
528 |
+
|
529 |
+
# Ensure the first conversation contains a video placeholder
|
530 |
+
if '<video>' not in data_item['conversations'][0]['value']:
|
531 |
+
data_item['conversations'][0]['value'] = '<video>\n' + data_item['conversations'][0]['value']
|
532 |
+
|
533 |
+
# Get the video file path
|
534 |
+
video_file = data_item['video']
|
535 |
+
video_path = os.path.join(self.root, video_file)
|
536 |
+
|
537 |
+
# Load the video frames using tcs_loader
|
538 |
+
# TODO: Load videos without using tcsloader.
|
539 |
+
image_list = self.tcs_loader(
|
540 |
+
video_path,
|
541 |
+
image_type='video',
|
542 |
+
max_num_frames=self.max_num_frame,
|
543 |
+
min_num_frames=self.min_num_frame,
|
544 |
+
sample=self.sampling_method,
|
545 |
+
clip=data_item.get('clip', None))
|
546 |
+
|
547 |
+
# Generate special tokens for each video frame
|
548 |
+
special_tokens = '\n'.join(['Frame-{}: <image>'.format(i + 1) for i in range(len(image_list))])
|
549 |
+
data_item['conversations'][0]['value'] = data_item['conversations'][0]['value'].replace(
|
550 |
+
'<video>\n', special_tokens + '\n')
|
551 |
+
|
552 |
+
# Transform each frame image and stack them into a tensor
|
553 |
+
pixel_values = [transform(image) for image in image_list]
|
554 |
+
pixel_values = torch.stack(pixel_values)
|
555 |
+
num_patches = pixel_values.size(0)
|
556 |
+
|
557 |
+
# Select the appropriate preprocessing function based on the template name
|
558 |
+
preprocess_function = self.get_preprocess_function()
|
559 |
+
|
560 |
+
# Preprocess the conversations and generate the return dictionary
|
561 |
+
num_image_tokens = [self.num_image_token] * num_patches
|
562 |
+
ret = preprocess_function(self.template_name, [deepcopy(data_item['conversations'])],
|
563 |
+
self.tokenizer, num_image_tokens, group_by_length=self.group_by_length,
|
564 |
+
use_packed_ds=self.use_packed_ds, ds_name=self.ds_name, num_image=num_patches)
|
565 |
+
|
566 |
+
# Calculate position_ids for packed dataset
|
567 |
+
position_ids = ret['attention_mask'].long().cumsum(-1) - 1
|
568 |
+
position_ids.masked_fill_(ret['attention_mask'] == 0, 1)
|
569 |
+
|
570 |
+
# Create the final return dictionary
|
571 |
+
ret = dict(
|
572 |
+
input_ids=ret['input_ids'][0],
|
573 |
+
labels=ret['labels'][0],
|
574 |
+
attention_mask=ret['attention_mask'][0],
|
575 |
+
position_ids=position_ids[0],
|
576 |
+
pixel_values=pixel_values,
|
577 |
+
image_flags=torch.tensor([1] * num_patches, dtype=torch.long)
|
578 |
+
)
|
579 |
+
return ret
|
580 |
+
|
581 |
+
def pure_text_get_item(self, data_item):
|
582 |
+
# Build transformation function
|
583 |
+
transform = self.get_transform()
|
584 |
+
|
585 |
+
# Create a blank white image
|
586 |
+
image = Image.new('RGB', (224, 224), (255, 255, 255))
|
587 |
+
|
588 |
+
# Dynamically preprocess the image to generate patches
|
589 |
+
images = dynamic_preprocess(image, min_num=self.min_dynamic_patch, max_num=1,
|
590 |
+
image_size=self.image_size, use_thumbnail=self.use_thumbnail)
|
591 |
+
|
592 |
+
# Apply the transformation to each image patch and stack them into a tensor
|
593 |
+
pixel_values = [transform(image) for image in images]
|
594 |
+
pixel_values = torch.stack(pixel_values)
|
595 |
+
num_patches = pixel_values.size(0)
|
596 |
+
|
597 |
+
# Ensure there is only one patch
|
598 |
+
assert num_patches == 1, f'The number of patches should be 1, but got {num_patches}.'
|
599 |
+
|
600 |
+
# Select the appropriate preprocessing function based on the template name
|
601 |
+
preprocess_function = self.get_preprocess_function()
|
602 |
+
|
603 |
+
# Preprocess the conversations and generate the return dictionary
|
604 |
+
ret = preprocess_function(self.template_name, [deepcopy(data_item['conversations'])],
|
605 |
+
self.tokenizer, [self.num_image_token * num_patches], text_only=True,
|
606 |
+
group_by_length=self.group_by_length, use_packed_ds=self.use_packed_ds,
|
607 |
+
ds_name=self.ds_name)
|
608 |
+
|
609 |
+
# Calculate position_ids for packed dataset
|
610 |
+
position_ids = ret['attention_mask'].long().cumsum(-1) - 1
|
611 |
+
position_ids.masked_fill_(ret['attention_mask'] == 0, 1)
|
612 |
+
|
613 |
+
# Create the final return dictionary
|
614 |
+
ret = dict(
|
615 |
+
input_ids=ret['input_ids'][0],
|
616 |
+
labels=ret['labels'][0],
|
617 |
+
attention_mask=ret['attention_mask'][0],
|
618 |
+
position_ids=position_ids[0],
|
619 |
+
pixel_values=pixel_values,
|
620 |
+
image_flags=torch.tensor([0] * num_patches, dtype=torch.long)
|
621 |
+
)
|
622 |
+
return ret
|
623 |
+
|
624 |
+
def _enable_worker_distributed(self):
|
625 |
+
if (
|
626 |
+
self.distributed_mode
|
627 |
+
and not self.worker_distributed
|
628 |
+
and self.worker_id is not None
|
629 |
+
):
|
630 |
+
self.worker_distributed = True
|
631 |
+
self.raw_data = self.raw_data[self.worker_id::self.num_workers]
|
632 |
+
logger.info(f'worker_distributed is enabled, {self.num_workers=}, {len(self.raw_data)=}')
|
633 |
+
|
634 |
+
def __getitem__(self, i) -> Dict[str, torch.Tensor]:
|
635 |
+
if i >= len(self.raw_data):
|
636 |
+
if self.use_packed_ds:
|
637 |
+
raise NotImplementedError
|
638 |
+
else:
|
639 |
+
i = i % len(self.raw_data)
|
640 |
+
|
641 |
+
try_cnt, max_try = 0, 10
|
642 |
+
while True:
|
643 |
+
if try_cnt > max_try:
|
644 |
+
raise StopIteration
|
645 |
+
try:
|
646 |
+
data_item = json.loads(self.raw_data[i])
|
647 |
+
# conversations = data_item['conversations']
|
648 |
+
# check_conversations_repetition(conversations, repeat_threshold=0.4, ngram=10)
|
649 |
+
if 'image' in data_item and len(data_item['image']) != 0:
|
650 |
+
if type(data_item['image']) == list:
|
651 |
+
ret = self.multi_modal_multi_image_get_item(data_item)
|
652 |
+
else:
|
653 |
+
ret = self.multi_modal_get_item(data_item)
|
654 |
+
elif 'video' in data_item and data_item['video'] is not None and data_item['video'] != '':
|
655 |
+
ret = self.video_get_item(data_item)
|
656 |
+
else:
|
657 |
+
ret = self.pure_text_get_item(data_item)
|
658 |
+
break
|
659 |
+
except Exception as e:
|
660 |
+
try_cnt += 1
|
661 |
+
print(e, self.ds_name, flush=True)
|
662 |
+
if not isinstance(e, (UnidentifiedImageError, FileNotFoundError)):
|
663 |
+
traceback.print_exc()
|
664 |
+
data_item = json.loads(self.raw_data[i])
|
665 |
+
if 'image' in data_item:
|
666 |
+
if type(data_item['image']) == list:
|
667 |
+
images = [self.root + item for item in data_item['image']]
|
668 |
+
print(f'Failed to load image: {images}, the dataset is: {self.ds_name}')
|
669 |
+
else:
|
670 |
+
if data_item['image'].startswith('s3://'):
|
671 |
+
data_path = self.root + data_item['image']
|
672 |
+
else:
|
673 |
+
data_path = os.path.join(self.root, data_item['image'])
|
674 |
+
print(f'Failed to load image: {data_path}, the dataset is: {self.ds_name}')
|
675 |
+
elif 'video' in data_item:
|
676 |
+
data_path = os.path.join(self.root, data_item['video'])
|
677 |
+
print(f'Failed to load video: {data_path}, the dataset is: {self.ds_name}')
|
678 |
+
i = random.randint(0, len(self.raw_data) - 1)
|
679 |
+
return ret
|
680 |
+
|
681 |
+
def __iter__(self):
|
682 |
+
self._enable_worker_distributed()
|
683 |
+
start_idx = 0
|
684 |
+
|
685 |
+
assert self.worker_state_key is not None
|
686 |
+
if self.worker_state_key in self._state_dict and len(self._state_dict[self.worker_state_key]) > 0:
|
687 |
+
start_idx = self._state_dict[self.worker_state_key]['current_idx']
|
688 |
+
|
689 |
+
self._state_dict.pop(self.worker_state_key)
|
690 |
+
|
691 |
+
if self.worker_id == 0:
|
692 |
+
logger.info(
|
693 |
+
f'[{self.ds_name}] [Worker id {self.worker_id}] '
|
694 |
+
f'begin to iter with {start_idx=}'
|
695 |
+
)
|
696 |
+
|
697 |
+
for i in range(start_idx, len(self)):
|
698 |
+
yield self[i]
|
699 |
+
|
700 |
+
|
701 |
+
def build_datasets(
|
702 |
+
data_args,
|
703 |
+
tokenizer,
|
704 |
+
tcs_loader,
|
705 |
+
model,
|
706 |
+
group_by_length=False,
|
707 |
+
dynamic_image_size=False,
|
708 |
+
use_thumbnail=False,
|
709 |
+
min_dynamic_patch=1,
|
710 |
+
max_dynamic_patch=12,
|
711 |
+
min_num_frame=8,
|
712 |
+
max_num_frame=32,
|
713 |
+
normalize_type='imagenet',
|
714 |
+
):
|
715 |
+
datasets = []
|
716 |
+
lengths = []
|
717 |
+
data_rank = dist.get_rank()
|
718 |
+
data_world_size = dist.get_world_size()
|
719 |
+
ds_collections = json.loads(open(data_args.meta_path).read())
|
720 |
+
for ds_idx, ds_name in enumerate(ds_collections.keys()):
|
721 |
+
repeat_time = ds_collections[ds_name]['repeat_time']
|
722 |
+
if 'max_dynamic_patch' in ds_collections[ds_name]:
|
723 |
+
max_num = ds_collections[ds_name]['max_dynamic_patch']
|
724 |
+
logger.info(f'max_dynamic_patch is set to {max_num} according to the meta file')
|
725 |
+
else:
|
726 |
+
max_num = max_dynamic_patch
|
727 |
+
dataset = LazySupervisedDataset(
|
728 |
+
data_args.conv_style, ds_collections[ds_name],
|
729 |
+
tokenizer,
|
730 |
+
tcs_loader,
|
731 |
+
ds_name=ds_name,
|
732 |
+
num_image_token=model.num_image_token,
|
733 |
+
image_size=data_args.force_image_size,
|
734 |
+
is_train=ds_collections[ds_name]['data_augment'],
|
735 |
+
pad2square=data_args.pad2square,
|
736 |
+
group_by_length=group_by_length and not data_args.use_packed_ds,
|
737 |
+
dynamic_image_size=dynamic_image_size,
|
738 |
+
use_thumbnail=use_thumbnail,
|
739 |
+
min_dynamic_patch=min_dynamic_patch,
|
740 |
+
max_dynamic_patch=max_num,
|
741 |
+
min_num_frame=min_num_frame,
|
742 |
+
max_num_frame=max_num_frame,
|
743 |
+
repeat_time=repeat_time,
|
744 |
+
normalize_type=normalize_type,
|
745 |
+
# hyperparameters for packed training
|
746 |
+
use_packed_ds=data_args.use_packed_ds,
|
747 |
+
data_rank=data_rank,
|
748 |
+
data_world_size=data_world_size,
|
749 |
+
distributed_mode=data_args.use_packed_ds,
|
750 |
+
force_shuffle=data_args.use_packed_ds,
|
751 |
+
random_seed=ds_idx,
|
752 |
+
)
|
753 |
+
logger.info(f'Add dataset: {ds_name} with length: {len(dataset)}')
|
754 |
+
datasets.append(dataset)
|
755 |
+
if data_args.use_data_resampling:
|
756 |
+
lengths.append(math.sqrt(len(dataset)))
|
757 |
+
else:
|
758 |
+
lengths.append(len(dataset))
|
759 |
+
|
760 |
+
if data_args.use_packed_ds:
|
761 |
+
total_length = sum(lengths)
|
762 |
+
train_dataset = PackedDataset(
|
763 |
+
tokenizer=tokenizer,
|
764 |
+
data_rank=data_rank,
|
765 |
+
data_world_size=data_world_size,
|
766 |
+
datasets=datasets,
|
767 |
+
dataset_weight=[l / total_length for l in lengths],
|
768 |
+
num_images_expected=data_args.num_images_expected,
|
769 |
+
max_packed_tokens=data_args.max_packed_tokens,
|
770 |
+
max_buffer_size=data_args.max_buffer_size,
|
771 |
+
log_freq=data_args.log_freq,
|
772 |
+
strict_mode=data_args.strict_mode,
|
773 |
+
replacement=data_args.replacement,
|
774 |
+
allow_overflow=data_args.allow_overflow,
|
775 |
+
allow_deduplicated_ds_name=False,
|
776 |
+
)
|
777 |
+
elif data_args.use_data_resampling:
|
778 |
+
total_length = sum(lengths)
|
779 |
+
weights = [l / total_length for l in lengths]
|
780 |
+
train_dataset = WeightedConcatDataset(datasets, weights)
|
781 |
+
else:
|
782 |
+
train_dataset = ConcatDataset(datasets)
|
783 |
+
return train_dataset
|
784 |
+
|
785 |
+
|
786 |
+
def len2weight(x, loss_reduction):
|
787 |
+
if x == 0:
|
788 |
+
return x
|
789 |
+
if loss_reduction == 'token':
|
790 |
+
return 1
|
791 |
+
if loss_reduction == 'sample':
|
792 |
+
return 1 / x
|
793 |
+
if loss_reduction == 'square':
|
794 |
+
return 1 / (x ** 0.5)
|
795 |
+
raise NotImplementedError(loss_reduction)
|
796 |
+
|
797 |
+
|
798 |
+
def main():
|
799 |
+
# Apply necessary patches for the transformers library
|
800 |
+
replace_llama_rmsnorm_with_fused_rmsnorm()
|
801 |
+
replace_train_sampler()
|
802 |
+
replace_train_dataloader()
|
803 |
+
|
804 |
+
# Parse input arguments
|
805 |
+
# See all possible arguments in src/transformers/training_args.py
|
806 |
+
# If use DeepSpeed zero3, init_dist must before HfArgumentParser
|
807 |
+
launcher = os.environ.get('LAUNCHER', 'slurm')
|
808 |
+
init_dist(launcher=launcher, backend='nccl')
|
809 |
+
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
|
810 |
+
if len(sys.argv) == 2 and sys.argv[1].endswith('.json'):
|
811 |
+
# If we pass only one argument to the script, and it's the path to a json file,
|
812 |
+
# let's parse it to get our arguments.
|
813 |
+
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
|
814 |
+
else:
|
815 |
+
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
816 |
+
|
817 |
+
training_args.use_packed_ds = data_args.use_packed_ds
|
818 |
+
|
819 |
+
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
820 |
+
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
821 |
+
# send_example_telemetry('InternV-Chat', model_args, data_args)
|
822 |
+
|
823 |
+
# Setup logging
|
824 |
+
logging.basicConfig(
|
825 |
+
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
|
826 |
+
datefmt='%m/%d/%Y %H:%M:%S',
|
827 |
+
handlers=[logging.StreamHandler(sys.stdout)],
|
828 |
+
)
|
829 |
+
|
830 |
+
if training_args.should_log:
|
831 |
+
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
|
832 |
+
transformers.utils.logging.set_verbosity_info()
|
833 |
+
|
834 |
+
log_level = training_args.get_process_log_level()
|
835 |
+
logger.setLevel(log_level)
|
836 |
+
set_verbosity(log_level)
|
837 |
+
enable_default_handler()
|
838 |
+
enable_explicit_format()
|
839 |
+
|
840 |
+
# Log on each process the small summary:
|
841 |
+
logger.warning(
|
842 |
+
f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}'
|
843 |
+
+ f'distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}'
|
844 |
+
)
|
845 |
+
logger.info(f'Training/evaluation parameters {training_args}')
|
846 |
+
|
847 |
+
# Detecting last checkpoint and eventually continue from last checkpoint.
|
848 |
+
last_checkpoint = None
|
849 |
+
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
|
850 |
+
last_checkpoint = get_last_checkpoint(training_args.output_dir)
|
851 |
+
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
|
852 |
+
raise ValueError(
|
853 |
+
f'Output directory ({training_args.output_dir}) already exists and is not empty. '
|
854 |
+
'Use --overwrite_output_dir to overcome.'
