Spaces:
Runtime error
Runtime error
File size: 30,972 Bytes
882f6e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 |
"""
Copyright (c) Meta Platforms, Inc. and affiliates.
All rights reserved.
This source code is licensed under the license found in the
LICENSE file in the root directory of this source tree.
"""
import json
import numpy as np
import re
import torch
import torch as th
import torch.nn as nn
import torch.nn.functional as F
from typing import Dict, Any
from visualize.ca_body.utils.quaternion import Quaternion
from pytorch3d.transforms import matrix_to_euler_angles
from typing import Optional, Tuple
import logging
logger = logging.getLogger(__name__)
class ParameterTransform(nn.Module):
def __init__(self, lbs_cfg_dict: Dict[str, Any]):
super().__init__()
# self.pose_names = list(lbs_cfg_dict["joint_names"])
self.channel_names = list(lbs_cfg_dict["channel_names"])
transform_offsets = torch.FloatTensor(lbs_cfg_dict["transform_offsets"])
transform = torch.FloatTensor(lbs_cfg_dict["transform"])
self.limits = lbs_cfg_dict["limits"]
self.nr_scaling_params = lbs_cfg_dict["nr_scaling_params"]
self.nr_position_params = lbs_cfg_dict["nr_position_params"]
self.nr_total_params = self.nr_scaling_params + self.nr_position_params
self.register_buffer("transform_offsets", transform_offsets)
self.register_buffer("transform", transform)
def forward(self, pose: th.Tensor) -> th.Tensor:
"""
:param pose: raw pose inputs, shape (batch_size, len(pose_names))
:return: skeleton parameters, shape (batch_size, len(channel_names)*nr_skeleton_joints)
"""
return self.transform.mm(pose.t()).t() + self.transform_offsets
class LinearBlendSkinning(nn.Module):
def __init__(
self,
model_json: Dict[str, Any],
lbs_config_dict: Dict[str, Any],
num_max_skin_joints: int =8,
scale_path: str =None,
):
super().__init__()
model = model_json
self.param_transform = ParameterTransform(lbs_config_dict)
self.joint_names = []
nr_joints = len(model["Skeleton"]["Bones"])
joint_parents = torch.zeros((nr_joints, 1), dtype=torch.int64)
joint_rotation = torch.zeros((nr_joints, 4), dtype=torch.float32)
joint_offset = torch.zeros((nr_joints, 3), dtype=torch.float32)
for idx, bone in enumerate(model["Skeleton"]["Bones"]):
self.joint_names.append(bone["Name"])
if bone["Parent"] > nr_joints:
joint_parents[idx] = -1
else:
joint_parents[idx] = bone["Parent"]
joint_rotation[idx, :] = torch.FloatTensor(bone["PreRotation"])
joint_offset[idx, :] = torch.FloatTensor(bone["TranslationOffset"])
skin_model = model["SkinnedModel"]
mesh_vertices = torch.FloatTensor(skin_model["RestPositions"])
mesh_normals = torch.FloatTensor(skin_model["RestVertexNormals"])
weights = torch.FloatTensor([e[1] for e in skin_model["SkinningWeights"]])
indices = torch.LongTensor([e[0] for e in skin_model["SkinningWeights"]])
offsets = torch.LongTensor(skin_model["SkinningOffsets"])
nr_vertices = len(offsets) - 1
skin_weights = torch.zeros((nr_vertices, num_max_skin_joints), dtype=torch.float32)
skin_indices = torch.zeros((nr_vertices, num_max_skin_joints), dtype=torch.int64)
offset_right = offsets[1:]
for offset in range(num_max_skin_joints):
offset_left = offsets[:-1] + offset
skin_weights[offset_left < offset_right, offset] = weights[
offset_left[offset_left < offset_right]
]
skin_indices[offset_left < offset_right, offset] = indices[
offset_left[offset_left < offset_right]
]
mesh_faces = torch.IntTensor(skin_model["Faces"]["Indices"]).view(-1, 3)
mesh_texture_faces = torch.IntTensor(skin_model["Faces"]["TextureIndices"]).view(-1, 3)
mesh_texture_coords = torch.FloatTensor(skin_model["TextureCoordinates"]).view(-1, 2)
# zero_pose = torch.zeros((1, len(self.param_transform.pose_names)), dtype=torch.float32)
zero_pose = torch.zeros((1, self.param_transform.nr_total_params), dtype=torch.float32)
bind_state = solve_skeleton_state(
self.param_transform(zero_pose), joint_offset, joint_rotation, joint_parents
)
# self.register_buffer('mesh_vertices', mesh_vertices) # we want to train on rest pose
# self.mesh_vertices = nn.Parameter(mesh_vertices, requires_grad=optimize_mesh)
self.register_buffer("mesh_vertices", mesh_vertices)
self.register_buffer("joint_parents", joint_parents)
self.register_buffer("joint_rotation", joint_rotation)
self.register_buffer("joint_offset", joint_offset)
self.register_buffer("mesh_normals", mesh_normals)
self.register_buffer("mesh_faces", mesh_faces)
self.register_buffer("mesh_texture_faces", mesh_texture_faces)
self.register_buffer("mesh_texture_coords", mesh_texture_coords)
self.register_buffer("skin_weights", skin_weights)
self.register_buffer("skin_indices", skin_indices)
self.register_buffer("bind_state", bind_state)
self.register_buffer("rest_vertices", mesh_vertices)
# pre-compute joint weights
self.register_buffer("joints_weights", self.compute_joints_weights())
if scale_path is not None:
scale = np.loadtxt(scale_path).astype(np.float32)[np.newaxis]
scale = scale[:, 0, :] if len(scale.shape) == 3 else scale
self.register_buffer("scale", torch.tensor(scale))
@property
def num_verts(self):
return self.mesh_vertices.size(0)
@property
def num_joints(self):
return self.joint_offset.size(0)
@property
def num_params(self):
return self.skin_weights.shape[-1]
def compute_rigid_transforms(self, global_pose: th.Tensor, local_pose: th.Tensor, scale: th.Tensor):
"""Returns rigid transforms."""
