whyun13's picture
Upload folder using huggingface_hub
882f6e2 verified
"""
Copyright (c) Meta Platforms, Inc. and affiliates.
All rights reserved.
This source code is licensed under the license found in the
LICENSE file in the root directory of this source tree.
"""
import json
import numpy as np
import re
import torch
import torch as th
import torch.nn as nn
import torch.nn.functional as F
from typing import Dict, Any
from visualize.ca_body.utils.quaternion import Quaternion
from pytorch3d.transforms import matrix_to_euler_angles
from typing import Optional, Tuple
import logging
logger = logging.getLogger(__name__)
class ParameterTransform(nn.Module):
def __init__(self, lbs_cfg_dict: Dict[str, Any]):
super().__init__()
# self.pose_names = list(lbs_cfg_dict["joint_names"])
self.channel_names = list(lbs_cfg_dict["channel_names"])
transform_offsets = torch.FloatTensor(lbs_cfg_dict["transform_offsets"])
transform = torch.FloatTensor(lbs_cfg_dict["transform"])
self.limits = lbs_cfg_dict["limits"]
self.nr_scaling_params = lbs_cfg_dict["nr_scaling_params"]
self.nr_position_params = lbs_cfg_dict["nr_position_params"]
self.nr_total_params = self.nr_scaling_params + self.nr_position_params
self.register_buffer("transform_offsets", transform_offsets)
self.register_buffer("transform", transform)
def forward(self, pose: th.Tensor) -> th.Tensor:
"""
:param pose: raw pose inputs, shape (batch_size, len(pose_names))
:return: skeleton parameters, shape (batch_size, len(channel_names)*nr_skeleton_joints)
"""
return self.transform.mm(pose.t()).t() + self.transform_offsets
class LinearBlendSkinning(nn.Module):
def __init__(
self,
model_json: Dict[str, Any],
lbs_config_dict: Dict[str, Any],
num_max_skin_joints: int =8,
scale_path: str =None,
):
super().__init__()
model = model_json
self.param_transform = ParameterTransform(lbs_config_dict)
self.joint_names = []
nr_joints = len(model["Skeleton"]["Bones"])
joint_parents = torch.zeros((nr_joints, 1), dtype=torch.int64)
joint_rotation = torch.zeros((nr_joints, 4), dtype=torch.float32)
joint_offset = torch.zeros((nr_joints, 3), dtype=torch.float32)
for idx, bone in enumerate(model["Skeleton"]["Bones"]):
self.joint_names.append(bone["Name"])
if bone["Parent"] > nr_joints:
joint_parents[idx] = -1
else:
joint_parents[idx] = bone["Parent"]
joint_rotation[idx, :] = torch.FloatTensor(bone["PreRotation"])
joint_offset[idx, :] = torch.FloatTensor(bone["TranslationOffset"])
skin_model = model["SkinnedModel"]
mesh_vertices = torch.FloatTensor(skin_model["RestPositions"])
mesh_normals = torch.FloatTensor(skin_model["RestVertexNormals"])
weights = torch.FloatTensor([e[1] for e in skin_model["SkinningWeights"]])
indices = torch.LongTensor([e[0] for e in skin_model["SkinningWeights"]])
offsets = torch.LongTensor(skin_model["SkinningOffsets"])
nr_vertices = len(offsets) - 1
skin_weights = torch.zeros((nr_vertices, num_max_skin_joints), dtype=torch.float32)
skin_indices = torch.zeros((nr_vertices, num_max_skin_joints), dtype=torch.int64)
offset_right = offsets[1:]
for offset in range(num_max_skin_joints):
offset_left = offsets[:-1] + offset
skin_weights[offset_left < offset_right, offset] = weights[
offset_left[offset_left < offset_right]
]
skin_indices[offset_left < offset_right, offset] = indices[
offset_left[offset_left < offset_right]
]
mesh_faces = torch.IntTensor(skin_model["Faces"]["Indices"]).view(-1, 3)
mesh_texture_faces = torch.IntTensor(skin_model["Faces"]["TextureIndices"]).view(-1, 3)