|
855 |
+
)
|
856 |
+
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
|
857 |
+
logger.info(
|
858 |
+
f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change '
|
859 |
+
'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.'
|
860 |
+
)
|
861 |
+
# Set seed before initializing model.
|
862 |
+
set_seed(training_args.seed)
|
863 |
+
|
864 |
+
# Load pretrained model, tokenizer, and image processor
|
865 |
+
tokenizer_path = model_args.model_name_or_path or model_args.llm_path
|
866 |
+
logger.info(f'Loading Tokenizer: {tokenizer_path}')
|
867 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
868 |
+
tokenizer_path, add_eos_token=False, trust_remote_code=True, use_fast=model_args.use_fast_tokenizer)
|
869 |
+
tokenizer.tokenizer_path = tokenizer_path
|
870 |
+
tokenizer.model_max_length = data_args.max_seq_length
|
871 |
+
token_list = [IMG_START_TOKEN, IMG_END_TOKEN, IMG_CONTEXT_TOKEN,
|
872 |
+
QUAD_START_TOKEN, QUAD_END_TOKEN, REF_START_TOKEN,
|
873 |
+
REF_END_TOKEN, BOX_START_TOKEN, BOX_END_TOKEN]
|
874 |
+
num_new_tokens = tokenizer.add_tokens(token_list, special_tokens=True)
|
875 |
+
img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
|
876 |
+
tcs_loader = TCSLoader('~/petreloss.conf') if has_tcs_loader else None
|
877 |
+
|
878 |
+
if data_args.use_packed_ds:
|
879 |
+
replace_internlm2_attention_class()
|
880 |
+
replace_qwen2_attention_class()
|
881 |
+
replace_phi3_attention_class()
|
882 |
+
replace_llama_attention_class()
|
883 |
+
|
884 |
+
if model_args.use_liger:
|
885 |
+
from internvl.patch import apply_liger_kernel_to_internvit
|
886 |
+
from liger_kernel.transformers import (apply_liger_kernel_to_llama,
|
887 |
+
apply_liger_kernel_to_qwen2)
|
888 |
+
apply_liger_kernel_to_llama()
|
889 |
+
apply_liger_kernel_to_qwen2()
|
890 |
+
# apply_liger_kernel_to_internvit()
|
891 |
+
|
892 |
+
if model_args.model_name_or_path is not None:
|
893 |
+
logger.info('Loading InternVLChatModel...')
|
894 |
+
config = InternVLChatConfig.from_pretrained(model_args.model_name_or_path)
|
895 |
+
config.vision_config.drop_path_rate = model_args.drop_path_rate
|
896 |
+
if config.llm_config.model_type == 'internlm2':
|
897 |
+
config.llm_config.attn_implementation = 'flash_attention_2' # for InternLM
|
898 |
+
logger.info('Using flash_attention_2 for InternLM')
|
899 |
+
else:
|
900 |
+
config.llm_config._attn_implementation = 'flash_attention_2' # for LLaMA
|
901 |
+
logger.info('Using flash_attention_2 for LLaMA')
|
902 |
+
config.template = data_args.conv_style
|
903 |
+
config.select_layer = model_args.vision_select_layer
|
904 |
+
config.dynamic_image_size = data_args.dynamic_image_size
|
905 |
+
config.use_thumbnail = data_args.use_thumbnail
|
906 |
+
config.ps_version = model_args.ps_version
|
907 |
+
config.min_dynamic_patch = data_args.min_dynamic_patch
|
908 |
+
config.max_dynamic_patch = data_args.max_dynamic_patch
|
909 |
+
model = InternVLChatModel.from_pretrained(
|
910 |
+
model_args.model_name_or_path, torch_dtype=torch.bfloat16, config=config)
|
911 |
+
else:
|
912 |
+
logger.info('Loading ViT-6B...')
|
913 |
+
vision_config = InternVisionConfig.from_pretrained(model_args.vision_path)
|
914 |
+
vision_config.drop_path_rate = model_args.drop_path_rate
|
915 |
+
vision_model = InternVisionModel.from_pretrained(
|
916 |
+
model_args.vision_path, torch_dtype=torch.bfloat16, config=vision_config)
|
917 |
+
logger.info('Loading LLaMA...')
|
918 |
+
llm_config = AutoConfig.from_pretrained(model_args.llm_path, trust_remote_code=True)
|
919 |
+
if llm_config.model_type == 'internlm2':
|
920 |
+
model_type = InternLM2ForCausalLM
|
921 |
+
llm_config.attn_implementation = 'flash_attention_2' # for InternLM
|
922 |
+
logger.info('Using flash_attention_2 for InternLM')
|
923 |
+
else:
|
924 |
+
model_type = AutoModelForCausalLM
|
925 |
+
llm_config._attn_implementation = 'flash_attention_2' # for LLaMA
|
926 |
+
logger.info('Using flash_attention_2 for LLaMA')
|
927 |
+
llm = model_type.from_pretrained(
|
928 |
+
model_args.llm_path, torch_dtype=torch.bfloat16,
|
929 |
+
config=llm_config, trust_remote_code=True)
|
930 |
+
logger.info('Building InternVLChatConfig...')
|
931 |
+
internvl_chat_config = InternVLChatConfig(
|
932 |
+
vision_config.to_dict(), llm_config.to_dict(), downsample_ratio=data_args.down_sample_ratio,
|
933 |
+
pad2square=data_args.pad2square, template=data_args.conv_style,
|
934 |
+
select_layer=model_args.vision_select_layer, dynamic_image_size=data_args.dynamic_image_size,
|
935 |
+
use_thumbnail=data_args.use_thumbnail, ps_version=model_args.ps_version,
|
936 |
+
min_dynamic_patch=data_args.min_dynamic_patch, max_dynamic_patch=data_args.max_dynamic_patch)
|
937 |
+
internvl_chat_config.force_image_size = data_args.force_image_size
|
938 |
+
logger.info('Building InternVLChatModel...')
|
939 |
+
model = InternVLChatModel(internvl_chat_config, vision_model, llm)
|
940 |
+
model.img_context_token_id = img_context_token_id
|
941 |
+
|
942 |
+
assert model.config.downsample_ratio == data_args.down_sample_ratio
|
943 |
+
|
944 |
+
if model_args.mlp_path is not None:
|
945 |
+
logger.info('Loading pretrained MLP projector...')
|
946 |
+
state_dict = torch.load(model_args.mlp_path, map_location='cpu')
|
947 |
+
message = model.mlp1.load_state_dict(state_dict)
|
948 |
+
logger.info(message)
|
949 |
+
logger.info('Finished')
|
950 |
+
|
951 |
+
patch_size = model.config.vision_config.patch_size
|
952 |
+
logger.info(f'model.config.force_image_size: {model.config.force_image_size}')
|
953 |
+
logger.info(f'data_args.force_image_size: {data_args.force_image_size}')
|
954 |
+
logger.info(f'model.config.vision_config.image_size: {model.config.vision_config.image_size}')
|
955 |
+
if model.config.vision_config.image_size != data_args.force_image_size:
|
956 |
+
logger.info(f'Resizing position embedding from '
|
957 |
+
f'{model.config.vision_config.image_size} '
|
958 |
+
f'to {data_args.force_image_size}...')
|
959 |
+
model.vision_model.resize_pos_embeddings(old_size=model.config.vision_config.image_size,
|
960 |
+
new_size=data_args.force_image_size,
|
961 |
+
patch_size=patch_size)
|
962 |
+
model.config.vision_config.image_size = data_args.force_image_size
|
963 |
+
model.config.force_image_size = data_args.force_image_size
|
964 |
+
model.num_image_token = int((data_args.force_image_size // patch_size) ** 2 * (data_args.down_sample_ratio ** 2))
|
965 |
+
|
966 |
+
if num_new_tokens > 0:
|
967 |
+
model.language_model.resize_token_embeddings(len(tokenizer))
|
968 |
+
output_embeddings = model.language_model.get_output_embeddings().weight.data
|
969 |
+
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True)
|
970 |
+
output_embeddings[-num_new_tokens:] = output_embeddings_avg
|
971 |
+
|
972 |
+
model.config.llm_config.vocab_size = len(tokenizer)
|
973 |
+
model.language_model.config.vocab_size = len(tokenizer)
|
974 |
+
|
975 |
+
model.language_model.config.use_cache = False
|
976 |
+
model.vision_model.gradient_checkpointing = True
|
977 |
+
model.vision_model.encoder.gradient_checkpointing = True
|
978 |
+
if model_args.grad_checkpoint:
|
979 |
+
model.language_model._set_gradient_checkpointing()
|
980 |
+
|
981 |
+
train_dataset = build_datasets(
|
982 |
+
data_args, tokenizer, tcs_loader, model, group_by_length=training_args.group_by_length,
|
983 |
+
dynamic_image_size=data_args.dynamic_image_size, use_thumbnail=data_args.use_thumbnail,
|
984 |
+
min_dynamic_patch=data_args.min_dynamic_patch, max_dynamic_patch=data_args.max_dynamic_patch,
|
985 |
+
normalize_type=data_args.normalize_type, min_num_frame=data_args.min_num_frame,
|
986 |
+
max_num_frame=data_args.max_num_frame)
|
987 |
+
|
988 |
+
def _freeze_params(module):
|
989 |
+
for param in module.parameters():
|
990 |
+
param.requires_grad = False
|
991 |
+
|
992 |
+
if model_args.freeze_backbone:
|
993 |
+
# model.vision_model = model.vision_model.eval()
|
994 |
+
_freeze_params(model.vision_model)
|
995 |
+
|
996 |
+
if model_args.freeze_llm:
|
997 |
+
model.language_model = model.language_model.eval()
|
998 |
+
_freeze_params(model.language_model)
|
999 |
+
|
1000 |
+
if model_args.unfreeze_lm_head:
|
1001 |
+
model.language_model.lm_head.requires_grad = True
|
1002 |
+
|
1003 |
+
if model_args.use_backbone_lora:
|
1004 |
+
model.wrap_backbone_lora(r=model_args.use_backbone_lora, lora_alpha=2 * model_args.use_backbone_lora)
|
1005 |
+
model.config.use_backbone_lora = model_args.use_backbone_lora
|
1006 |
+
|
1007 |
+
if model_args.use_llm_lora:
|
1008 |
+
model.wrap_llm_lora(r=model_args.use_llm_lora, lora_alpha=2 * model_args.use_llm_lora)
|
1009 |
+
model.config.use_llm_lora = model_args.use_llm_lora
|
1010 |
+
|
1011 |
+
if model_args.freeze_mlp:
|
1012 |
+
_freeze_params(model.mlp1)
|
1013 |
+
|
1014 |
+
if model_args.unfreeze_vit_layers != 0:
|
1015 |
+
layers = model.vision_model.encoder.layers[model_args.unfreeze_vit_layers:]
|
1016 |
+
for k, v in layers.named_parameters():
|
1017 |
+
logger.info(f'Unfreezing ViT layer: {k}')
|
1018 |
+
v.requires_grad = True
|
1019 |
+
|
1020 |
+
# print trainable parameters
|
1021 |
+
if dist.get_rank() == 0:
|
1022 |
+
for name, param in model.named_parameters():
|
1023 |
+
if param.requires_grad:
|
1024 |
+
logger.info(name)
|
1025 |
+
|
1026 |
+
# set seed for torch dataloaders
|
1027 |
+
set_seed(training_args.seed)
|
1028 |
+
|
1029 |
+
if data_args.use_packed_ds:
|
1030 |
+
collator = partial(
|
1031 |
+
packed_collate_fn,
|
1032 |
+
data_collator=concat_pad_data_collator,
|
1033 |
+
max_item_length=data_args.max_packed_tokens if data_args.strict_mode else 0,
|
1034 |
+
micro_num=training_args.train_batch_size,
|
1035 |
+
len2weight=partial(len2weight, loss_reduction=data_args.loss_reduction),
|
1036 |
+
loss_reduction_all_gather=data_args.loss_reduction_all_gather,
|
1037 |
+
)
|
1038 |
+
else:
|
1039 |
+
collator = concat_pad_data_collator
|
1040 |
+
|
1041 |
+
trainer = Trainer(
|
1042 |
+
model=model,
|
1043 |
+
args=training_args,
|
1044 |
+
train_dataset=train_dataset if training_args.do_train else None,
|
1045 |
+
eval_dataset=None,
|
1046 |
+
tokenizer=tokenizer,
|
1047 |
+
data_collator=collator,
|
1048 |
+
)
|
1049 |
+
|
1050 |
+
# Training
|
1051 |
+
if training_args.do_train:
|
1052 |
+
checkpoint = None
|
1053 |
+
if training_args.resume_from_checkpoint is not None:
|
1054 |
+
checkpoint = training_args.resume_from_checkpoint
|
1055 |
+
elif last_checkpoint is not None:
|
1056 |
+
checkpoint = last_checkpoint
|
1057 |
+
train_result = trainer.train(resume_from_checkpoint=checkpoint)
|
1058 |
+
trainer.save_model() # Saves the tokenizer too for easy upload
|
1059 |
+
|
1060 |
+
metrics = train_result.metrics
|
1061 |
+
try:
|
1062 |
+
metrics['train_samples'] = len(train_dataset)
|
1063 |
+
except:
|
1064 |
+
metrics['train_samples'] = -1
|
1065 |
+
|
1066 |
+
trainer.log_metrics('train', metrics)
|
1067 |
+
trainer.save_metrics('train', metrics)
|
1068 |
+
trainer.save_state()
|
1069 |
+
|
1070 |
+
|
1071 |
+
if __name__ == '__main__':
|
1072 |
+
main()
|
src/third_party/InternVL/internvl_chat/internvl/train/internvl_chat_pretrain.py
ADDED
@@ -0,0 +1,1116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# InternVL
|
3 |
+
# Copyright (c) 2024 OpenGVLab
|
4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
5 |
+
# --------------------------------------------------------
|
6 |
+
|
7 |
+
import logging
|
8 |
+
import math
|
9 |
+
import os
|
10 |
+
import random
|
11 |
+
import sys
|
12 |
+
import traceback
|
13 |
+
import warnings
|
14 |
+
from copy import deepcopy
|
15 |
+
from dataclasses import dataclass, field
|
16 |
+
from functools import partial
|
17 |
+
from typing import Dict, Literal, Optional
|
18 |
+
|
19 |
+
import numpy as np
|
20 |
+
|
21 |
+
try:
|
22 |
+
import orjson as json
|
23 |
+
except:
|
24 |
+
import json
|
25 |
+
|
26 |
+
import torch
|
27 |
+
import torch.distributed as dist
|
28 |
+
import transformers
|
29 |
+
from internvl.dist_utils import init_dist
|
30 |
+
from internvl.model.internlm2.modeling_internlm2 import InternLM2ForCausalLM
|
31 |
+
from internvl.model.internvl_chat import (InternVisionConfig,
|
32 |
+
InternVisionModel,
|
33 |
+
InternVLChatConfig,
|
34 |
+
InternVLChatModel)
|
35 |
+
from internvl.patch import (concat_pad_data_collator,
|
36 |
+
replace_internlm2_attention_class,
|
37 |
+
replace_llama_attention_class,
|
38 |
+
replace_llama_rmsnorm_with_fused_rmsnorm,
|
39 |
+
replace_phi3_attention_class,
|
40 |
+
replace_qwen2_attention_class,
|
41 |
+
replace_train_dataloader, replace_train_sampler)
|
42 |
+
from internvl.train.constants import (BOX_END_TOKEN, BOX_START_TOKEN,
|
43 |
+
IMG_CONTEXT_TOKEN, IMG_END_TOKEN,
|
44 |
+
IMG_START_TOKEN, QUAD_END_TOKEN,
|
45 |
+
QUAD_START_TOKEN, REF_END_TOKEN,
|
46 |
+
REF_START_TOKEN)
|
47 |
+
from internvl.train.dataset import (ConcatDataset, TCSLoader,
|
48 |
+
WeightedConcatDataset, build_transform,
|
49 |
+
check_conversations_repetition,
|
50 |
+
dynamic_preprocess, preprocess,
|
51 |
+
preprocess_internlm,
|
52 |
+
preprocess_internvl2_5, preprocess_mpt,
|
53 |
+
preprocess_phi3)
|
54 |
+
from internvl.train.dataset_packed import PackedDataset, packed_collate_fn
|
55 |
+
from PIL import Image, ImageFile, PngImagePlugin, UnidentifiedImageError
|
56 |
+
from torch.utils.data import Dataset
|
57 |
+
from transformers import (AutoConfig, AutoModelForCausalLM, AutoTokenizer,
|
58 |
+
HfArgumentParser, Trainer, TrainingArguments,
|
59 |
+
set_seed)
|
60 |
+
from transformers.trainer_utils import get_last_checkpoint
|
61 |
+
from transformers.utils.logging import (enable_default_handler,
|
62 |
+
enable_explicit_format, set_verbosity)
|
63 |
+
|
64 |
+
# Try to import petrel_client for image loading, fallback to PIL if unavailable
|
65 |
+
try:
|
66 |
+
from petrel_client.client import Client
|
67 |
+
from petrel_client.common.config import Config
|
68 |
+
has_tcs_loader = True
|
69 |
+
except ImportError as E:
|
70 |
+
print('petrel_client is not installed. Using PIL to load images.')