params = torch.cat([global_pose, local_pose, scale], axis=-1)
params = self.param_transform(params)
return solve_skeleton_state(
params, self.joint_offset, self.joint_rotation, self.joint_parents
)
def compute_rigid_transforms_matrix(self, global_pose: th.Tensor, local_pose: th.Tensor, scale: th.Tensor):
params = torch.cat([global_pose, local_pose, scale], axis=-1)
params = self.param_transform(params)
states = solve_skeleton_state(
params, self.joint_offset, self.joint_rotation, self.joint_parents
)
return states_to_matrix(self.bind_state, states)
def compute_joints_weights(self, drop_empty=False):
"""Compute weights per joint given flattened weights-indices."""
idxs_verts = torch.arange(self.num_verts)[:, np.newaxis].expand(-1, self.num_params)
weights_joints = torch.zeros(
(self.num_joints, self.num_verts),
dtype=torch.float32,
device=self.skin_weights.device,
)
weights_joints[self.skin_indices, idxs_verts] = self.skin_weights
if drop_empty:
weights_joints = weights_joints[weights_joints.sum(axis=-1).abs() > 0]
return weights_joints
def compute_root_rigid_transform(self, poses: th.Tensor) -> Tuple[th.Tensor, th.Tensor]:
"""Get a transform of the root joint."""
scales = torch.zeros(
(poses.shape[0], self.nr_total_params - poses.shape[1]),
dtype=poses.dtype,
device=poses.device,
)
params = torch.cat((poses, scales), 1)
states = solve_skeleton_state(
self.param_transform(params),
self.joint_offset,
self.joint_rotation,
self.joint_parents,
)
mat = states_to_matrix(self.bind_state, states)
return mat[:, 1, :, 3], mat[:, 1, :, :3]
def compute_relative_rigid_transforms(self, global_pose: th.Tensor, local_pose: th.Tensor, scale: th.Tensor):
params = torch.cat([global_pose, local_pose, scale], axis=-1)
params = self.param_transform(params)
batch_size = params.shape[0]
joint_offset = self.joint_offset
joint_rotation = self.joint_rotation
# batch processing for parameters
jp = params.view((batch_size, -1, 7))
lt = jp[:, :, 0:3] + joint_offset.unsqueeze(0)
lr = Quaternion.batchMul(joint_rotation.unsqueeze(0), Quaternion.batchFromXYZ(jp[:, :, 3:6]))
return torch.cat([lt, lr], axis=-1)
def skinning(self, bind_state: th.Tensor, vertices: th.Tensor, target_states: th.Tensor):
"""
Apply skinning to a set of states
Args:
b/bind_state: 1 x nr_joint x 8 bind state
v/vertices: 1 x nr_vertices x 3 vertices
t/target_states: batch_size x nr_joint x 8 current states
Returns:
batch_size x nr_vertices x 3 skinned vertices
"""
assert target_states.size()[1:] == bind_state.size()[1:]
mat = states_to_matrix(bind_state, target_states)
# apply skinning to vertices
vs = torch.matmul(
mat[:, self.skin_indices],
torch.cat((vertices, torch.ones_like(vertices[:, :, 0]).unsqueeze(2)), dim=2)
.unsqueeze(2)
.unsqueeze(4),
)
ws = self.skin_weights.unsqueeze(2).unsqueeze(3)
res = (vs * ws).sum(dim=2).squeeze(3)
return res
def unpose(self, poses: th.Tensor, scales: th.Tensor, verts: th.Tensor):
"""
:param poses: 100 (tx ty tz rx ry rz) params in blueman
:param scales: 29 (s) params in blueman
:return:
"""
# check shape of poses and scales
params = torch.cat((poses, scales), 1)
states = solve_skeleton_state(
self.param_transform(params),
self.joint_offset,
self.joint_rotation,
self.joint_parents,
)
return self.unskinning(self.bind_state, states, verts)
def unskinning(self, bind_state: th.Tensor, target_states: th.Tensor, verts: th.Tensor):
"""Apply skinning to a set of states
Args:
bind_state: [B, NJ, 8] - bind state
target_states: [B, NJ, 8] - current states
vertices: [B, V, 3] - vertices
Returns:
batch_size x nr_vertices x 3 skinned vertices
"""
assert target_states.size()[1:] == bind_state.size()[1:]
mat = states_to_matrix(bind_state, target_states)
ws = self.skin_weights[None, :, :, None, None]
sum_mat = (mat[:, self.skin_indices] * ws).sum(dim=2)
sum_mat4x4 = torch.cat((sum_mat, torch.zeros_like(sum_mat[:, :, :1, :])), dim=2)
sum_mat4x4[:, :, 3, 3] = 1.0
verts_4d = torch.cat((verts, torch.ones_like(verts[:, :, :1])), dim=2).unsqueeze(3)
resmesh = []
for i in range(sum_mat.shape[0]):
newmat = sum_mat4x4[i, :, :, :].contiguous()
invnewmat = newmat.inverse()
tmpvets = invnewmat.matmul(verts_4d[i])
resmesh.append(tmpvets.unsqueeze(0))
resmesh = torch.cat(resmesh)
return resmesh.squeeze(3)[..., :3].contiguous()
def forward(self, poses: th.Tensor, scales: th.Tensor, verts_unposed: Optional[th.Tensor] = None) -> th.Tensor:
"""
Args:
poses: [B, NP] - pose parametersa
scales: [B, NS] - additional scaling params
verts_unposed: [B, N, 3] - unposed vertices
Returns:
[B, N, 3] - posed vertices
"""
params = torch.cat((poses, scales), 1)
params_transformed = self.param_transform(params)
states = solve_skeleton_state(
params_transformed,
self.joint_offset,
self.joint_rotation,
self.joint_parents,
)
if verts_unposed is None:
mesh = self.skinning(self.bind_state, self.mesh_vertices.unsqueeze(0), states)
else:
mesh = self.skinning(self.bind_state, verts_unposed, states)
return mesh
def solve_skeleton_state(param: th.Tensor, joint_offset: th.Tensor, joint_rotation: th.Tensor, joint_parents: th.Tensor):
"""
:param param: batch_size x (7*nr_skeleton_joints) ParamTransform Outputs.
:return: batch_size x nr_skeleton_joints x 8 Skeleton States
8 stands form 3 translation + 4 rotation (quat) + 1 scale
"""
batch_size = param.shape[0]
# batch processing for parameters
jp = param.view((batch_size, -1, 7))
lt = jp[:, :, 0:3] + joint_offset.unsqueeze(0)
lr = Quaternion.batchMul(joint_rotation.unsqueeze(0), Quaternion.batchFromXYZ(jp[:, :, 3:6]))
ls = torch.pow(
torch.tensor([2.0], dtype=torch.float32, device=param.device),
jp[:, :, 6].unsqueeze(2),
)
state = []
for index, parent in enumerate(joint_parents):
if int(parent) != -1:
gr = Quaternion.batchMul(state[parent][:, :, 3:7], lr[:, index, :].unsqueeze(1))
gt = (
Quaternion.batchRot(
state[parent][:, :, 3:7],
lt[:, index, :].unsqueeze(1) * state[parent][:, :, 7].unsqueeze(2),
)
+ state[parent][:, :, 0:3]
)
gs = state[parent][:, :, 7].unsqueeze(2) * ls[:, index, :].unsqueeze(1)
state.append(torch.cat((gt, gr, gs), dim=2))
else:
state.append(
torch.cat((lt[:, index, :], lr[:, index, :], ls[:, index, :]), dim=1).view(
(batch_size, 1, 8)
)
)
return torch.cat(state, dim=1)
def states_to_matrix(bind_state: th.Tensor, target_states: th.Tensor, return_transform: bool=False):
# multiply bind inverse with states
br = Quaternion.batchInvert(bind_state[:, :, 3:7])
bs = bind_state[:, :, 7].unsqueeze(2).reciprocal()
bt = Quaternion.batchRot(br, -bind_state[:, :, 0:3]) * bs
# applying rotation
tr = Quaternion.batchMul(target_states[:, :, 3:7], br)
# applying scaling
ts = target_states[:, :, 7].unsqueeze(2) * bs
# applying transformation
tt = (
Quaternion.batchRot(target_states[:, :, 3:7], bt * target_states[:, :, 7].unsqueeze(2))
+ target_states[:, :, 0:3]
)
# convert to matrices
twx = 2.0 * tr[:, :, 0] * tr[:, :, 3]