mesh_texture_coords = torch.FloatTensor(skin_model["TextureCoordinates"]).view(-1, 2)
# zero_pose = torch.zeros((1, len(self.param_transform.pose_names)), dtype=torch.float32)
zero_pose = torch.zeros((1, self.param_transform.nr_total_params), dtype=torch.float32)
bind_state = solve_skeleton_state(
self.param_transform(zero_pose), joint_offset, joint_rotation, joint_parents
)
# self.register_buffer('mesh_vertices', mesh_vertices) # we want to train on rest pose
# self.mesh_vertices = nn.Parameter(mesh_vertices, requires_grad=optimize_mesh)
self.register_buffer("mesh_vertices", mesh_vertices)
self.register_buffer("joint_parents", joint_parents)
self.register_buffer("joint_rotation", joint_rotation)
self.register_buffer("joint_offset", joint_offset)
self.register_buffer("mesh_normals", mesh_normals)
self.register_buffer("mesh_faces", mesh_faces)
self.register_buffer("mesh_texture_faces", mesh_texture_faces)
self.register_buffer("mesh_texture_coords", mesh_texture_coords)
self.register_buffer("skin_weights", skin_weights)
self.register_buffer("skin_indices", skin_indices)
self.register_buffer("bind_state", bind_state)
self.register_buffer("rest_vertices", mesh_vertices)
# pre-compute joint weights
self.register_buffer("joints_weights", self.compute_joints_weights())
if scale_path is not None:
scale = np.loadtxt(scale_path).astype(np.float32)[np.newaxis]
scale = scale[:, 0, :] if len(scale.shape) == 3 else scale
self.register_buffer("scale", torch.tensor(scale))
@property
def num_verts(self):
return self.mesh_vertices.size(0)
@property
def num_joints(self):
return self.joint_offset.size(0)
@property
def num_params(self):
return self.skin_weights.shape[-1]
def compute_rigid_transforms(self, global_pose: th.Tensor, local_pose: th.Tensor, scale: th.Tensor):
"""Returns rigid transforms."""
params = torch.cat([global_pose, local_pose, scale], axis=-1)
params = self.param_transform(params)
return solve_skeleton_state(
params, self.joint_offset, self.joint_rotation, self.joint_parents
)
def compute_rigid_transforms_matrix(self, global_pose: th.Tensor, local_pose: th.Tensor, scale: th.Tensor):
params = torch.cat([global_pose, local_pose, scale], axis=-1)
params = self.param_transform(params)
states = solve_skeleton_state(
params, self.joint_offset, self.joint_rotation, self.joint_parents
)
return states_to_matrix(self.bind_state, states)
def compute_joints_weights(self, drop_empty=False):
"""Compute weights per joint given flattened weights-indices."""
idxs_verts = torch.arange(self.num_verts)[:, np.newaxis].expand(-1, self.num_params)
weights_joints = torch.zeros(
(self.num_joints, self.num_verts),
dtype=torch.float32,
device=self.skin_weights.device,
)
weights_joints[self.skin_indices, idxs_verts] = self.skin_weights
if drop_empty:
weights_joints = weights_joints[weights_joints.sum(axis=-1).abs() > 0]
return weights_joints
def compute_root_rigid_transform(self, poses: th.Tensor) -> Tuple[th.Tensor, th.Tensor]:
"""Get a transform of the root joint."""
scales = torch.zeros(
(poses.shape[0], self.nr_total_params - poses.shape[1]),
dtype=poses.dtype,
device=poses.device,
)
params = torch.cat((poses, scales), 1)
states = solve_skeleton_state(
self.param_transform(params),
self.joint_offset,
self.joint_rotation,
self.joint_parents,
)
mat = states_to_matrix(self.bind_state, states)
return mat[:, 1, :, 3], mat[:, 1, :, :3]
def compute_relative_rigid_transforms(self, global_pose: th.Tensor, local_pose: th.Tensor, scale: th.Tensor):