|
71 |
+
has_tcs_loader = False
|
72 |
+
|
73 |
+
# Set constants for image processing and logging
|
74 |
+
IGNORE_INDEX = -100
|
75 |
+
Image.MAX_IMAGE_PIXELS = None
|
76 |
+
ImageFile.LOAD_TRUNCATED_IMAGES = True
|
77 |
+
MaximumDecompressedSize = 1024
|
78 |
+
MegaByte = 2 ** 20
|
79 |
+
PngImagePlugin.MAX_TEXT_CHUNK = MaximumDecompressedSize * MegaByte
|
80 |
+
|
81 |
+
warnings.filterwarnings('ignore')
|
82 |
+
logger = logging.getLogger(__name__)
|
83 |
+
|
84 |
+
os.environ['TOKENIZERS_PARALLELISM'] = 'true'
|
85 |
+
|
86 |
+
|
87 |
+
@dataclass
|
88 |
+
class ModelArguments:
|
89 |
+
"""
|
90 |
+
Arguments for specifying model, tokenizer, and configurations.
|
91 |
+
"""
|
92 |
+
model_name_or_path: Optional[str] = field(
|
93 |
+
default=None,
|
94 |
+
metadata={'help': 'Path to a pretrained model (local or from huggingface.co/models).'}
|
95 |
+
)
|
96 |
+
vision_path: Optional[str] = field(
|
97 |
+
default=None,
|
98 |
+
metadata={'help': 'Path to a pretrained model (local or from huggingface.co/models).'}
|
99 |
+
)
|
100 |
+
llm_path: Optional[str] = field(
|
101 |
+
default=None,
|
102 |
+
metadata={'help': 'Path to a pretrained model (local or from huggingface.co/models).'}
|
103 |
+
)
|
104 |
+
mlp_path: Optional[str] = field(
|
105 |
+
default=None,
|
106 |
+
metadata={'help': 'Path to a pretrained model (local or from huggingface.co/models).'}
|
107 |
+
)
|
108 |
+
freeze_llm: bool = field(
|
109 |
+
default=False,
|
110 |
+
metadata={'help': 'Set to True to freeze the LLM. Default is False.'},
|
111 |
+
)
|
112 |
+
freeze_backbone: bool = field(
|
113 |
+
default=False,
|
114 |
+
metadata={'help': 'Set to True to freeze the ViT. Default is False.'},
|
115 |
+
)
|
116 |
+
freeze_mlp: bool = field(
|
117 |
+
default=False,
|
118 |
+
metadata={'help': 'Set to True to freeze the MLP. Default is False.'},
|
119 |
+
)
|
120 |
+
unfreeze_vit_layers: int = field(
|
121 |
+
default=0,
|
122 |
+
metadata={'help': 'Specify the number of ViT layers to unfreeze. Default is 0.'},
|
123 |
+
)
|
124 |
+
vision_select_layer: int = field(
|
125 |
+
default=-1,
|
126 |
+
metadata={'help': 'Specify the layer of ViT feature map to use. Default is -1 for the last layer.'},
|
127 |
+
)
|
128 |
+
use_backbone_lora: int = field(
|
129 |
+
default=0,
|
130 |
+
metadata={'help': 'Set the LoRA adapter rank for the ViT. Default is 0.'}
|
131 |
+
)
|
132 |
+
use_llm_lora: int = field(
|
133 |
+
default=0,
|
134 |
+
metadata={'help': 'Set the LoRA adapter rank for the LLM. Default is 0.'}
|
135 |
+
)
|
136 |
+
unfreeze_lm_head: bool = field(
|
137 |
+
default=False,
|
138 |
+
metadata={'help': 'Set to True to unfreeze the head of LLM. Default is False.'},
|
139 |
+
)
|
140 |
+
grad_checkpoint: bool = field(
|
141 |
+
default=True,
|
142 |
+
metadata={'help': 'Set to True to use gradient checkpointing. Default is True.'},
|
143 |
+
)
|
144 |
+
drop_path_rate: float = field(
|
145 |
+
default=0.0,
|
146 |
+
metadata={'help': 'Set the drop path rate for the ViT. Default is 0.'},
|
147 |
+
)
|
148 |
+
ps_version: Literal['v1', 'v2'] = field(
|
149 |
+
default='v2',
|
150 |
+
metadata={'help': 'Specify the version of pixel shuffle implementation. Default is v2.'}
|
151 |
+
)
|
152 |
+
use_fast_tokenizer: bool = field(
|
153 |
+
default=False,
|
154 |
+
metadata={'help': 'Set to True to use the fast mode of the tokenizer.'}
|
155 |
+
)
|
156 |
+
use_liger: bool = field(
|
157 |
+
default=False,
|
158 |
+
metadata={'help': 'Set to True to use the liger kernel.'}
|
159 |
+
)
|
160 |
+
|
161 |
+
|
162 |
+
@dataclass
|
163 |
+
class DataTrainingArguments:
|
164 |
+
"""
|
165 |
+
Arguments for specifying data input for training and evaluation.
|
166 |
+
"""
|
167 |
+
max_seq_length: int = field(
|
168 |
+
default=8192,
|
169 |
+
metadata={
|
170 |
+
'help': (
|
171 |
+
'The maximum total input sequence length after tokenization. Sequences longer '
|
172 |
+
'than this will be truncated, sequences shorter will be padded.'
|
173 |
+
)
|
174 |
+
},
|
175 |
+
)
|
176 |
+
force_image_size: int = field(
|
177 |
+
default=448,
|
178 |
+
metadata={'help': 'Set the desired size for the image. Default is 448.'},
|
179 |
+
)
|
180 |
+
down_sample_ratio: float = field(
|
181 |
+
default=0.5,
|
182 |
+
metadata={'help': 'Set the desired down-sampling ratio for the image. Default is 0.5.'},
|
183 |
+
)
|
184 |
+
pad2square: bool = field(
|
185 |
+
default=False,
|
186 |
+
metadata={'help': 'Pad the image to a square shape if set to True. Default is False.'},
|
187 |
+
)
|
188 |
+
conv_style: str = field(
|
189 |
+
default='internlm2-chat', metadata={'help': 'Prompt style for a conversation.'}
|
190 |
+
)
|
191 |
+
meta_path: str = field(
|
192 |
+
default=None,
|
193 |
+
metadata={'help': 'The path of the meta file of datasets.'},
|
194 |
+
)
|
195 |
+
use_data_resampling: bool = field(
|
196 |
+
default=False,
|
197 |
+
metadata={'help': 'Set to True to use data resampling. Default is False.'},
|
198 |
+
)
|
199 |
+
dynamic_image_size: bool = field(
|
200 |
+
default=False,
|
201 |
+
metadata={'help': 'Set to True to use dynamic high resolution strategy. Default is False.'},
|
202 |
+
)
|
203 |
+
use_thumbnail: bool = field(
|
204 |
+
default=False,
|
205 |
+
metadata={'help': 'Set to True to add a thumbnail image. Default is False.'},
|
206 |
+
)
|
207 |
+
min_dynamic_patch: int = field(
|
208 |
+
default=1,
|
209 |
+
metadata={'help': 'The minimum number of dynamic patches. Default is 1.'},
|
210 |
+
)
|
211 |
+
max_dynamic_patch: int = field(
|
212 |
+
default=12,
|
213 |
+
metadata={'help': 'The maximum number of dynamic patches. Default is 12.'},
|
214 |
+
)
|
215 |
+
min_num_frame: int = field(
|
216 |
+
default=8,
|
217 |
+
metadata={'help': 'The minimum number of frames for video data. Default is 8.'},
|
218 |
+
)
|
219 |
+
max_num_frame: int = field(
|
220 |
+
default=32,
|
221 |
+
metadata={'help': 'The maximum number of frames for video data. Default is 32.'},
|
222 |
+
)
|
223 |
+
normalize_type: Literal['imagenet', 'clip', 'siglip'] = field(
|
224 |
+
default='imagenet',
|
225 |
+
metadata={'help': 'The normalization type for the image. Default is imagenet.'},
|
226 |
+
)
|
227 |
+
use_packed_ds: bool = field(
|
228 |
+
default=False,
|
229 |
+
metadata={'help': 'Whether to use packed dataset for efficient training. Default is False.'},
|
230 |
+
)
|
231 |
+
num_images_expected: int = field(
|
232 |
+
default=40,
|
233 |
+
metadata={'help': 'The maximum number of images per packed sample. Default is 40.'},
|
234 |
+
)
|
235 |
+
max_packed_tokens: int = field(
|
236 |
+
default=8192,
|
237 |
+
metadata={'help': 'The required token length of per packed sample. Default is 8192.'},
|
238 |
+
)
|
239 |
+
max_buffer_size: int = field(
|
240 |
+
default=20,
|
241 |
+
metadata={'help': 'The buffer size of the packed dataset. Default is 20.'},
|
242 |
+
)
|
243 |
+
log_freq: int = field(
|
244 |
+
default=1000,
|
245 |
+
metadata={'help': 'The log frequency of the packed dataset. Default is 1000.'},
|
246 |
+
)
|
247 |
+
strict_mode: bool = field(
|
248 |
+
default=True,
|
249 |
+
metadata={'help': 'Whether to pad the number of images to satisfy num_images_expected. Default is True.'},
|
250 |
+
)
|
251 |
+
replacement: bool = field(
|
252 |
+
default=False,
|
253 |
+
metadata={'help': 'Whether to restart the dataset after it is exhausted. Default is False.'},
|
254 |
+
)
|
255 |
+
allow_overflow: bool = field(
|
256 |
+
default=False,
|
257 |
+
metadata={'help': 'Whether to drop the sample over the specified max_packed_tokens. Default is False.'},
|
258 |
+
)
|
259 |
+
loss_reduction: str = field(
|
260 |
+
default='token',
|
261 |
+
metadata={'help': 'Loss reduction method. Default is token.'},
|
262 |
+
)
|
263 |
+
loss_reduction_all_gather: bool = field(
|
264 |
+
default=False,
|
265 |
+
metadata={'help': 'Whether to gather all during loss reduction. Default is False.'},
|
266 |
+
)
|
267 |
+
|
268 |
+
|
269 |
+
class LazySupervisedDataset(Dataset):
|
270 |
+
"""Dataset for supervised fine-tuning."""
|
271 |
+
|
272 |
+
def __init__(
|
273 |
+
self,
|
274 |
+
template_name,
|
275 |
+
meta,
|
276 |
+
tokenizer,
|
277 |
+
tcs_loader,
|
278 |
+
ds_name,
|
279 |
+
num_image_token,
|
280 |
+
image_size=448,
|
281 |
+
is_train=True,
|
282 |
+
pad2square=False,
|
283 |
+
group_by_length=False,
|
284 |
+
dynamic_image_size=False,
|
285 |
+
use_thumbnail=False,
|
286 |
+
min_dynamic_patch=1,
|
287 |
+
max_dynamic_patch=12,
|
288 |
+
min_num_frame=8, # for video data
|
289 |
+
max_num_frame=32, # for video data
|
290 |
+
sampling_method='rand', # for video data
|
291 |
+
repeat_time=1,
|
292 |
+
normalize_type='imagenet',
|
293 |
+
# hyperparameters for packed training
|
294 |
+
use_packed_ds=False,
|
295 |
+
data_rank=0,
|
296 |
+
data_world_size=1,
|
297 |
+
distributed_mode=False,
|
298 |
+
force_shuffle=False,
|
299 |
+
random_seed=0,
|
300 |
+
):
|
301 |
+
super(LazySupervisedDataset, self).__init__()
|
302 |
+
self.ds_name = ds_name
|
303 |
+
self.tokenizer = tokenizer
|
304 |
+
self.template_name = template_name
|
305 |
+
self.num_image_token = num_image_token
|
306 |
+
logger.info(f'[Dataset] num_image_token: {num_image_token}')
|
307 |
+
logger.info(f'[Dataset] dynamic_image_size: {dynamic_image_size}')
|
308 |
+
logger.info(f'[Dataset] use_thumbnail: {use_thumbnail}')
|
309 |
+
logger.info(f'[Dataset] min_dynamic_patch: {min_dynamic_patch}, max_dynamic_patch: {max_dynamic_patch}')
|
310 |
+
|
311 |
+
self.image_size = image_size
|
312 |
+
self.is_train = is_train
|
313 |
+
self.pad2square = pad2square
|
314 |
+
self.max_num_frame = max_num_frame
|
315 |
+
self.min_num_frame = min_num_frame
|
316 |
+
self.sampling_method = sampling_method
|
317 |
+
|
318 |
+
# hyperparameters for distributed training
|
319 |
+
self.use_packed_ds = use_packed_ds
|
320 |
+
self.data_rank = data_rank
|
321 |
+
self.data_world_size = data_world_size
|
322 |
+
self.worker_id = None
|
323 |
+
self.worker_state_key = None
|
324 |
+
self.worker_distributed = False
|
325 |
+
self.distributed_mode = distributed_mode
|
326 |
+
# hyperparameters for packed dataset
|
327 |
+
self.dataset_type = 'pair'
|
328 |
+
self.max_num_images = 1
|
329 |
+
self.max_tokens = tokenizer.model_max_length
|
330 |
+
self.force_shuffle = force_shuffle
|
331 |
+
# TODO: quick resume
|
332 |
+
self._state_dict = {}
|
333 |
+
|
334 |
+
logger.info('Formatting inputs...Skip in lazy mode')
|
335 |
+
assert meta['annotation'].endswith('jsonl'), f'annotation must be jsonl, but got {meta["annotation"]}'
|
336 |
+
|
337 |
+
total_ranks = torch.distributed.get_world_size()
|
338 |
+
self.total_ranks = total_ranks
|
339 |
+
current_rank = torch.distributed.get_rank()
|
340 |
+
|
341 |
+
"""
|
342 |
+
This section of the code is used to read hundreds of millions of data entries.
