File size: 1,522 Bytes
7472a45
 
 
 
 
 
691416f
 
7472a45
 
691416f
 
7472a45
 
 
691416f
 
 
 
 
 
7472a45
691416f
 
7472a45
691416f
 
 
 
7472a45
b951b0b
 
 
 
691416f
7472a45
3585ee9
 
 
 
 
7472a45
 
3585ee9
 
7472a45
691416f
061af0a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import gradio as gr
from transformers import AutoModelForSequenceClassification, AutoTokenizer
import torch

# Load model and tokenizer
model_name = "cross-encoder/ms-marco-MiniLM-L-12-v2"

print("Loading model and tokenizer...")
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
model.eval()  # Set model to evaluation mode
print("Model and tokenizer loaded successfully.")

# Function to compute relevance score
def get_relevance_score(query, paragraph):
    if not query.strip() or not paragraph.strip():
        return "Please provide both a query and a document paragraph."
    
    print(f"Received inputs -> Query: {query}, Paragraph: {paragraph}")

    # Tokenize inputs
    inputs = tokenizer(query, paragraph, return_tensors="pt", truncation=True, padding=True)

    # Perform inference without gradient tracking
    with torch.no_grad():
        score = model(**inputs).logits.squeeze().item()
    
    print(f"Calculated score: {score}")
    return round(score, 4)


def test_function(query, paragraph):
    return f"Received query: {query}, paragraph: {paragraph}"

# Define Gradio interface
interface = gr.Interface(
    fn=test_function,
    inputs=[gr.Textbox(label="Query"), gr.Textbox(label="Document Paragraph")],
    outputs=gr.Textbox(label="Output"),
    title="Test App",
    description="Testing if UI responds to input."
)



if __name__ == "__main__":
    print("Launching Gradio app...")
    interface.launch(share=True)