params = torch.cat([global_pose, local_pose, scale], axis=-1)
params = self.param_transform(params)
batch_size = params.shape[0]
joint_offset = self.joint_offset
joint_rotation = self.joint_rotation
# batch processing for parameters
jp = params.view((batch_size, -1, 7))
lt = jp[:, :, 0:3] + joint_offset.unsqueeze(0)
lr = Quaternion.batchMul(joint_rotation.unsqueeze(0), Quaternion.batchFromXYZ(jp[:, :, 3:6]))
return torch.cat([lt, lr], axis=-1)
def skinning(self, bind_state: th.Tensor, vertices: th.Tensor, target_states: th.Tensor):
"""
Apply skinning to a set of states
Args:
b/bind_state: 1 x nr_joint x 8 bind state
v/vertices: 1 x nr_vertices x 3 vertices
t/target_states: batch_size x nr_joint x 8 current states
Returns:
batch_size x nr_vertices x 3 skinned vertices
"""
assert target_states.size()[1:] == bind_state.size()[1:]
mat = states_to_matrix(bind_state, target_states)
# apply skinning to vertices
vs = torch.matmul(
mat[:, self.skin_indices],
torch.cat((vertices, torch.ones_like(vertices[:, :, 0]).unsqueeze(2)), dim=2)
.unsqueeze(2)
.unsqueeze(4),
)
ws = self.skin_weights.unsqueeze(2).unsqueeze(3)
res = (vs * ws).sum(dim=2).squeeze(3)
return res
def unpose(self, poses: th.Tensor, scales: th.Tensor, verts: th.Tensor):
"""
:param poses: 100 (tx ty tz rx ry rz) params in blueman
:param scales: 29 (s) params in blueman
:return:
"""
# check shape of poses and scales
params = torch.cat((poses, scales), 1)
states = solve_skeleton_state(
self.param_transform(params),
self.joint_offset,
self.joint_rotation,
self.joint_parents,
)
return self.unskinning(self.bind_state, states, verts)
def unskinning(self, bind_state: th.Tensor, target_states: th.Tensor, verts: th.Tensor):
"""Apply skinning to a set of states
Args:
bind_state: [B, NJ, 8] - bind state
target_states: [B, NJ, 8] - current states
vertices: [B, V, 3] - vertices
Returns:
batch_size x nr_vertices x 3 skinned vertices
"""
assert target_states.size()[1:] == bind_state.size()[1:]
mat = states_to_matrix(bind_state, target_states)
ws = self.skin_weights[None, :, :, None, None]
sum_mat = (mat[:, self.skin_indices] * ws).sum(dim=2)
sum_mat4x4 = torch.cat((sum_mat, torch.zeros_like(sum_mat[:, :, :1, :])), dim=2)
sum_mat4x4[:, :, 3, 3] = 1.0
verts_4d = torch.cat((verts, torch.ones_like(verts[:, :, :1])), dim=2).unsqueeze(3)
resmesh = []
for i in range(sum_mat.shape[0]):
newmat = sum_mat4x4[i, :, :, :].contiguous()
invnewmat = newmat.inverse()
tmpvets = invnewmat.matmul(verts_4d[i])
resmesh.append(tmpvets.unsqueeze(0))
resmesh = torch.cat(resmesh)
return resmesh.squeeze(3)[..., :3].contiguous()
def forward(self, poses: th.Tensor, scales: th.Tensor, verts_unposed: Optional[th.Tensor] = None) -> th.Tensor:
"""
Args:
poses: [B, NP] - pose parametersa
scales: [B, NS] - additional scaling params
verts_unposed: [B, N, 3] - unposed vertices
Returns:
[B, N, 3] - posed vertices
"""
params = torch.cat((poses, scales), 1)
params_transformed = self.param_transform(params)
states = solve_skeleton_state(
params_transformed,
self.joint_offset,
self.joint_rotation,
self.joint_parents,
)
if verts_unposed is None:
mesh = self.skinning(self.bind_state, self.mesh_vertices.unsqueeze(0), states)
else:
mesh = self.skinning(self.bind_state, verts_unposed, states)
return mesh
def solve_skeleton_state(param: th.Tensor, joint_offset: th.Tensor, joint_rotation: th.Tensor, joint_parents: th.Tensor):
"""
:param param: batch_size x (7*nr_skeleton_joints) ParamTransform Outputs.