|
343 |
+
By using caching and splitting the data according to rank, it ensures fast reading
|
344 |
+
speed and prevents out-of-memory.
|
345 |
+
"""
|
346 |
+
# Create a cache directory path
|
347 |
+
basename = os.path.basename(meta['annotation']).replace('.jsonl', '')
|
348 |
+
data_dir = os.path.join(os.path.dirname(meta['annotation']), f'{basename}_temp')
|
349 |
+
os.makedirs(data_dir, exist_ok=True) # Create the cache directory if it does not exist
|
350 |
+
# Create a temporary path for the current rank
|
351 |
+
temp_path = os.path.join(data_dir, f'{basename}_{current_rank}_of_{total_ranks}.jsonl')
|
352 |
+
|
353 |
+
# Check if the temporary file for the current rank already exists
|
354 |
+
if os.path.exists(temp_path):
|
355 |
+
# If it exists, read the raw data from the file
|
356 |
+
with open(temp_path, 'r') as f:
|
357 |
+
self.raw_data = f.readlines()
|
358 |
+
else:
|
359 |
+
# If it does not exist, read the raw data from the original annotation file
|
360 |
+
with open(meta['annotation'], 'r') as f:
|
361 |
+
self.raw_data = f.readlines()
|
362 |
+
|
363 |
+
# Adjust the raw data based on the repeat_time parameter
|
364 |
+
if repeat_time < 1:
|
365 |
+
self.raw_data = self.raw_data[:int(len(self.raw_data) * repeat_time)]
|
366 |
+
else:
|
367 |
+
self.raw_data = self.raw_data * int(repeat_time)
|
368 |
+
|
369 |
+
# Calculate the total number of lines and distribute lines to each rank
|
370 |
+
total_lines = len(self.raw_data)
|
371 |
+
logger.info(f'total_ranks: {total_ranks}, current_rank: {current_rank}, total_lines: {total_lines}')
|
372 |
+
lines_per_rank = total_lines // total_ranks # Number of lines each rank should process
|
373 |
+
lines_per_rank = max(1, lines_per_rank)
|
374 |
+
|
375 |
+
# Calculate the start and end line numbers for the current rank
|
376 |
+
start_line = lines_per_rank * current_rank # Starting line for the current rank
|
377 |
+
end_line = start_line + lines_per_rank # Ending line for the current rank
|
378 |
+
|
379 |
+
# Assign the appropriate lines to the current rank
|
380 |
+
self.raw_data = self.raw_data[start_line:end_line]
|
381 |
+
|
382 |
+
# Write the raw data for the current rank to the temporary file
|
383 |
+
with open(temp_path, 'w') as f:
|
384 |
+
f.writelines(self.raw_data)
|
385 |
+
|
386 |
+
self.rng = np.random.default_rng(seed=random_seed)
|
387 |
+
if self.force_shuffle:
|
388 |
+
self.rng.shuffle(self.raw_data)
|
389 |
+
|
390 |
+
self.root = meta['root']
|
391 |
+
self.cached_data_dict = {}
|
392 |
+
self.tcs_loader = tcs_loader
|
393 |
+
self.group_by_length = group_by_length
|
394 |
+
self.dynamic_image_size = dynamic_image_size
|
395 |
+
self.use_thumbnail = use_thumbnail
|
396 |
+
self.min_dynamic_patch = min_dynamic_patch
|
397 |
+
self.max_dynamic_patch = max_dynamic_patch
|
398 |
+
self.normalize_type = normalize_type
|
399 |
+
|
400 |
+
assert not group_by_length
|
401 |
+
# If the precomputed length does not exist, roughly estimate the length of
|
402 |
+
# each sample to improve the efficiency of group_by_length.
|
403 |
+
if self.group_by_length:
|
404 |
+
self.conv2length = {} # Using a dictionary to speed up token length calculation
|
405 |
+
self.length = []
|
406 |
+
for data_item in self.raw_data:
|
407 |
+
data_item = json.loads(data_item)
|
408 |
+
if 'length' in data_item:
|
409 |
+
token_length = data_item['length'] # Use precomputed length if available
|
410 |
+
else:
|
411 |
+
# Compute token length using the tokenizer
|
412 |
+
conversations = '\n'.join([temp['value'] for temp in data_item['conversations']])
|
413 |
+
str_length = len(conversations)
|
414 |
+
if str_length not in self.conv2length:
|
415 |
+
token_length = tokenizer(
|
416 |
+
conversations, return_tensors='pt', padding=False, truncation=False,
|
417 |
+
).input_ids.size(1)
|
418 |
+
self.conv2length[str_length] = token_length + num_image_token * (
|
419 |
+
max_dynamic_patch + use_thumbnail)
|
420 |
+
else:
|
421 |
+
token_length = self.conv2length[str_length]
|
422 |
+
self.length.append(token_length)
|
423 |
+
|
424 |
+
def __len__(self):
|
425 |
+
if not self.use_packed_ds:
|
426 |
+
return len(self.raw_data) * self.total_ranks
|
427 |
+
else:
|
428 |
+
return len(self.raw_data)
|
429 |
+
|
430 |
+
def get_preprocess_function(self):
|
431 |
+
# Select the appropriate preprocessing function based on the template name
|
432 |
+
if self.template_name == 'Hermes-2':
|
433 |
+
preprocess_function = preprocess_mpt
|
434 |
+
elif self.template_name == 'internlm2-chat':
|
435 |
+
preprocess_function = preprocess_internlm
|
436 |
+
elif self.template_name == 'phi3-chat':
|
437 |
+
preprocess_function = preprocess_phi3
|
438 |
+
elif self.template_name == 'internvl2_5':
|
439 |
+
preprocess_function = preprocess_internvl2_5
|
440 |
+
else:
|
441 |
+
preprocess_function = preprocess
|
442 |
+
return preprocess_function
|
443 |
+
|
444 |
+
def load_image(self, image_path):
|
445 |
+
# Load the image using tcs_loader if available, otherwise use PIL
|
446 |
+
if self.tcs_loader is not None and 's3://' in image_path:
|
447 |
+
return self.tcs_loader(image_path)
|
448 |
+
return Image.open(image_path).convert('RGB')
|
449 |
+
|
450 |
+
def get_image_path(self, image_path):
|
451 |
+
if image_path.startswith('s3://'): # for ceph
|
452 |
+
image_path = self.root + image_path
|
453 |
+
else: # for local image
|
454 |
+
image_path = os.path.join(self.root, image_path)
|
455 |
+
return image_path
|
456 |
+
|
457 |
+
def get_transform(self):
|
458 |
+
# Build transformation function
|
459 |
+
transform = build_transform(is_train=self.is_train, input_size=self.image_size,
|
460 |
+
pad2square=self.pad2square, normalize_type=self.normalize_type)
|
461 |
+
return transform
|
462 |
+
|
463 |
+
def multi_modal_get_item(self, data_item):
|
464 |
+
# Build transformation function
|
465 |
+
transform = self.get_transform()
|
466 |
+
|
467 |
+
# Ensure the first conversation contains an image placeholder
|
468 |
+
if '<image>' not in data_item['conversations'][0]['value']:
|
469 |
+
data_item['conversations'][0]['value'] = '<image>\n' + data_item['conversations'][0]['value']
|
470 |
+
|
471 |
+
# Merge the image path
|
472 |
+
image_path = self.get_image_path(data_item['image'])
|
473 |
+
|
474 |
+
# Load the image using tcs_loader if available, otherwise use PIL
|
475 |
+
image = self.load_image(image_path)
|
476 |
+
|
477 |
+
if self.dynamic_image_size: # If dynamic image size is enabled, preprocess the image dynamically
|
478 |
+
images = dynamic_preprocess(image, min_num=self.min_dynamic_patch, max_num=self.max_dynamic_patch,
|
479 |
+
image_size=self.image_size, use_thumbnail=self.use_thumbnail)
|
480 |
+
else: # Otherwise, use the original image as a single patch
|
481 |
+
images = [image]
|
482 |
+
|
483 |
+
# Apply the transformation to each image and stack the results into a tensor
|
484 |
+
pixel_values = [transform(image) for image in images]
|
485 |
+
pixel_values = torch.stack(pixel_values)
|
486 |
+
|
487 |
+
# Ensure that there is only one patch if dynamic image size is not enabled
|
488 |
+
num_patches = pixel_values.size(0)
|
489 |
+
if not self.dynamic_image_size:
|
490 |
+
assert num_patches == 1, f'The number of patches should be 1, but got {num_patches}.'
|
491 |
+
|
492 |
+
# Select the appropriate preprocessing function based on the template name
|
493 |
+
preprocess_function = self.get_preprocess_function()
|
494 |
+
|
495 |
+
# Preprocess the conversations and generate the return dictionary
|
496 |
+
ret = preprocess_function(self.template_name, [deepcopy(data_item['conversations'])],
|
497 |
+
self.tokenizer, [self.num_image_token * num_patches],
|
498 |
+
group_by_length=self.group_by_length,
|
499 |
+
use_packed_ds=self.use_packed_ds, ds_name=self.ds_name)
|
500 |
+
|
501 |
+
# Calculate position_ids for packed dataset
|
502 |
+
position_ids = ret['attention_mask'].long().cumsum(-1) - 1
|
503 |
+
position_ids.masked_fill_(ret['attention_mask'] == 0, 1)
|
504 |
+
image_end_token_id = self.tokenizer.convert_tokens_to_ids(IMG_END_TOKEN)
|
505 |
+
assert (ret['input_ids'][0] == image_end_token_id).sum() == 1, f'image tokens are truncated, this dataset is {self.ds_name}'
|
506 |
+
|
507 |
+
# Create the final return dictionary
|
508 |
+
ret = dict(
|
509 |
+
input_ids=ret['input_ids'][0],
|
510 |
+
labels=ret['labels'][0],
|
511 |
+
attention_mask=ret['attention_mask'][0],
|
512 |
+
position_ids=position_ids[0],
|
513 |
+
pixel_values=pixel_values,
|
514 |
+
image_flags=torch.tensor([1] * num_patches, dtype=torch.long)
|
515 |
+
)
|
516 |
+
return ret
|
517 |
+
|
518 |
+
def multi_modal_multi_image_get_item(self, data_item):
|
519 |
+
# Build transformation function
|
520 |
+
transform = self.get_transform()
|
521 |
+
|
522 |
+
images, num_tiles = [], []
|
523 |
+
num_image = len(data_item['image'])
|
524 |
+
for image_path in data_item['image']:
|
525 |
+
# Merge the image path
|
526 |
+
image_path = self.get_image_path(image_path)
|
527 |
+
# Load the image using tcs_loader if available, otherwise use PIL
|
528 |
+
image = self.load_image(image_path)
|
529 |
+
if self.dynamic_image_size: # If dynamic image size is enabled, preprocess the image dynamically
|
530 |
+
image = dynamic_preprocess(image, min_num=self.min_dynamic_patch,
|
531 |
+
max_num=max(1, self.max_dynamic_patch // num_image),
|
532 |
+
image_size=self.image_size, use_thumbnail=self.use_thumbnail)
|
533 |
+
images += image
|
534 |
+
num_tiles.append(len(image))
|
535 |
+
else: # Otherwise, use the original image as a single patch
|
536 |
+
images.append(image)
|
537 |
+
num_tiles.append(1)
|
538 |
+
pixel_values = [transform(image) for image in images]
|
539 |
+
pixel_values = torch.stack(pixel_values)
|
540 |
+
num_patches = pixel_values.size(0)
|
541 |
+
|
542 |
+
# Select the appropriate preprocessing function based on the template name
|
543 |
+
preprocess_function = self.get_preprocess_function()
|
544 |
+
|
545 |
+
# Preprocess the conversations and generate the return dictionary
|
546 |
+
num_image_tokens = [self.num_image_token * num_tile for num_tile in num_tiles]
|
547 |
+
ret = preprocess_function(self.template_name, [deepcopy(data_item['conversations'])],
|
548 |
+
self.tokenizer, num_image_tokens, group_by_length=self.group_by_length,
|
549 |
+
use_packed_ds=self.use_packed_ds, ds_name=self.ds_name, num_image=num_image)
|
550 |
+
|
551 |
+
# Calculate position_ids for packed dataset
|
552 |
+
position_ids = ret['attention_mask'].long().cumsum(-1) - 1
|
553 |
+
position_ids.masked_fill_(ret['attention_mask'] == 0, 1)
|
554 |
+
image_end_token_id = self.tokenizer.convert_tokens_to_ids(IMG_END_TOKEN)
|
555 |
+
assert (ret['input_ids'][0] == image_end_token_id).sum() == num_image, f'image tokens are truncated, this dataset is {self.ds_name}'
|
556 |
+
|
557 |
+
# Create the final return dictionary
|
558 |
+
ret = dict(
|
559 |
+
input_ids=ret['input_ids'][0],
|
560 |
+
labels=ret['labels'][0],
|
561 |
+
attention_mask=ret['attention_mask'][0],
|
562 |
+
position_ids=position_ids[0],
|
563 |
+
pixel_values=pixel_values,
|
564 |
+
image_flags=torch.tensor([1] * num_patches, dtype=torch.long)
|
565 |
+
)
|
566 |
+
return ret
|
567 |
+
|
568 |
+
def video_get_item(self, data_item):
|
569 |
+
# Build transformation function
|
570 |
+
transform = self.get_transform()
|
571 |
+
|
572 |
+
# Ensure the first conversation contains a video placeholder
|
573 |
+
if '<video>' not in data_item['conversations'][0]['value']:
|
574 |
+
data_item['conversations'][0]['value'] = '<video>\n' + data_item['conversations'][0]['value']
|
575 |
+
|
576 |
+
# Get the video file path
|
577 |
+
video_file = data_item['video']
|
578 |
+
video_path = os.path.join(self.root, video_file)
|
579 |
+
|
580 |
+
# Load the video frames using tcs_loader
|
581 |
+
# TODO: Load videos without using tcsloader.
|
582 |
+
image_list = self.tcs_loader(
|
583 |
+
video_path,
|
584 |
+
image_type='video',
|
585 |
+
max_num_frames=self.max_num_frame,
|
586 |
+
min_num_frames=self.min_num_frame,
|
587 |
+
sample=self.sampling_method,
|
588 |
+
clip=data_item.get('clip', None))
|
589 |
+
|
590 |
+
# Generate special tokens for each video frame
|
591 |
+
special_tokens = '\n'.join(['Frame-{}: <image>'.format(i + 1) for i in range(len(image_list))])
|
592 |
+
data_item['conversations'][0]['value'] = data_item['conversations'][0]['value'].replace(
|
593 |
+
'<video>\n', special_tokens + '\n')
|
594 |
+
|
595 |
+
# Transform each frame image and stack them into a tensor
|
596 |
+
pixel_values = [transform(image) for image in image_list]
|
597 |
+
pixel_values = torch.stack(pixel_values)
|
598 |
+
num_patches = pixel_values.size(0)
|
599 |
+
|
600 |
+
# Select the appropriate preprocessing function based on the template name
|
601 |
+
preprocess_function = self.get_preprocess_function()
|
602 |
+
|
603 |
+
# Preprocess the conversations and generate the return dictionary
|
604 |
+
num_image_tokens = [self.num_image_token] * num_patches
|
605 |
+
ret = preprocess_function(self.template_name, [deepcopy(data_item['conversations'])],
|
606 |
+
self.tokenizer, num_image_tokens, group_by_length=self.group_by_length,
|
607 |
+
use_packed_ds=self.use_packed_ds, ds_name=self.ds_name, num_image=num_patches)
|
608 |
+
|
609 |
+
# Calculate position_ids for packed dataset
|
610 |
+
position_ids = ret['attention_mask'].long().cumsum(-1) - 1
|
611 |
+
position_ids.masked_fill_(ret['attention_mask'] == 0, 1)
|
612 |
+
|
613 |
+
# Create the final return dictionary
|
614 |
+
ret = dict(
|
615 |
+
input_ids=ret['input_ids'][0],
|
616 |
+
labels=ret['labels'][0],
|
617 |
+
attention_mask=ret['attention_mask'][0],
|
618 |
+
position_ids=position_ids[0],
|
619 |
+
pixel_values=pixel_values,
|
620 |
+
image_flags=torch.tensor([1] * num_patches, dtype=torch.long)
|
621 |
+
)
|
622 |
+
return ret
|
623 |
+
|
624 |
+
def pure_text_get_item(self, data_item):
|
625 |
+
# Build transformation function
|
626 |
+
transform = self.get_transform()
|
627 |
+
|
628 |
+
# Create a blank white image
|
629 |
+
image = Image.new('RGB', (224, 224), (255, 255, 255))
|
630 |
+
|
631 |
+
# Dynamically preprocess the image to generate patches
|
632 |
+
images = dynamic_preprocess(image, min_num=self.min_dynamic_patch, max_num=1,
|
633 |
+
image_size=self.image_size, use_thumbnail=self.use_thumbnail)
|
634 |
+
|
635 |
+
# Apply the transformation to each image patch and stack them into a tensor
|
636 |
+
pixel_values = [transform(image) for image in images]
|
637 |
+
pixel_values = torch.stack(pixel_values)
|
638 |
+
num_patches = pixel_values.size(0)
|
639 |
+
|
640 |
+
# Ensure there is only one patch
|
641 |
+
assert num_patches == 1, f'The number of patches should be 1, but got {num_patches}.'
|
642 |
+
|
643 |
+
# Select the appropriate preprocessing function based on the template name
|
644 |
+
preprocess_function = self.get_preprocess_function()
|
645 |
+
|
646 |
+
# Preprocess the conversations and generate the return dictionary
|
647 |
+
ret = preprocess_function(self.template_name, [deepcopy(data_item['conversations'])],
|
648 |
+
self.tokenizer, [self.num_image_token * num_patches], text_only=True,
|
649 |
+
group_by_length=self.group_by_length, use_packed_ds=self.use_packed_ds,
|
650 |
+
ds_name=self.ds_name)
|
651 |
+
|
652 |
+
# Calculate position_ids for packed dataset
|
653 |
+
position_ids = ret['attention_mask'].long().cumsum(-1) - 1
|
654 |
+
position_ids.masked_fill_(ret['attention_mask'] == 0, 1)
|
655 |
+
|
656 |
+
# Create the final return dictionary
|
657 |
+
ret = dict(
|
658 |
+
input_ids=ret['input_ids'][0],
|
659 |
+
labels=ret['labels'][0],
|
660 |
+
attention_mask=ret['attention_mask'][0],
|
661 |
+
position_ids=position_ids[0],
|
662 |
+
pixel_values=pixel_values,
|
663 |
+
image_flags=torch.tensor([0] * num_patches, dtype=torch.long)
|
664 |
+
)
|
665 |
+
return ret
|
666 |
+
|
667 |
+
def _enable_worker_distributed(self):
|
668 |
+
if (
|
669 |
+
self.distributed_mode
|
670 |
+
and not self.worker_distributed
|
671 |
+
and self.worker_id is not None
|
672 |
+
):
|
673 |
+
self.worker_distributed = True
|
674 |
+
num_worker_per_rank = self.num_workers // self.total_ranks
|
675 |
+
self.raw_data = self.raw_data[self.worker_id % num_worker_per_rank::num_worker_per_rank]
|
676 |
+
logger.info(f'worker_distributed is enabled, {self.num_workers=}, {len(self.raw_data)=}')
|
677 |
+
|
678 |
+
def __getitem__(self, i) -> Dict[str, torch.Tensor]:
|
679 |
+
if i >= len(self.raw_data):
|
680 |
+
if self.use_packed_ds:
|
681 |
+
raise NotImplementedError
|
682 |
+
else:
|
683 |
+
i = i % len(self.raw_data)
|
684 |
+
|
685 |
+
try_cnt, max_try = 0, 10
|
686 |
+
while True:
|
687 |
+
if try_cnt > max_try:
|
688 |
+
raise StopIteration
|
689 |
+
try:
|
690 |
+
data_item = json.loads(self.raw_data[i])
|
691 |
+
# conversations = data_item['conversations']
|
692 |
+
# check_conversations_repetition(conversations, repeat_threshold=0.4, ngram=10)
|
693 |
+
if 'image' in data_item and len(data_item['image']) != 0:
|
694 |
+
if type(data_item['image']) == list:
|
695 |
+
ret = self.multi_modal_multi_image_get_item(data_item)
|
696 |
+
else:
|
697 |
+
ret = self.multi_modal_get_item(data_item)
|
698 |
+
elif 'video' in data_item and data_item['video'] is not None and data_item['video'] != '':
|
699 |
+
ret = self.video_get_item(data_item)
|
700 |
+
else:
|
701 |
+
ret = self.pure_text_get_item(data_item)
|
702 |
+
break
|
703 |
+
except Exception as e:
|
704 |
+
try_cnt += 1
|
705 |
+
print(e, self.ds_name, flush=True)
|
706 |
+
if not isinstance(e, (UnidentifiedImageError, FileNotFoundError)):
|
707 |
+
traceback.print_exc()
|
708 |
+
data_item = json.loads(self.raw_data[i])
|
709 |
+
if 'image' in data_item:
|
710 |
+
if type(data_item['image']) == list:
|
711 |
+
images = [self.root + item for item in data_item['image']]
|
712 |
+
print(f'Failed to load image: {images}, the dataset is: {self.ds_name}')
|
713 |
+
else:
|
714 |
+
if data_item['image'].startswith('s3://'):
|
715 |
+
data_path = self.root + data_item['image']
|
716 |
+
else:
|
717 |
+
data_path = os.path.join(self.root, data_item['image'])
|
718 |
+
print(f'Failed to load image: {data_path}, the dataset is: {self.ds_name}')
|
719 |
+
elif 'video' in data_item:
|
720 |
+
data_path = os.path.join(self.root, data_item['video'])
|
721 |
+
print(f'Failed to load video: {data_path}, the dataset is: {self.ds_name}')
|
722 |
+
i = random.randint(0, len(self.raw_data) - 1)
|
723 |
+
return ret
|
724 |
+
|
725 |
+
def __iter__(self):
|
726 |
+
self._enable_worker_distributed()
|
727 |
+
start_idx = 0
|
728 |
+
|
729 |
+
assert self.worker_state_key is not None
|
730 |
+
if self.worker_state_key in self._state_dict and len(self._state_dict[self.worker_state_key]) > 0:
|
731 |
+
start_idx = self._state_dict[self.worker_state_key]['current_idx']
|
732 |
+
|
733 |
+
self._state_dict.pop(self.worker_state_key)
|
734 |
+
|
735 |
+
if self.worker_id == 0:
|
736 |
+
logger.info(
|
737 |
+
f'[{self.ds_name}] [Worker id {self.worker_id}] '
|
738 |
+
f'begin to iter with {start_idx=}'
|
739 |
+
)
|
740 |
+
|
741 |
+
for i in range(start_idx, len(self)):
|
742 |
+
yield self[i]
|
743 |
+
|
744 |
+
|
745 |
+
def build_datasets(
|
746 |
+
data_args,
|
747 |
+
tokenizer,
|
748 |
+
tcs_loader,
|
749 |
+
model,
|
750 |
+
group_by_length=False,
|
751 |
+
dynamic_image_size=False,
|
752 |
+
use_thumbnail=False,
|
753 |
+
min_dynamic_patch=1,
|
754 |
+
max_dynamic_patch=12,
|
755 |
+
min_num_frame=8,
|
756 |
+
max_num_frame=32,
|
757 |
+
normalize_type='imagenet',
|
758 |
+
):
|
759 |
+
datasets = []
|
760 |
+
lengths = []
|
761 |
+
data_rank = dist.get_rank()
|
762 |
+
data_world_size = dist.get_world_size()
|
763 |
+
ds_collections = json.loads(open(data_args.meta_path).read())
|
764 |
+
for ds_idx, ds_name in enumerate(ds_collections.keys()):
|
765 |
+
repeat_time = ds_collections[ds_name]['repeat_time']
|
766 |
+
if 'max_dynamic_patch' in ds_collections[ds_name]:
|
767 |
+
max_num = ds_collections[ds_name]['max_dynamic_patch']
|
768 |
+
logger.info(f'max_dynamic_patch is set to {max_num} according to the meta file')
|
769 |
+
else:
|
770 |
+
max_num = max_dynamic_patch
|
771 |
+
dataset = LazySupervisedDataset(
|
772 |
+
data_args.conv_style, ds_collections[ds_name],
|
773 |
+
tokenizer,
|
774 |
+
tcs_loader,
|
775 |
+
ds_name=ds_name,
|
776 |
+
num_image_token=model.num_image_token,
|
777 |
+
image_size=data_args.force_image_size,
|
778 |
+
is_train=ds_collections[ds_name]['data_augment'],
|
779 |
+
pad2square=data_args.pad2square,
|
780 |
+
group_by_length=group_by_length and not data_args.use_packed_ds,
|
781 |
+
dynamic_image_size=dynamic_image_size,
|
782 |
+
use_thumbnail=use_thumbnail,
|
783 |
+
min_dynamic_patch=min_dynamic_patch,
|
784 |
+
max_dynamic_patch=max_num,
|
785 |
+
min_num_frame=min_num_frame,
|
786 |
+
max_num_frame=max_num_frame,
|
787 |
+
repeat_time=repeat_time,
|
788 |
+
normalize_type=normalize_type,
|
789 |
+
# hyperparameters for packed training
|
790 |
+
use_packed_ds=data_args.use_packed_ds,
|
791 |
+
data_rank=data_rank,
|
792 |
+
data_world_size=data_world_size,
|
793 |
+
distributed_mode=data_args.use_packed_ds,
|
794 |
+
force_shuffle=data_args.use_packed_ds,
|
795 |
+
random_seed=ds_idx,
|
796 |
+
)
|
797 |
+
logger.info(f'Add dataset: {ds_name} with length: {len(dataset)}')
|
798 |
+
datasets.append(dataset)
|
799 |
+
if data_args.use_data_resampling:
|
800 |
+
lengths.append(math.sqrt(len(dataset)))
|
801 |
+
else:
|
802 |
+
lengths.append(len(dataset))
|
803 |
+
|
804 |
+
if data_args.use_packed_ds:
|
805 |
+
total_length = sum(lengths)
|
806 |
+
train_dataset = PackedDataset(
|
807 |
+
tokenizer=tokenizer,
|
808 |
+
data_rank=data_rank,
|
809 |
+
data_world_size=data_world_size,
|
810 |
+
datasets=datasets,
|
811 |
+
dataset_weight=[l / total_length for l in lengths],
|
812 |
+
num_images_expected=data_args.num_images_expected,
|
813 |
+
max_packed_tokens=data_args.max_packed_tokens,
|
814 |
+
max_buffer_size=data_args.max_buffer_size,
|
815 |
+
log_freq=data_args.log_freq,
|
816 |
+
strict_mode=data_args.strict_mode,
|
817 |
+
replacement=data_args.replacement,
|
818 |
+
allow_overflow=data_args.allow_overflow,
|
819 |
+
allow_deduplicated_ds_name=False,
|
820 |
+
)
|
821 |
+
elif data_args.use_data_resampling:
|
822 |
+
total_length = sum(lengths)
|
823 |
+
weights = [l / total_length for l in lengths]
|
824 |
+
train_dataset = WeightedConcatDataset(datasets, weights)
|
825 |
+
else:
|
826 |
+
train_dataset = ConcatDataset(datasets)
|
827 |
+
return train_dataset
|
828 |
+
|
829 |
+
|
830 |
+
def len2weight(x, loss_reduction):
|
831 |
+
if x == 0:
|
832 |
+
return x
|
833 |
+
if loss_reduction == 'token':
|
834 |
+
return 1
|
835 |
+
if loss_reduction == 'sample':
|
836 |
+
return 1 / x
|
837 |
+
if loss_reduction == 'square':
|
838 |
+
return 1 / (x ** 0.5)
|
839 |
+
raise NotImplementedError(loss_reduction)
|
840 |
+
|
841 |
+
|
842 |
+
def main():
|
843 |
+
# Apply necessary patches for the transformers library
|
844 |
+
replace_llama_rmsnorm_with_fused_rmsnorm()
|
845 |
+
replace_train_sampler()
|
846 |
+
replace_train_dataloader()
|
847 |
+
|
848 |
+
# Parse input arguments
|
849 |
+
# See all possible arguments in src/transformers/training_args.py
|
850 |
+
# If use DeepSpeed zero3, init_dist must before HfArgumentParser
|
851 |
+
launcher = os.environ.get('LAUNCHER', 'slurm')
|
852 |
+
init_dist(launcher=launcher, backend='nccl')
|
853 |
+
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
|
854 |
+
if len(sys.argv) == 2 and sys.argv[1].endswith('.json'):
|
855 |
+
# If we pass only one argument to the script, and it's the path to a json file,
|
856 |
+
# let's parse it to get our arguments.
|
857 |
+
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
|
858 |
+
else:
|
859 |
+
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
860 |
+
|
861 |
+
training_args.use_packed_ds = data_args.use_packed_ds
|
862 |
+
|
863 |
+
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
864 |
+
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
865 |
+
# send_example_telemetry('InternV-Chat', model_args, data_args)
|
866 |
+
|
867 |
+
# Setup logging
|
868 |
+
logging.basicConfig(
|
869 |
+
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
|
870 |
+
datefmt='%m/%d/%Y %H:%M:%S',
|
871 |
+
handlers=[logging.StreamHandler(sys.stdout)],
|
872 |
+
)
|
873 |
+
|
874 |
+
if training_args.should_log:
|
875 |
+
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
|
876 |
+
transformers.utils.logging.set_verbosity_info()
|
877 |
+
|
878 |
+
log_level = training_args.get_process_log_level()
|
879 |
+
logger.setLevel(log_level)
|
880 |
+
set_verbosity(log_level)
|
881 |
+
enable_default_handler()
|
882 |
+
enable_explicit_format()
|
883 |
+
|
884 |
+
# Log on each process the small summary:
|
885 |
+
logger.warning(
|
886 |
+
f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}'
|
887 |
+
+ f'distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}'
|
888 |
+
)
|
889 |
+
logger.info(f'Training/evaluation parameters {training_args}')
|
890 |
+
|
891 |
+
# Detecting last checkpoint and eventually continue from last checkpoint.
|
892 |
+
last_checkpoint = None
|
893 |
+
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
|
894 |
+
last_checkpoint = get_last_checkpoint(training_args.output_dir)
|
895 |
+
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
|
896 |
+
raise ValueError(
|
897 |
+
f'Output directory ({training_args.output_dir}) already exists and is not empty. '
|
898 |
+
'Use --overwrite_output_dir to overcome.'
|
899 |
+
)
|
900 |
+
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
|
901 |
+
logger.info(
|
902 |
+
f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change '
|
903 |
+
'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.'
|
904 |
+
)
|
905 |
+
# Set seed before initializing model.
|
906 |
+
set_seed(training_args.seed)
|
907 |
+
|
908 |
+
# Load pretrained model, tokenizer, and image processor
|
909 |
+
tokenizer_path = model_args.model_name_or_path or model_args.llm_path
|
910 |
+
logger.info(f'Loading Tokenizer: {tokenizer_path}')
|
911 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
912 |
+
tokenizer_path, add_eos_token=False, trust_remote_code=True, use_fast=model_args.use_fast_tokenizer)
|
913 |
+
tokenizer.tokenizer_path = tokenizer_path
|
914 |
+
tokenizer.model_max_length = data_args.max_seq_length
|
915 |
+
token_list = [IMG_START_TOKEN, IMG_END_TOKEN, IMG_CONTEXT_TOKEN,
|
916 |
+
QUAD_START_TOKEN, QUAD_END_TOKEN, REF_START_TOKEN,
|
917 |
+
REF_END_TOKEN, BOX_START_TOKEN, BOX_END_TOKEN]
|
918 |
+
num_new_tokens = tokenizer.add_tokens(token_list, special_tokens=True)
|
919 |
+
img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
|
920 |
+
tcs_loader = TCSLoader('~/petreloss.conf') if has_tcs_loader else None
|
921 |
+
|
922 |
+
if data_args.use_packed_ds:
|
923 |
+
replace_internlm2_attention_class()
|
924 |
+
replace_qwen2_attention_class()
|
925 |
+
replace_phi3_attention_class()
|
926 |
+
replace_llama_attention_class()
|
927 |
+
|
928 |
+
if model_args.use_liger:
|
929 |
+
from internvl.patch import apply_liger_kernel_to_internvit
|
930 |
+
from liger_kernel.transformers import (apply_liger_kernel_to_llama,
|
931 |
+
apply_liger_kernel_to_qwen2)
|
932 |
+
apply_liger_kernel_to_llama()
|
933 |
+
apply_liger_kernel_to_qwen2()
|
934 |
+
# apply_liger_kernel_to_internvit()
|
935 |
+
|
936 |
+
if model_args.model_name_or_path is not None:
|
937 |
+
logger.info('Loading InternVLChatModel...')