:return: batch_size x nr_skeleton_joints x 8 Skeleton States
8 stands form 3 translation + 4 rotation (quat) + 1 scale
"""
batch_size = param.shape[0]
# batch processing for parameters
jp = param.view((batch_size, -1, 7))
lt = jp[:, :, 0:3] + joint_offset.unsqueeze(0)
lr = Quaternion.batchMul(joint_rotation.unsqueeze(0), Quaternion.batchFromXYZ(jp[:, :, 3:6]))
ls = torch.pow(
torch.tensor([2.0], dtype=torch.float32, device=param.device),
jp[:, :, 6].unsqueeze(2),
)
state = []
for index, parent in enumerate(joint_parents):
if int(parent) != -1:
gr = Quaternion.batchMul(state[parent][:, :, 3:7], lr[:, index, :].unsqueeze(1))
gt = (
Quaternion.batchRot(
state[parent][:, :, 3:7],
lt[:, index, :].unsqueeze(1) * state[parent][:, :, 7].unsqueeze(2),
)
+ state[parent][:, :, 0:3]
)
gs = state[parent][:, :, 7].unsqueeze(2) * ls[:, index, :].unsqueeze(1)
state.append(torch.cat((gt, gr, gs), dim=2))
else:
state.append(
torch.cat((lt[:, index, :], lr[:, index, :], ls[:, index, :]), dim=1).view(
(batch_size, 1, 8)
)
)
return torch.cat(state, dim=1)
def states_to_matrix(bind_state: th.Tensor, target_states: th.Tensor, return_transform: bool=False):
# multiply bind inverse with states
br = Quaternion.batchInvert(bind_state[:, :, 3:7])
bs = bind_state[:, :, 7].unsqueeze(2).reciprocal()
bt = Quaternion.batchRot(br, -bind_state[:, :, 0:3]) * bs
# applying rotation
tr = Quaternion.batchMul(target_states[:, :, 3:7], br)
# applying scaling
ts = target_states[:, :, 7].unsqueeze(2) * bs
# applying transformation
tt = (
Quaternion.batchRot(target_states[:, :, 3:7], bt * target_states[:, :, 7].unsqueeze(2))
+ target_states[:, :, 0:3]
)
# convert to matrices
twx = 2.0 * tr[:, :, 0] * tr[:, :, 3]
twy = 2.0 * tr[:, :, 1] * tr[:, :, 3]
twz = 2.0 * tr[:, :, 2] * tr[:, :, 3]
txx = 2.0 * tr[:, :, 0] * tr[:, :, 0]
txy = 2.0 * tr[:, :, 1] * tr[:, :, 0]
txz = 2.0 * tr[:, :, 2] * tr[:, :, 0]
tyy = 2.0 * tr[:, :, 1] * tr[:, :, 1]
tyz = 2.0 * tr[:, :, 2] * tr[:, :, 1]
tzz = 2.0 * tr[:, :, 2] * tr[:, :, 2]
mat = torch.stack(
(
torch.stack((1.0 - (tyy + tzz), txy + twz, txz - twy), dim=2) * ts,
torch.stack((txy - twz, 1.0 - (txx + tzz), tyz + twx), dim=2) * ts,
torch.stack((txz + twy, tyz - twx, 1.0 - (txx + tyy)), dim=2) * ts,
tt,
),
dim=3,
)
if return_transform:
return mat, (tr, tt, ts)
return mat
def get_influence_map(
transform_raw: th.Tensor, pose_length=None, num_params_per_joint=7, eps=1.0e-6
):
num_joints = transform_raw.shape[0] // num_params_per_joint
num_params = transform_raw.shape[-1]
if pose_length is None:
pose_length = num_params
assert pose_length <= num_params
transform_raw = transform_raw.reshape((num_joints, num_params_per_joint, num_params))
return [
torch.where(torch.abs(transform_raw[i, :, :pose_length]) > eps)[1].tolist()
for i in range(num_joints)
]
def compute_weights_joints_slow(lbs_weights, lbs_indices, num_joints):
num_verts = lbs_weights.shape[0]
weights_joints = torch.zeros((num_joints, num_verts), dtype=torch.float32)
for i in range(num_verts):
idx = lbs_indices[i, :]
weights_joints[idx, i] = lbs_weights[i, :]
return weights_joints
def load_momentum_cfg(model, lbs_config_txt_fh, nr_scaling_params=None):
def find(l, x):
try:
return l.index(x)
except ValueError:
return None
"""Load a parameter configuration file"""
channelNames = ["tx", "ty", "tz", "rx", "ry", "rz", "sc"]
paramNames = []
joint_names = []
for idx, bone in enumerate(model["Skeleton"]["Bones"]):
joint_names.append(bone["Name"])
def findJointIndex(x):
return find(joint_names, x)
def findParameterIndex(x):
return find(paramNames, x)
limits = []
# create empty result
transform_triplets = []
lines = lbs_config_txt_fh.readlines()
# read until end
for line in lines:
# strip comments
line = line[: line.find("#")]
if line.find("limit") != -1:
r = re.search("limit ([\\w.]+) (\\w+) (.*)", line)
if r is None:
continue
if len(r.groups()) != 3:
logger.info("Failed to parse limit configuration line :\n " + line)
continue
# find parameter and/or joint index
fullname = r.groups()[0]
type = r.groups()[1]
remaining = r.groups()[2]
parameterIndex = findParameterIndex(fullname)
jointName = fullname.split(".")
jointIndex = findJointIndex(jointName[0])
channelIndex = -1
if jointIndex is not None and len(jointName) == 2:
# find matching channel name
channelIndex = channelNames.index(jointName[1])
if channelIndex is None:
logger.info(
"Unknown joint channel name "
+ jointName[1]
+ " in parameter configuration line :\n "
+ line
)
continue
# only parse passive limits for now
if type == "minmax_passive" or type == "minmax":
# match [<float> , <float>] <optional weight>
rp = re.search(
"\\[\\s*([-+]?[0-9]*\\.?[0-9]+)\\s*,\\s*([-+]?[0-9]*\\.?[0-9]+)\\s*\\](\\s*[-+]?[0-9]*\\.?[0-9]+)?",
remaining,
)
if len(rp.groups()) != 3:
logger.info(f"Failed to parse passive limit configuration line :\n {line}")
continue
minVal = float(rp.groups()[0])
maxVal = float(rp.groups()[1])
weightVal = 1.0
if len(rp.groups()) == 3 and not rp.groups()[2] is None:
weightVal = float(rp.groups()[2])
# result.limits.append([jointIndex * 7 + channelIndex, minVal, maxVal])
if channelIndex >= 0:
valueIndex = jointIndex * 7 + channelIndex
limit = {
"type": "LimitMinMaxJointValue",
"str": fullname,
"valueIndex": valueIndex,
"limits": [minVal, maxVal],
"weight": weightVal,
}
limits.append(limit)
else:
if parameterIndex is None:
logger.info(f"Unknown parameterIndex : {fullname}\n {line} {paramNames} ")
continue
limit = {
"type": "LimitMinMaxParameter",
"str": fullname,
"parameterIndex": parameterIndex,
"limits": [minVal, maxVal],
"weight": weightVal,
}
limits.append(limit)
# continue the remaining file
continue
# check for parameterset definitions and ignore
if line.find("parameterset") != -1:
continue
# use regex to parse definition
r = re.search("(\w+).(\w+)\s*=\s*(.*)", line)
if r is None:
continue
if len(r.groups()) != 3:
logger.info("Failed to parse parameter configuration line :\n " + line)
continue
# find joint name and parameter
jointIndex = findJointIndex(r.groups()[0])
if jointIndex is None:
logger.info(
"Unknown joint name "
+ r.groups()[0]
+ " in parameter configuration line :\n "
+ line
)
continue
# find matching channel name
channelIndex = channelNames.index(r.groups()[1])
if channelIndex is None:
logger.info(
"Unknown joint channel name "
+ r.groups()[1]
+ " in parameter configuration line :\n "
+ line
)
continue
valueIndex = jointIndex * 7 + channelIndex
# parse parameters
parameterList = r.groups()[2].split("+")
for parameterPair in parameterList:
parameterPair = parameterPair.strip()
r = re.search("\s*([+-]?[0-9]*\.?[0-9]*)\s\*\s(\w+)\s*", parameterPair)
if r is None or len(r.groups()) != 2:
logger.info(
"Malformed parameter description "
+ parameterPair
+ " in parameter configuration line :\n "
+ line
)
continue
val = float(r.groups()[0])
parameter = r.groups()[1]
# check if parameter exists
parameterIndex = findParameterIndex(parameter)
if parameterIndex is None:
# no, create new parameter entry
parameterIndex = len(paramNames)
paramNames.append(parameter)
transform_triplets.append((valueIndex, parameterIndex, val))
# set (dense) parameter_transformation matrix
transform = np.zeros((len(channelNames) * len(joint_names), len(paramNames)), dtype=np.float32)
for i, j, v in transform_triplets:
transform[i, j] = v
outputs = {
"model_param_names": paramNames,
"joint_names": joint_names,
"channel_names": channelNames,
"limits": limits,
"transform": transform,
"transform_offsets": np.zeros((1, len(channelNames) * len(joint_names)), dtype=np.float32),
}
# set number of scales automatically
if nr_scaling_params is None:
outputs.update(nr_scaling_params=len([s for s in paramNames if s.startswith("scale")]))
outputs.update(nr_position_params=len(paramNames) - outputs["nr_scaling_params"])
return outputs
def compute_normalized_pose_quat(lbs, local_pose, scale):
"""Computes a normalized representation of the pose in quaternion space.