|
938 |
+
config = InternVLChatConfig.from_pretrained(model_args.model_name_or_path)
|
939 |
+
config.vision_config.drop_path_rate = model_args.drop_path_rate
|
940 |
+
if config.llm_config.model_type == 'internlm2':
|
941 |
+
config.llm_config.attn_implementation = 'flash_attention_2' # for InternLM
|
942 |
+
logger.info('Using flash_attention_2 for InternLM')
|
943 |
+
else:
|
944 |
+
config.llm_config._attn_implementation = 'flash_attention_2' # for LLaMA
|
945 |
+
logger.info('Using flash_attention_2 for LLaMA')
|
946 |
+
config.template = data_args.conv_style
|
947 |
+
config.select_layer = model_args.vision_select_layer
|
948 |
+
config.dynamic_image_size = data_args.dynamic_image_size
|
949 |
+
config.use_thumbnail = data_args.use_thumbnail
|
950 |
+
config.ps_version = model_args.ps_version
|
951 |
+
config.min_dynamic_patch = data_args.min_dynamic_patch
|
952 |
+
config.max_dynamic_patch = data_args.max_dynamic_patch
|
953 |
+
model = InternVLChatModel.from_pretrained(
|
954 |
+
model_args.model_name_or_path, torch_dtype=torch.bfloat16, config=config)
|
955 |
+
else:
|
956 |
+
logger.info('Loading ViT-6B...')
|
957 |
+
vision_config = InternVisionConfig.from_pretrained(model_args.vision_path)
|
958 |
+
vision_config.drop_path_rate = model_args.drop_path_rate
|
959 |
+
vision_model = InternVisionModel.from_pretrained(
|
960 |
+
model_args.vision_path, torch_dtype=torch.bfloat16, config=vision_config)
|
961 |
+
logger.info('Loading LLaMA...')
|
962 |
+
llm_config = AutoConfig.from_pretrained(model_args.llm_path, trust_remote_code=True)
|
963 |
+
if llm_config.model_type == 'internlm2':
|
964 |
+
model_type = InternLM2ForCausalLM
|
965 |
+
llm_config.attn_implementation = 'flash_attention_2' # for InternLM
|
966 |
+
logger.info('Using flash_attention_2 for InternLM')
|
967 |
+
else:
|
968 |
+
model_type = AutoModelForCausalLM
|
969 |
+
llm_config._attn_implementation = 'flash_attention_2' # for LLaMA
|
970 |
+
logger.info('Using flash_attention_2 for LLaMA')
|
971 |
+
llm = model_type.from_pretrained(
|
972 |
+
model_args.llm_path, torch_dtype=torch.bfloat16,
|
973 |
+
config=llm_config, trust_remote_code=True)
|
974 |
+
logger.info('Building InternVLChatConfig...')
|
975 |
+
internvl_chat_config = InternVLChatConfig(
|
976 |
+
vision_config.to_dict(), llm_config.to_dict(), downsample_ratio=data_args.down_sample_ratio,
|
977 |
+
pad2square=data_args.pad2square, template=data_args.conv_style,
|
978 |
+
select_layer=model_args.vision_select_layer, dynamic_image_size=data_args.dynamic_image_size,
|
979 |
+
use_thumbnail=data_args.use_thumbnail, ps_version=model_args.ps_version,
|
980 |
+
min_dynamic_patch=data_args.min_dynamic_patch, max_dynamic_patch=data_args.max_dynamic_patch)
|
981 |
+
internvl_chat_config.force_image_size = data_args.force_image_size
|
982 |
+
logger.info('Building InternVLChatModel...')
|
983 |
+
model = InternVLChatModel(internvl_chat_config, vision_model, llm)
|
984 |
+
model.img_context_token_id = img_context_token_id
|
985 |
+
|
986 |
+
assert model.config.downsample_ratio == data_args.down_sample_ratio
|
987 |
+
|
988 |
+
if model_args.mlp_path is not None:
|
989 |
+
logger.info('Loading pretrained MLP projector...')
|
990 |
+
state_dict = torch.load(model_args.mlp_path, map_location='cpu')
|
991 |
+
message = model.mlp1.load_state_dict(state_dict)
|
992 |
+
logger.info(message)
|
993 |
+
logger.info('Finished')
|
994 |
+
|
995 |
+
patch_size = model.config.vision_config.patch_size
|
996 |
+
logger.info(f'model.config.force_image_size: {model.config.force_image_size}')
|
997 |
+
logger.info(f'data_args.force_image_size: {data_args.force_image_size}')
|
998 |
+
logger.info(f'model.config.vision_config.image_size: {model.config.vision_config.image_size}')
|
999 |
+
if model.config.vision_config.image_size != data_args.force_image_size:
|
1000 |
+
logger.info(f'Resizing position embedding from '
|
1001 |
+
f'{model.config.vision_config.image_size} '
|
1002 |
+
f'to {data_args.force_image_size}...')
|
1003 |
+
model.vision_model.resize_pos_embeddings(old_size=model.config.vision_config.image_size,
|
1004 |
+
new_size=data_args.force_image_size,
|
1005 |
+
patch_size=patch_size)
|
1006 |
+
model.config.vision_config.image_size = data_args.force_image_size
|
1007 |
+
model.config.force_image_size = data_args.force_image_size
|
1008 |
+
model.num_image_token = int((data_args.force_image_size // patch_size) ** 2 * (data_args.down_sample_ratio ** 2))
|
1009 |
+
|
1010 |
+
if num_new_tokens > 0:
|
1011 |
+
model.language_model.resize_token_embeddings(len(tokenizer))
|
1012 |
+
output_embeddings = model.language_model.get_output_embeddings().weight.data
|
1013 |
+
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True)
|
1014 |
+
output_embeddings[-num_new_tokens:] = output_embeddings_avg
|
1015 |
+
|
1016 |
+
model.config.llm_config.vocab_size = len(tokenizer)
|
1017 |
+
model.language_model.config.vocab_size = len(tokenizer)
|
1018 |
+
|
1019 |
+
model.language_model.config.use_cache = False
|
1020 |
+
model.vision_model.gradient_checkpointing = True
|
1021 |
+
model.vision_model.encoder.gradient_checkpointing = True
|
1022 |
+
if model_args.grad_checkpoint:
|
1023 |
+
model.language_model._set_gradient_checkpointing()
|
1024 |
+
|
1025 |
+
train_dataset = build_datasets(
|
1026 |
+
data_args, tokenizer, tcs_loader, model, group_by_length=training_args.group_by_length,
|
1027 |
+
dynamic_image_size=data_args.dynamic_image_size, use_thumbnail=data_args.use_thumbnail,
|
1028 |
+
min_dynamic_patch=data_args.min_dynamic_patch, max_dynamic_patch=data_args.max_dynamic_patch,
|
1029 |
+
normalize_type=data_args.normalize_type, min_num_frame=data_args.min_num_frame,
|
1030 |
+
max_num_frame=data_args.max_num_frame)
|
1031 |
+
|
1032 |
+
def _freeze_params(module):
|
1033 |
+
for param in module.parameters():
|
1034 |
+
param.requires_grad = False
|
1035 |
+
|
1036 |
+
if model_args.freeze_backbone:
|
1037 |
+
# model.vision_model = model.vision_model.eval()
|
1038 |
+
_freeze_params(model.vision_model)
|
1039 |
+
|
1040 |
+
if model_args.freeze_llm:
|
1041 |
+
model.language_model = model.language_model.eval()
|
1042 |
+
_freeze_params(model.language_model)
|
1043 |
+
|
1044 |
+
if model_args.unfreeze_lm_head:
|
1045 |
+
model.language_model.lm_head.requires_grad = True
|
1046 |
+
|
1047 |
+
if model_args.use_backbone_lora:
|
1048 |
+
model.wrap_backbone_lora(r=model_args.use_backbone_lora, lora_alpha=2 * model_args.use_backbone_lora)
|
1049 |
+
model.config.use_backbone_lora = model_args.use_backbone_lora
|
1050 |
+
|
1051 |
+
if model_args.use_llm_lora:
|
1052 |
+
model.wrap_llm_lora(r=model_args.use_llm_lora, lora_alpha=2 * model_args.use_llm_lora)
|
1053 |
+
model.config.use_llm_lora = model_args.use_llm_lora
|
1054 |
+
|
1055 |
+
if model_args.freeze_mlp:
|
1056 |
+
_freeze_params(model.mlp1)
|
1057 |
+
|
1058 |
+
if model_args.unfreeze_vit_layers != 0:
|
1059 |
+
layers = model.vision_model.encoder.layers[model_args.unfreeze_vit_layers:]
|
1060 |
+
for k, v in layers.named_parameters():
|
1061 |
+
logger.info(f'Unfreezing ViT layer: {k}')
|
1062 |
+
v.requires_grad = True
|
1063 |
+
|
1064 |
+
# print trainable parameters
|
1065 |
+
if dist.get_rank() == 0:
|
1066 |
+
for name, param in model.named_parameters():
|
1067 |
+
if param.requires_grad:
|
1068 |
+
logger.info(name)
|
1069 |
+
|
1070 |
+
# set seed for torch dataloaders
|
1071 |
+
set_seed(training_args.seed)
|
1072 |
+
|
1073 |
+
if data_args.use_packed_ds:
|
1074 |
+
collator = partial(
|
1075 |
+
packed_collate_fn,
|
1076 |
+
data_collator=concat_pad_data_collator,
|
1077 |
+
max_item_length=data_args.max_packed_tokens if data_args.strict_mode else 0,
|
1078 |
+
micro_num=training_args.train_batch_size,
|
1079 |
+
len2weight=partial(len2weight, loss_reduction=data_args.loss_reduction),
|
1080 |
+
loss_reduction_all_gather=data_args.loss_reduction_all_gather,
|
1081 |
+
)
|
1082 |
+
else:
|
1083 |
+
collator = concat_pad_data_collator
|
1084 |
+
|
1085 |
+
trainer = Trainer(
|
1086 |
+
model=model,
|
1087 |
+
args=training_args,
|
1088 |
+
train_dataset=train_dataset if training_args.do_train else None,
|
1089 |
+
eval_dataset=None,
|
1090 |
+
tokenizer=tokenizer,
|
1091 |
+
data_collator=collator,
|
1092 |
+
)
|
1093 |
+
|
1094 |
+
# Training
|
1095 |
+
if training_args.do_train:
|
1096 |
+
checkpoint = None
|
1097 |
+
if training_args.resume_from_checkpoint is not None:
|
1098 |
+
checkpoint = training_args.resume_from_checkpoint
|
1099 |
+
elif last_checkpoint is not None:
|
1100 |
+
checkpoint = last_checkpoint
|
1101 |
+
train_result = trainer.train(resume_from_checkpoint=checkpoint)
|
1102 |
+
trainer.save_model() # Saves the tokenizer too for easy upload
|
1103 |
+
|
1104 |
+
metrics = train_result.metrics
|
1105 |
+
try:
|
1106 |
+
metrics['train_samples'] = len(train_dataset)
|
1107 |
+
except:
|
1108 |
+
metrics['train_samples'] = -1
|
1109 |
+
|
1110 |
+
trainer.log_metrics('train', metrics)
|
1111 |
+
trainer.save_metrics('train', metrics)
|
1112 |
+
trainer.save_state()
|
1113 |
+
|
1114 |
+
|
1115 |
+
if __name__ == '__main__':
|
1116 |
+
main()
|
src/third_party/InternVL/internvl_chat/internvl/train/trainer_dpo.py
ADDED
@@ -0,0 +1,302 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# InternVL
|
3 |
+
# Copyright (c) 2024 OpenGVLab
|
4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
5 |
+
# --------------------------------------------------------
|
6 |
+
|
7 |
+
from copy import deepcopy
|
8 |
+
from typing import Dict, List, Literal, Optional, Tuple, Union
|
9 |
+
|
10 |
+
import deepspeed
|
11 |
+
import torch
|
12 |
+
from torch import nn
|
13 |
+
from torch.utils.data import ConcatDataset
|
14 |
+
from trl import DPOTrainer
|
15 |
+
from trl.trainer.utils import RunningMoments, pad_to_length
|
16 |
+
|
17 |
+
|
18 |
+
def _map(self, *args, **kwargs):
|
19 |
+
return self
|
20 |
+
|
21 |
+
|
22 |
+
ConcatDataset.map = _map
|
23 |
+
|
24 |
+
|
25 |
+
class MultimodalDPOTrainer(DPOTrainer):
|
26 |
+
def __init__(self, *args, **kwargs):
|
27 |
+
super().__init__(*args, **kwargs)
|
28 |
+
|
29 |
+
if self.loss_type != 'bco_pair' and 'bco_pair' in self.loss_type:
|
30 |
+
self.running = RunningMoments(self.accelerator)
|
31 |
+
|
32 |
+
@staticmethod
|
33 |
+
def concatenated_inputs(
|
34 |
+
batch: Dict[str, Union[List, torch.LongTensor]],
|
35 |
+
is_encoder_decoder: bool = False,
|
36 |
+
is_vision_model: bool = False,
|
37 |
+
label_pad_token_id: int = -100,
|
38 |
+
padding_value: int = 0,
|
39 |
+
device: Optional[torch.device] = None,
|
40 |
+
) -> Dict[str, torch.LongTensor]:
|
41 |
+
"""Concatenate the chosen and rejected inputs into a single tensor.
|
42 |
+
|
43 |
+
Args:
|
44 |
+
batch: A batch of data. Must contain the keys 'chosen_input_ids' and 'rejected_input_ids', which are tensors of shape (batch_size, sequence_length).
|
45 |
+
is_encoder_decoder: Whether the model is an encoder-decoder model.
|
46 |
+
label_pad_token_id: The label pad token id.
|
47 |
+
padding_value: The padding value to use for the concatenated inputs_ids.
|
48 |
+
device: The device for the concatenated inputs.
|
49 |
+
|
50 |
+
Returns:
|
51 |
+
A dictionary containing the concatenated inputs under the key 'concatenated_input_ids'.