This is a delta between the per-joint local transformation and the bind state.
Returns:
[B, NJ, 4] - normalized rotations
"""
B = local_pose.shape[0]
global_pose_zero = th.zeros((B, 6), dtype=th.float32, device=local_pose.device)
params = lbs.param_transform(th.cat([global_pose_zero, local_pose, scale], axis=-1))
params = params.reshape(B, -1, 7)
# applying rotation
# TODO: what is this?
rot_quat = Quaternion.batchMul(lbs.joint_rotation[np.newaxis], Quaternion.batchFromXYZ(params[:, :, 3:6]))
# removing the bind state
bind_rot_quat = Quaternion.batchInvert(lbs.bind_state[:, :, 3:7])
return Quaternion.batchMul(rot_quat, bind_rot_quat)
def compute_root_transform_cuda(lbs_fn, poses, verts=None):
# NOTE: verts is not really necessary,
# NOTE: should be used in conjuncation with LBSCuda
B = poses.shape[0]
# NOTE: scales are zero (!)
_, _, _, state_t, state_r, state_s = lbs_fn(poses, vertices=verts)
bind_r = lbs_fn.joint_state_r_zero[np.newaxis, 1].expand(B, -1, -1)
bind_t = lbs_fn.joint_state_t_zero[np.newaxis, 1].expand(B, -1)
R_root = th.matmul(state_r[:, 1], bind_r)
t_root = (
th.matmul(state_r[:, 1], (bind_t * state_s[:, 1])[..., np.newaxis])[..., 0] + state_t[:, 1]
)
return R_root, t_root
# def compute_joints_weights(lbs_fn: LinearBlendSkinningCuda, drop_empty: bool = False) -> th.Tensor:
# device = lbs_fn.skin_indices.device
# idxs_verts = th.arange(lbs_fn.nr_vertices)[:, np.newaxis].to(device)
# weights_joints = th.zeros(
# (lbs_fn.nr_joints, lbs_fn.nr_vertices),
# dtype=th.float32,
# device=lbs_fn.skin_indices.device,
# )
# weights_joints[lbs_fn.skin_indices, idxs_verts] = lbs_fn.skin_weights
# if drop_empty:
# weights_joints = weights_joints[weights_joints.sum(axis=-1).abs() > 0]
# return weights_joints
# def compute_pose_regions(lbs_fn: LinearBlendSkinningCuda) -> np.ndarray:
# """Computes pose regions given a linear blend skinning function.
# Returns:
# np.ndarray of boolean masks of shape [nr_params, n_rvertices]
# """
# weights = compute_joints_weights(lbs_fn).cpu().numpy()
# n_pos = lbs_fn.nr_position_params
# param_masks = np.zeros((n_pos, weights.shape[-1]))
# children = {j: [] for j in range(lbs_fn.nr_joints)}
# parents = {j: None for j in range(lbs_fn.nr_joints)}
# prec = {j: [] for j in range(lbs_fn.nr_joints)}
# for j in range(lbs_fn.nr_joints):
# parent_index = int(lbs_fn.joint_parents[j])
# if parent_index == -1:
# continue
# children[parent_index].append(j)
# parents[j] = parent_index
# prec[j] = [parent_index, int(lbs_fn.joint_parents[parent_index])]
# # get parameters for each joint
# # j_to_p = get_influence_map(lbs_fn.param_transform.transform, n_pos)
# j_to_p = get_influence_map(lbs_fn.param_transform, n_pos)
# # get all the joints
# p_to_j = [[] for i in range(n_pos)]
# for j, pidx in enumerate(j_to_p):
# for p in pidx:
# if j not in p_to_j[p]:
# p_to_j[p].append(j)
# for p, jidx in enumerate(p_to_j):
# param_masks[p] = weights[jidx].sum(axis=0)
# if not np.any(param_masks[p]):
# assert len(jidx) == 1
# jidx_c = children[jidx[0]][:]
# for jc in jidx_c[:]:
# jidx_c += children[jc]
# param_masks[p] = weights[jidx_c].sum(axis=0)
# return param_masks > 0.0
def compute_pose_regions_legacy(lbs_fn) -> np.ndarray:
"""Computes pose regions given a linear blend skinning function."""