|
52 |
+
"""
|
53 |
+
concatenated_batch = {}
|
54 |
+
|
55 |
+
if is_encoder_decoder:
|
56 |
+
max_length = max(batch['chosen_labels'].shape[1], batch['rejected_labels'].shape[1])
|
57 |
+
else:
|
58 |
+
max_length = max(batch['chosen_input_ids'].shape[1], batch['rejected_input_ids'].shape[1])
|
59 |
+
|
60 |
+
for k in batch:
|
61 |
+
if k.startswith('chosen') and isinstance(batch[k], torch.Tensor):
|
62 |
+
if 'labels' in k or is_encoder_decoder:
|
63 |
+
pad_value = label_pad_token_id
|
64 |
+
elif k.endswith('_input_ids'):
|
65 |
+
pad_value = padding_value
|
66 |
+
elif k.endswith('_attention_mask'):
|
67 |
+
pad_value = 0
|
68 |
+
concatenated_key = k.replace('chosen', 'concatenated')
|
69 |
+
concatenated_batch[concatenated_key] = pad_to_length(batch[k], max_length, pad_value=pad_value)
|
70 |
+
for k in batch:
|
71 |
+
if k.startswith('rejected') and isinstance(batch[k], torch.Tensor):
|
72 |
+
if 'labels' in k or is_encoder_decoder:
|
73 |
+
pad_value = label_pad_token_id
|
74 |
+
elif k.endswith('_input_ids'):
|
75 |
+
pad_value = padding_value
|
76 |
+
elif k.endswith('_attention_mask'):
|
77 |
+
pad_value = 0
|
78 |
+
concatenated_key = k.replace('rejected', 'concatenated')
|
79 |
+
concatenated_batch[concatenated_key] = torch.cat(
|
80 |
+
(
|
81 |
+
concatenated_batch[concatenated_key],
|
82 |
+
pad_to_length(batch[k], max_length, pad_value=pad_value),
|
83 |
+
),
|
84 |
+
dim=0,
|
85 |
+
).to(device=device)
|
86 |
+
|
87 |
+
if is_encoder_decoder:
|
88 |
+
concatenated_batch['concatenated_input_ids'] = batch['prompt_input_ids'].repeat(2, 1).to(device=device)
|
89 |
+
concatenated_batch['concatenated_attention_mask'] = (
|
90 |
+
batch['prompt_attention_mask'].repeat(2, 1).to(device=device)
|
91 |
+
)
|
92 |
+
|
93 |
+
if 'pixel_values' in batch:
|
94 |
+
concatenated_batch['pixel_values'] = batch['pixel_values'].repeat(2, 1, 1, 1)
|
95 |
+
concatenated_batch['image_flags'] = batch['image_flags'].repeat(2)
|
96 |
+
|
97 |
+
return concatenated_batch
|
98 |
+
|
99 |
+
def concatenated_forward(
|
100 |
+
self, model: nn.Module, batch: Dict[str, Union[List, torch.LongTensor]]
|
101 |
+
) -> Tuple[torch.FloatTensor, torch.FloatTensor, torch.FloatTensor, torch.FloatTensor, torch.FloatTensor]:
|
102 |
+
"""Run the given model on the given batch of inputs, concatenating the chosen and rejected inputs together.
|
103 |
+
|
104 |
+
We do this to avoid doing two forward passes, because it's faster for FSDP.
|
105 |
+
"""
|
106 |
+
concatenated_batch = self.concatenated_inputs(
|
107 |
+
batch,
|
108 |
+
is_encoder_decoder=self.is_encoder_decoder,
|
109 |
+
is_vision_model=self.is_vision_model,
|
110 |
+
label_pad_token_id=self.label_pad_token_id,
|
111 |
+
padding_value=self.padding_value,
|
112 |
+
device=self.accelerator.device,
|
113 |
+
)
|
114 |
+
len_chosen = batch['chosen_labels'].shape[0]
|
115 |
+
|
116 |
+
model_kwargs = {}
|
117 |
+
|
118 |
+
if self.is_encoder_decoder:
|
119 |
+
model_kwargs['labels'] = concatenated_batch['concatenated_labels']
|
120 |
+
model_kwargs['decoder_input_ids'] = concatenated_batch.pop('concatenated_decoder_input_ids', None)
|
121 |
+
|
122 |
+
if self.is_vision_model:
|
123 |
+
model_kwargs['pixel_values'] = concatenated_batch['pixel_values']
|
124 |
+
model_kwargs['pixel_attention_mask'] = concatenated_batch['pixel_attention_mask']
|
125 |
+
|
126 |
+
if self.aux_loss_enabled:
|
127 |
+
model_kwargs['output_router_logits'] = True
|
128 |
+
|
129 |
+
outputs = model(
|
130 |
+
input_ids=concatenated_batch['concatenated_input_ids'],
|
131 |
+
attention_mask=concatenated_batch['concatenated_attention_mask'],
|
132 |
+
pixel_values=concatenated_batch['pixel_values'],
|
133 |
+
image_flags=concatenated_batch['image_flags'],
|
134 |
+
use_cache=False,
|
135 |
+
**model_kwargs,
|
136 |
+
)
|
137 |
+
all_logits = outputs.logits
|
138 |
+
|
139 |
+
all_logps, size_completion = self.get_batch_logps(
|
140 |
+
all_logits,
|
141 |
+
concatenated_batch['concatenated_labels'],
|
142 |
+
# average_log_prob=self.loss_type == "ipo",
|
143 |
+
is_encoder_decoder=self.is_encoder_decoder,
|
144 |
+
label_pad_token_id=self.label_pad_token_id,
|
145 |
+
)
|
146 |
+
|
147 |
+
def cross_entropy_loss(logits, labels):
|
148 |
+
if not self.is_encoder_decoder:
|
149 |
+
# Shift so that tokens < n predict n
|
150 |
+
logits = logits[..., :-1, :].contiguous()
|
151 |
+
labels = labels[..., 1:].contiguous()
|
152 |
+
# Flatten the tokens
|
153 |
+
loss_fct = nn.CrossEntropyLoss()
|
154 |
+
logits = logits.view(-1, logits.shape[-1])
|
155 |
+
labels = labels.view(-1)
|
156 |
+
# Enable model parallelism
|
157 |
+
labels = labels.to(logits.device)
|
158 |
+
loss = loss_fct(logits, labels)
|
159 |
+
return loss
|
160 |
+
|
161 |
+
labels = concatenated_batch['concatenated_labels'].clone()
|
162 |
+
nll_loss = cross_entropy_loss(all_logits[:len_chosen], labels[:len_chosen])
|
163 |
+
|
164 |
+
if self.loss_type == 'ipo':
|
165 |
+
all_logps = all_logps / size_completion
|
166 |
+
|
167 |
+
chosen_logps = all_logps[:len_chosen]
|
168 |
+
rejected_logps = all_logps[len_chosen:]
|
169 |
+
|
170 |
+
chosen_logits = all_logits[:len_chosen]
|
171 |
+
rejected_logits = all_logits[len_chosen:]
|
172 |
+
|
173 |
+
if self.aux_loss_enabled:
|
174 |
+
return (chosen_logps, rejected_logps, chosen_logits, rejected_logits, nll_loss, outputs.aux_loss)
|
175 |
+
|
176 |
+
return (chosen_logps, rejected_logps, chosen_logits, rejected_logits, nll_loss)
|
177 |
+
|
178 |
+
def _prepare_deepspeed_orig(self, model):
|
179 |
+
# Adapted from accelerate: https://github.com/huggingface/accelerate/blob/739b135f8367becb67ffaada12fe76e3aa60fefd/src/accelerate/accelerator.py#L1473
|
180 |
+
deepspeed_plugin = self.accelerator.state.deepspeed_plugin
|
181 |
+
config_kwargs = deepcopy(deepspeed_plugin.deepspeed_config)
|
182 |
+
|
183 |
+
# If ZeRO-3 is used, we shard both the active and reference model.
|
184 |
+
# Otherwise, we assume the reference model fits in memory and is initialized on each device with ZeRO disabled (stage 0)
|
185 |
+
if config_kwargs['zero_optimization']['stage'] != 3:
|
186 |
+
config_kwargs['zero_optimization']['stage'] = 0
|
187 |
+
model, *_ = deepspeed.initialize(model=model, config=config_kwargs)
|
188 |
+
model.eval()
|
189 |
+
return model
|
190 |
+
|
191 |
+
def _prepare_deepspeed(self, model):
|
192 |
+
deepspeed_plugin = self.accelerator.state.deepspeed_plugin
|
193 |
+
config_kwargs = deepspeed_plugin.deepspeed_config
|
194 |
+
if config_kwargs['zero_optimization']['stage'] == 3:
|
195 |
+
print('Enable DPOTrainer._prepare_deepspeed')
|
196 |
+
return self._prepare_deepspeed_orig(model)
|
197 |
+
|
198 |
+
print('Disable DPOTrainer._prepare_deepspeed')
|
199 |
+
for param in model.parameters():
|
200 |
+
param.requires_grad = False
|
201 |
+
|
202 |
+
model.eval()
|
203 |
+
model = model.to(self.accelerator.device)
|
204 |
+
return model
|
205 |
+
|
206 |
+
def get_batch_loss_metrics(
|
207 |
+
self,
|
208 |
+
model,
|
209 |
+
batch: Dict[str, Union[List, torch.LongTensor]],
|
210 |
+
train_eval: Literal['train', 'eval'] = 'train',
|
211 |
+
):
|
212 |
+
"""Compute the DPO loss and other metrics for the given batch of inputs for train or test."""
|
213 |
+
metrics = {}
|
214 |
+
|
215 |
+
forward_output = self.concatenated_forward(model, batch)
|
216 |
+
(
|
217 |
+
policy_chosen_logps,
|
218 |
+
policy_rejected_logps,
|
219 |
+
policy_chosen_logits,
|
220 |
+
policy_rejected_logits,
|
221 |
+
policy_nll_loss,
|
222 |
+
) = forward_output[:5]
|
223 |
+
if self.aux_loss_enabled:
|
224 |
+
aux_loss = forward_output[5]
|
225 |
+
|
226 |
+
# if reference_chosen_logps and reference_rejected_logps in batch use them, otherwise use the reference model
|
227 |
+
if (
|
228 |
+
'reference_chosen_logps' in batch
|
229 |
+
and 'reference_rejected_logps' in batch
|
230 |
+
and self.args.rpo_alpha is not None
|
231 |
+
):
|
232 |
+
reference_chosen_logps = batch['reference_chosen_logps']
|
233 |
+
reference_rejected_logps = batch['reference_rejected_logps']
|
234 |
+
else:
|
235 |
+
with torch.no_grad():
|
236 |
+
if self.ref_model is None:
|
237 |
+
with self.null_ref_context():
|
238 |
+
(
|
239 |
+
reference_chosen_logps,
|
240 |
+
reference_rejected_logps,
|
241 |
+
_,
|
242 |
+
_,
|
243 |
+
_,
|
244 |
+
) = self.concatenated_forward(self.model, batch)
|
245 |
+
else:
|
246 |
+
(
|
247 |
+
reference_chosen_logps,
|
248 |
+
reference_rejected_logps,
|
249 |
+
_,
|
250 |
+
_,
|
251 |
+
_,
|
252 |
+
) = self.concatenated_forward(self.ref_model, batch)
|
253 |
+
|
254 |
+
if ',' in self.loss_type:
|
255 |
+
loss_type = self.loss_type
|
256 |
+
loss_type_list = loss_type.split(',')
|
257 |
+
|
258 |
+
losses, chosen_rewards, rejected_rewards = 0, 0, 0
|
259 |
+
for curr_type in loss_type_list:
|
260 |
+
self.loss_type = curr_type
|
261 |
+
curr_losses, curr_chosen_rewards, curr_rejected_rewards = self.dpo_loss(
|
262 |
+
policy_chosen_logps,
|
263 |
+
policy_rejected_logps,
|
264 |
+
reference_chosen_logps,
|
265 |
+
reference_rejected_logps,
|
266 |
+
)
|
267 |
+
curr_weight = getattr(self.args, f'{curr_type}_loss_weight')
|
268 |
+
losses = losses + curr_losses * curr_weight
|
269 |
+
chosen_rewards = chosen_rewards + curr_chosen_rewards * curr_weight
|
270 |
+
rejected_rewards = rejected_rewards + curr_rejected_rewards * curr_weight
|
271 |
+
|
272 |
+
self.loss_type = loss_type
|
273 |
+
else:
|
274 |
+
losses, chosen_rewards, rejected_rewards = self.dpo_loss(
|
275 |
+
policy_chosen_logps,
|
276 |
+
policy_rejected_logps,
|
277 |
+
reference_chosen_logps,
|
278 |
+
reference_rejected_logps,
|
279 |
+
)
|
280 |
+
|
281 |
+
reward_accuracies = (chosen_rewards > rejected_rewards).float()
|
282 |
+
|
283 |
+
if self.args.rpo_alpha is not None:
|
284 |
+
# losses = losses * self.args.rpo_alpha + policy_nll_loss
|
285 |
+
losses = losses + policy_nll_loss * self.args.rpo_alpha
|
286 |
+
|
287 |
+
prefix = 'eval_' if train_eval == 'eval' else ''
|
288 |
+
metrics[f'{prefix}rewards/chosen'] = chosen_rewards.mean().cpu()
|
289 |
+
metrics[f'{prefix}rewards/rejected'] = rejected_rewards.mean().cpu()
|
290 |
+
metrics[f'{prefix}rewards/accuracies'] = reward_accuracies.mean().cpu()
|
291 |
+
metrics[f'{prefix}rewards/margins'] = (chosen_rewards - rejected_rewards).mean().cpu()
|
292 |
+
metrics[f'{prefix}logps/rejected'] = policy_rejected_logps.detach().mean().cpu()
|
293 |
+
metrics[f'{prefix}logps/chosen'] = policy_chosen_logps.detach().mean().cpu()
|
294 |
+
metrics[f'{prefix}logits/rejected'] = policy_rejected_logits.detach().mean().cpu()
|
295 |
+
metrics[f'{prefix}logits/chosen'] = policy_chosen_logits.detach().mean().cpu()
|
296 |
+
if self.args.rpo_alpha is not None:
|
297 |
+
metrics[f'{prefix}nll_loss'] = policy_nll_loss.detach().mean().cpu()
|
298 |
+
|
299 |
+
if self.aux_loss_enabled:
|
300 |
+
return losses.mean() + getattr(model.config, 'router_aux_loss_coef', 0.0) * aux_loss, metrics
|
301 |
+
|
302 |
+
return losses.mean(), metrics
|
src/third_party/InternVL/internvl_chat/pyproject.toml
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[build-system]
|
2 |
+
requires = ["setuptools>=61.0"]
|
3 |
+
build-backend = "setuptools.build_meta"
|
4 |
+
|
5 |
+
[project]
|
6 |
+
name = "internvl_chat"
|
7 |
+
version = "2.0.0"
|
8 |
+
description = "Scaling up Vision Foundation Models and Aligning for Generic Visual-Linguistic Tasks."