weights = lbs_fn.joints_weights.cpu().numpy()
n_pos = lbs_fn.param_transform.nr_position_params
param_masks = np.zeros((n_pos, lbs_fn.joints_weights.shape[-1]))
children = {j: [] for j in range(lbs_fn.num_joints)}
parents = {j: None for j in range(lbs_fn.num_joints)}
prec = {j: [] for j in range(lbs_fn.num_joints)}
for j in range(lbs_fn.num_joints):
parent_index = int(lbs_fn.joint_parents[j, 0])
if parent_index == -1:
continue
children[parent_index].append(j)
parents[j] = parent_index
prec[j] = [parent_index, int(lbs_fn.joint_parents[parent_index, 0])]
# get parameters for each joint
j_to_p = get_influence_map(lbs_fn.param_transform.transform, n_pos)
# get all the joints
p_to_j = [[] for i in range(n_pos)]
for j, pidx in enumerate(j_to_p):
for p in pidx:
if j not in p_to_j[p]:
p_to_j[p].append(j)
for p, jidx in enumerate(p_to_j):
param_masks[p] = weights[jidx].sum(axis=0)
if not np.any(param_masks[p]):
assert len(jidx) == 1
jidx_c = children[jidx[0]][:]
for jc in jidx_c[:]:
jidx_c += children[jc]
param_masks[p] = weights[jidx_c].sum(axis=0)
return param_masks > 0.0
def compute_pose_mask_uv(lbs_fn, geo_fn, uv_size, ksize=25):
device = geo_fn.index_image.device
pose_regions = compute_pose_regions(lbs_fn)
pose_regions = (
th.as_tensor(pose_regions[6:], dtype=th.float32).permute(1, 0)[np.newaxis].to(device)
)
pose_regions_uv = geo_fn.to_uv(pose_regions)
pose_regions_uv = F.max_pool2d(pose_regions_uv, ksize, 1, padding=ksize // 2)
pose_cond_mask = (F.interpolate(pose_regions_uv, size=(uv_size, uv_size)) > 0.1).to(th.int32)
return pose_cond_mask
def parent_chain(joint_parents, idx, depth):
if depth == 0 or idx == 0:
return []
parent_idx = int(joint_parents[idx])
return [parent_idx] + parent_chain(joint_parents, parent_idx, depth - 1)
def joint_connectivity(nr_joints, joint_parents, chain_depth=2, pad_ancestors=False):
children = {j: [] for j in range(nr_joints)}
parents = {j: None for j in range(nr_joints)}
ancestors = {j: [] for j in range(nr_joints)}
for j in range(nr_joints):
parent_index = int(joint_parents[j])
ancestors[j] = parent_chain(joint_parents, j, depth=chain_depth)
if pad_ancestors:
# adding itself
ancestors[j] += [j] * (chain_depth - len(ancestors[j]))
if parent_index == -1:
continue
children[parent_index].append(j)
parents[j] = parent_index
return {
'children': children,
'parents': parents,
'ancestors': ancestors,
}
# TODO: merge this with LinearBlendSkinning?
class LBSModule(nn.Module):
def __init__(
self, lbs_model_json, lbs_config_dict, lbs_template_verts, lbs_scale, global_scaling
):
super().__init__()
self.lbs_fn = LinearBlendSkinning(lbs_model_json, lbs_config_dict)
self.register_buffer("lbs_scale", th.as_tensor(lbs_scale, dtype=th.float32))
self.register_buffer(
"lbs_template_verts", th.as_tensor(lbs_template_verts, dtype=th.float32)
)
self.register_buffer("global_scaling", th.as_tensor(global_scaling))
def pose(self, verts_unposed, motion, template: Optional[th.Tensor] = None):
scale = self.lbs_scale.expand(motion.shape[0], -1)
if template is None:
template = self.lbs_template_verts
return self.lbs_fn(motion, scale, verts_unposed + template) * self.global_scaling
def unpose(self, verts, motion):
B = motion.shape[0]
scale = self.lbs_scale.expand(B, -1)
return (
self.lbs_fn.unpose(motion, scale, verts / self.global_scaling) - self.lbs_template_verts
)
def template_pose(self, motion):
B = motion.shape[0]
scale = self.lbs_scale.expand(B, -1)
verts = self.lbs_template_verts[np.newaxis].expand(B, -1, -1)
return self.lbs_fn(motion, scale, verts) * self.global_scaling[np.newaxis]