|
9 |
+
readme = "README.md"
|
10 |
+
requires-python = ">=3.8"
|
11 |
+
classifiers = [
|
12 |
+
"Programming Language :: Python :: 3",
|
13 |
+
"License :: OSI Approved :: Apache Software License",
|
14 |
+
]
|
15 |
+
dependencies = [
|
16 |
+
"torch>=2", "torchvision>=0.15",
|
17 |
+
"transformers==4.37.2", "tokenizers==0.15.1", "sentencepiece==0.1.99", "shortuuid",
|
18 |
+
"accelerate", "peft>=0.4.0", "bitsandbytes==0.41.0",
|
19 |
+
"pydantic", "markdown2[all]", "numpy", "scikit-learn>=1.2.2",
|
20 |
+
"gradio==3.35.2", "gradio_client==0.2.9",
|
21 |
+
"requests", "httpx==0.24.0", "uvicorn", "fastapi",
|
22 |
+
"deepspeed==0.13.5", "einops", "einops-exts", "timm==0.9.12",
|
23 |
+
]
|
24 |
+
|
25 |
+
[project.urls]
|
26 |
+
"Homepage" = "https://github.com/OpenGVLab/InternVL"
|
27 |
+
"Bug Tracker" = "https://github.com/OpenGVLab/InternVL/issues"
|
28 |
+
|
29 |
+
[tool.setuptools.packages.find]
|
30 |
+
exclude = ["data*", "benchmark*", "docs", "dist*", "playground*", "scripts*", "shell*"]
|
31 |
+
|
32 |
+
[tool.wheel]
|
33 |
+
exclude = ["data*", "benchmark*", "docs", "dist*", "playground*", "scripts*", "shell*"]
|
src/third_party/InternVL/internvl_chat/tools/convert_to_int8.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import AutoModel, AutoTokenizer
|
3 |
+
|
4 |
+
path = 'OpenGVLab/InternVL-Chat-V1-5'
|
5 |
+
model = AutoModel.from_pretrained(
|
6 |
+
path,
|
7 |
+
torch_dtype=torch.bfloat16,
|
8 |
+
low_cpu_mem_usage=True,
|
9 |
+
trust_remote_code=True,
|
10 |
+
load_in_8bit=True).eval()
|
11 |
+
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True)
|
13 |
+
|
14 |
+
model.save_pretrained('release/InternVL-Chat-V1-5-Int8')
|
15 |
+
tokenizer.save_pretrained('release/InternVL-Chat-V1-5-Int8')
|
16 |
+
print('finished')
|
src/third_party/InternVL/internvl_chat/tools/extract_mlp.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import os.path
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from internvl.model.internvl_chat import InternVLChatModel
|
6 |
+
|
7 |
+
argparse = argparse.ArgumentParser()
|
8 |
+
argparse.add_argument('model_path', type=str, default='')
|
9 |
+
argparse.add_argument('output_path', type=str, default='')
|
10 |
+
|
11 |
+
args = argparse.parse_args()
|
12 |
+
|
13 |
+
model = InternVLChatModel.from_pretrained(args.model_path, torch_dtype=torch.bfloat16)
|
14 |
+
model = model.mlp1.to(torch.bfloat16)
|
15 |
+
|
16 |
+
ckpt = model.state_dict()
|
17 |
+
output_path = os.path.join(args.output_path, 'mlp_projector.pth')
|
18 |
+
torch.save(ckpt, output_path)
|
19 |
+
print('finished')
|
src/third_party/InternVL/internvl_chat/tools/extract_video_frames.py
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import concurrent.futures
|
2 |
+
import json
|
3 |
+
import os
|
4 |
+
|
5 |
+
import av
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
from decord import VideoReader, cpu
|
9 |
+
from PIL import Image
|
10 |
+
from tqdm.auto import tqdm
|
11 |
+
|
12 |
+
num_segments = 1
|
13 |
+
|
14 |
+
# root directory of evaluation dimension 10
|
15 |
+
dimension10_dir = './videos/20bn-something-something-v2'
|
16 |
+
# root directory of evaluation dimension 11
|
17 |
+
dimension11_dir = './videos/EPIC-KITCHENS'
|
18 |
+
# root directory of evaluation dimension 12
|
19 |
+
dimension12_dir = './videos/BreakfastII_15fps_qvga_sync'
|
20 |
+
|
21 |
+
|
22 |
+
def transform_video(buffer):
|
23 |
+
try:
|
24 |
+
buffer = buffer.numpy()
|
25 |
+
except AttributeError:
|
26 |
+
try:
|
27 |
+
buffer = buffer.asnumpy()
|
28 |
+
except AttributeError:
|
29 |
+
print('Both buffer.numpy() and buffer.asnumpy() failed.')
|
30 |
+
buffer = None
|
31 |
+
images_group = list()
|
32 |
+
for fid in range(len(buffer)):
|
33 |
+
images_group.append(Image.fromarray(buffer[fid]))
|
34 |
+
return images_group
|
35 |
+
|
36 |
+
|
37 |
+
def get_index(num_frames, num_segments):
|
38 |
+
if num_segments > num_frames:
|
39 |
+
offsets = np.array([
|
40 |
+
idx for idx in range(num_frames)
|
41 |
+
])
|
42 |
+
else:
|
43 |
+
# uniform sampling
|
44 |
+
seg_size = float(num_frames - 1) / num_segments
|
45 |
+
start = int(seg_size / 2)
|
46 |
+
offsets = np.array([
|
47 |
+
start + int(np.round(seg_size * idx)) for idx in range(num_segments)
|
48 |
+
])
|
49 |
+
return offsets
|
50 |
+
|
51 |
+
|
52 |
+
def fetch_images(qa_item):
|
53 |
+
use_pyav = False
|
54 |
+
segment = None
|
55 |
+
if qa_item['question_type_id'] == 10:
|
56 |
+
data_path = os.path.join(dimension10_dir, qa_item['data_id'])
|
57 |
+
start = 0.0
|
58 |
+
end = 0.0
|
59 |
+
elif qa_item['question_type_id'] == 11:
|
60 |
+
data_path = os.path.join(dimension11_dir, qa_item['data_id'].split('/')[-1])
|
61 |
+
segment = qa_item['segment']
|
62 |
+
start, end = segment[0], segment[1]
|
63 |
+
elif qa_item['question_type_id'] == 12:
|
64 |
+
data_path = os.path.join(dimension12_dir, qa_item['data_id'])
|
65 |
+
segment = qa_item['segment']
|
66 |
+
start, end = segment[0], segment[1]
|
67 |
+
use_pyav = True
|
68 |
+
|
69 |
+
if use_pyav:
|
70 |
+
# using pyav for decoding videos in evaluation dimension 12
|
71 |
+
reader = av.open(data_path)
|
72 |
+
frames = [torch.from_numpy(f.to_rgb().to_ndarray()) for f in reader.decode(video=0)]
|
73 |
+
video_len = len(frames)
|
74 |
+
start_frame, end_frame = start, end
|
75 |
+
end_frame = min(end_frame, video_len)
|
76 |
+
offset = get_index(end_frame - start_frame, num_segments)
|
77 |
+
frame_indices = offset + start_frame
|
78 |
+
buffer = torch.stack([frames[idx] for idx in frame_indices])
|
79 |
+
else:
|
80 |
+
# using decord for decoding videos in evaluation dimension 10-11
|
81 |
+
vr = VideoReader(data_path, num_threads=1, ctx=cpu(0))
|
82 |
+
video_len = len(vr)
|
83 |
+
fps = vr.get_avg_fps()
|
84 |
+
if segment is not None:
|
85 |
+
# obtain start and end frame for the video segment in evaluation dimension 11
|
86 |
+
start_frame = int(min(max(start * fps, 0), video_len - 1))
|
87 |
+
end_frame = int(min(max(end * fps, 0), video_len - 1))
|
88 |
+
tot_frames = int(end_frame - start_frame)
|
89 |
+
offset = get_index(tot_frames, num_segments)
|
90 |
+
frame_indices = offset + start_frame
|
91 |
+
else:
|
92 |
+
# sample frames of the video in evaluation dimension 10
|
93 |
+
frame_indices = get_index(video_len - 1, num_segments)
|
94 |
+
vr.seek(0)
|
95 |
+
buffer = vr.get_batch(frame_indices)
|
96 |
+
return transform_video(buffer)
|
97 |
+
|
98 |
+
|
99 |
+
def fetch_images_parallel(qa_item):
|
100 |
+
return qa_item, fetch_images(qa_item)
|
101 |
+
|
102 |
+
|
103 |
+
if __name__ == '__main__':
|
104 |
+
data = json.load(open('SEED-Bench.json'))
|
105 |
+
video_img_dir = 'SEED-Bench-video-image'
|
106 |
+
ques_type_id_to_name = {id:n for n,id in data['question_type'].items()}
|
107 |
+
|
108 |
+
video_data = [x for x in data['questions'] if x['data_type'] == 'video']
|
109 |
+
|
110 |
+
with open(output, 'w') as f, concurrent.futures.ThreadPoolExecutor() as executor:
|
111 |
+
future_to_images = {executor.submit(fetch_images_parallel, qa_item): qa_item for qa_item in video_data}
|
112 |
+
for future in tqdm(concurrent.futures.as_completed(future_to_images), total=len(future_to_images)):
|
113 |
+
qa_item = future_to_images[future]
|
114 |
+
try:
|
115 |
+
qa_item, images = future.result()
|
116 |
+
except Exception as exc:
|
117 |
+
print(f'{qa_item} generated an exception: {exc}')
|
118 |
+
else:
|
119 |
+
img_file = f"{qa_item['question_type_id']}_{qa_item['question_id']}.png"
|
120 |
+
images[0].save(os.path.join(video_img_dir, img_file))
|
src/third_party/InternVL/internvl_chat/tools/extract_vit.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from internvl.model.internvl_chat import InternVLChatModel
|
5 |
+
|
6 |
+
argparse = argparse.ArgumentParser()
|
7 |
+
argparse.add_argument('model_path', type=str, default='')
|
8 |
+
argparse.add_argument('output_path', type=str, default='')
|
9 |
+
|
10 |
+
args = argparse.parse_args()
|
11 |
+
|
12 |
+
model = InternVLChatModel.from_pretrained(args.model_path, torch_dtype=torch.bfloat16)
|
13 |
+
model = model.vision_model.to(torch.bfloat16)
|
14 |
+
|
15 |
+
model.save_pretrained(args.output_path)
|
16 |
+
print('finished')
|
src/third_party/InternVL/internvl_chat/tools/images_stitching.py
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import json
|
3 |
+
import os
|
4 |
+
|
5 |
+
from PIL import Image, ImageDraw, ImageFont
|
6 |
+
from tqdm import tqdm
|
7 |
+
|
8 |
+
FOOT = ImageFont.truetype('/usr/share/fonts/dejavu/DejaVuSans-Bold.ttf', 50)
|
9 |
+
|
10 |
+
|
11 |
+
def custom_image(img_paths, save_path, image_size=448):
|
12 |
+
captions = ['CAM_FRONT_LEFT', 'CAM_FRONT', 'CAM_FRONT_RIGHT', 'CAM_BACK_LEFT', 'CAM_BACK', 'CAM_BACK_RIGHT']
|
13 |
+
|
14 |
+
width = image_size * 2
|
15 |
+
height = image_size
|
16 |
+
# count = 0
|
17 |
+
all_images = {}
|
18 |
+
for image_id, image_files in tqdm(img_paths.items()):
|
19 |
+
all_images[image_id] = dict()
|
20 |
+
all_images[image_id]['images_path'] = image_files
|
21 |
+
all_images[image_id]['images_size'] = {k: (0, 0) for k in image_files.keys()}
|
22 |
+
imgs = {}
|
23 |
+
for caption, image_file in image_files.items():
|
24 |
+
image_path = os.path.join(args.data_root, image_file.replace('../nuscenes/samples/', '/nuscenes/samples/'))
|
25 |
+
img = Image.open(image_path).convert('RGB')
|
26 |
+
old_wide, old_height = img.size
|
27 |
+
all_images[image_id]['images_size'][caption] = (old_wide, old_height)
|
28 |
+
img = img.resize((width, height))
|
29 |
+
|
30 |
+
draw = ImageDraw.Draw(img)
|
31 |
+
text = caption
|
32 |
+
draw.text((0, 0), text, fill=(255, 0, 255), font=FOOT)
|
33 |
+
imgs[caption] = img
|
34 |
+
|
35 |
+
result_width = width * 3
|
36 |
+
result_height = height * 2
|
37 |
+
result_img = Image.new('RGB', (result_width, result_height))
|
38 |
+
|
39 |
+
imgs = [imgs[caption] for caption in captions]
|
40 |
+
for i in range(len(imgs)):
|
41 |
+
row = i // 3
|
42 |
+
col = i % 3
|
43 |
+
|
44 |
+
left = col * width
|
45 |
+
top = row * height
|
46 |
+
right = left + width
|
47 |
+
bottom = top + height
|
48 |
+
result_img.paste(imgs[i], (left, top))
|
49 |
+
|
50 |
+
result_path = os.path.join(save_path, image_id + '.jpg')
|
51 |
+
result_img.save(result_path)
|
52 |
+
|
53 |
+
|
54 |
+
def get_images(ann_file):
|
55 |
+
with open(ann_file, 'r') as f: # , \
|
56 |
+
train_file = json.load(f)
|
57 |
+
|
58 |
+
images = {}
|
59 |
+
for scene_id in train_file.keys():
|
60 |
+
scene_data = train_file[scene_id]['key_frames']
|
61 |
+
for frame_id in scene_data.keys():
|
62 |
+
image_id = scene_id + '_' + frame_id
|
63 |
+
if image_id not in images:
|
64 |
+
images[image_id] = scene_data[frame_id]['image_paths']
|
65 |
+
else:
|
66 |
+
print(image_id)
|
67 |
+
|
68 |
+
return images
|
69 |
+
|
70 |
+
|
71 |
+
if __name__ == '__main__':
|
72 |
+
parser = argparse.ArgumentParser()
|
73 |
+
parser.add_argument('--data-root', type=str, default='InternVL-Domain-Adaptation-Data/images/drivelm')
|
74 |
+
parser.add_argument('--ann-file', type=str, default='path/to/v1_1_val_nus_q_only.json')
|
75 |
+
args = parser.parse_args()
|
76 |
+
images = get_images(args.ann_file)
|
77 |
+
save_path = os.path.join(args.data_root, 'stitch')
|
78 |
+
os.makedirs(save_path, exist_ok=True)
|
79 |
+
custom_image(img_paths=images, save_path=save_path)
|
src/third_party/InternVL/internvl_chat/tools/json2jsonl.py
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import json
|
3 |
+
|
4 |
+
argparse = argparse.ArgumentParser()
|
5 |
+
argparse.add_argument('path', type=str)
|
6 |
+
|
7 |
+
args = argparse.parse_args()
|
8 |
+
|
9 |
+
assert args.path.endswith('.json')
|
10 |
+
|
11 |
+
data = json.load(open(args.path))
|
12 |
+
writer = open(args.path.replace('.json', '.jsonl'), 'w')
|
13 |
+
for idx, item in enumerate(data):
|
14 |
+
conversations = item['conversations']
|
15 |
+
if conversations[0]['from'] == 'system':
|
16 |
+
item['conversations'] = item['conversations'][1:]
|
17 |
+
item['id'] = idx
|
18 |
+
writer.write(json.dumps(item, ensure_ascii=False) + '\n')
|
19 |
+
|
20 |
+
writer.close()
|
src/third_party/InternVL/internvl_chat/tools/jsonl2jsonl.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import json
|
3 |
+
import os
|
4 |
+
|
5 |
+
argparse = argparse.ArgumentParser()
|
6 |
+
argparse.add_argument('path', type=str)
|
7 |
+
|
8 |
+
args = argparse.parse_args()
|
9 |
+
|
10 |
+
assert args.path.endswith('.jsonl')
|
11 |
+
|
12 |
+
f = open(args.path)
|
13 |
+
data = [json.loads(line) for line in f.readlines()]
|
14 |
+
writer = open(args.path.replace('.jsonl', '_new.jsonl'), 'w')
|
15 |
+
for idx, item in enumerate(data):
|
16 |
+
item['id'] = idx
|
17 |
+
conversations = item['conversations']
|
18 |
+
if conversations[0]['from'] == 'system':
|
19 |
+
item['conversations'] = item['conversations'][1:]
|
20 |
+
writer.write(json.dumps(item, ensure_ascii=False) + '\n')
|
21 |
+
|
22 |
+
writer.close()
|
src/third_party/InternVL/internvl_chat/tools/merge_lora.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from internvl.model.internvl_chat import InternVLChatModel
|
5 |
+
from transformers import AutoTokenizer
|
6 |
+
|
7 |
+
argparse = argparse.ArgumentParser()
|
8 |
+
argparse.add_argument('input_path', type=str, help='Path to the input model')
|
9 |
+
argparse.add_argument('output_path', type=str, help='Path to the output model')
|
10 |
+
args = argparse.parse_args()
|
11 |
+
|
12 |
+
print('Loading model...')
|
13 |
+
model = InternVLChatModel.from_pretrained(
|
14 |
+
args.input_path, low_cpu_mem_usage=True, torch_dtype=torch.bfloat16).eval()
|
15 |
+
print('Loading tokenizer...')
|
16 |
+
tokenizer = AutoTokenizer.from_pretrained(args.input_path, trust_remote_code=True)
|
17 |
+
|
18 |
+
if model.config.use_backbone_lora:
|
19 |
+
model.vision_model.merge_and_unload()
|
20 |
+
model.vision_model = model.vision_model.model
|
21 |
+
model.config.use_backbone_lora = 0
|
22 |
+
if model.config.use_llm_lora:
|
23 |
+
model.language_model.merge_and_unload()
|
24 |
+
model.language_model = model.language_model.model
|
25 |
+
model.config.use_llm_lora = 0
|
26 |
+
|
27 |
+
print('Saving model...')
|
28 |
+
model.save_pretrained(args.output_path)
|
29 |
+
print('Saving tokenizer...')
|
30 |
+
tokenizer.save_pretrained(args.output_path)
|
31 |
+
print('Done!')
|