twy = 2.0 * tr[:, :, 1] * tr[:, :, 3]
twz = 2.0 * tr[:, :, 2] * tr[:, :, 3]
txx = 2.0 * tr[:, :, 0] * tr[:, :, 0]
txy = 2.0 * tr[:, :, 1] * tr[:, :, 0]
txz = 2.0 * tr[:, :, 2] * tr[:, :, 0]
tyy = 2.0 * tr[:, :, 1] * tr[:, :, 1]
tyz = 2.0 * tr[:, :, 2] * tr[:, :, 1]
tzz = 2.0 * tr[:, :, 2] * tr[:, :, 2]
mat = torch.stack(
(
torch.stack((1.0 - (tyy + tzz), txy + twz, txz - twy), dim=2) * ts,
torch.stack((txy - twz, 1.0 - (txx + tzz), tyz + twx), dim=2) * ts,
torch.stack((txz + twy, tyz - twx, 1.0 - (txx + tyy)), dim=2) * ts,
tt,
),
dim=3,
)
if return_transform:
return mat, (tr, tt, ts)
return mat
def get_influence_map(
transform_raw: th.Tensor, pose_length=None, num_params_per_joint=7, eps=1.0e-6
):
num_joints = transform_raw.shape[0] // num_params_per_joint
num_params = transform_raw.shape[-1]
if pose_length is None:
pose_length = num_params
assert pose_length <= num_params
transform_raw = transform_raw.reshape((num_joints, num_params_per_joint, num_params))
return [
torch.where(torch.abs(transform_raw[i, :, :pose_length]) > eps)[1].tolist()
for i in range(num_joints)
]
def compute_weights_joints_slow(lbs_weights, lbs_indices, num_joints):
num_verts = lbs_weights.shape[0]
weights_joints = torch.zeros((num_joints, num_verts), dtype=torch.float32)
for i in range(num_verts):
idx = lbs_indices[i, :]
weights_joints[idx, i] = lbs_weights[i, :]
return weights_joints
def load_momentum_cfg(model, lbs_config_txt_fh, nr_scaling_params=None):
def find(l, x):
try:
return l.index(x)
except ValueError:
return None
"""Load a parameter configuration file"""
channelNames = ["tx", "ty", "tz", "rx", "ry", "rz", "sc"]
paramNames = []
joint_names = []
for idx, bone in enumerate(model["Skeleton"]["Bones"]):
joint_names.append(bone["Name"])
def findJointIndex(x):
return find(joint_names, x)
def findParameterIndex(x):
return find(paramNames, x)
limits = []
# create empty result
transform_triplets = []
lines = lbs_config_txt_fh.readlines()
# read until end
for line in lines:
# strip comments
line = line[: line.find("#")]
if line.find("limit") != -1:
r = re.search("limit ([\\w.]+) (\\w+) (.*)", line)
if r is None:
continue
if len(r.groups()) != 3:
logger.info("Failed to parse limit configuration line :\n " + line)
continue
# find parameter and/or joint index
fullname = r.groups()[0]
type = r.groups()[1]
remaining = r.groups()[2]
parameterIndex = findParameterIndex(fullname)
jointName = fullname.split(".")
jointIndex = findJointIndex(jointName[0])
channelIndex = -1
if jointIndex is not None and len(jointName) == 2:
# find matching channel name
channelIndex = channelNames.index(jointName[1])
if channelIndex is None:
logger.info(
"Unknown joint channel name "
+ jointName[1]
+ " in parameter configuration line :\n "
+ line
)
continue
# only parse passive limits for now
if type == "minmax_passive" or type == "minmax":
# match [<float> , <float>] <optional weight>
rp = re.search(
"\\[\\s*([-+]?[0-9]*\\.?[0-9]+)\\s*,\\s*([-+]?[0-9]*\\.?[0-9]+)\\s*\\](\\s*[-+]?[0-9]*\\.?[0-9]+)?",
remaining,
)
if len(rp.groups()) != 3:
logger.info(f"Failed to parse passive limit configuration line :\n {line}")
continue
minVal = float(rp.groups()[0])
maxVal = float(rp.groups()[1])
weightVal = 1.0
if len(rp.groups()) == 3 and not rp.groups()[2] is None:
weightVal = float(rp.groups()[2])
# result.limits.append([jointIndex * 7 + channelIndex, minVal, maxVal])
if channelIndex >= 0:
valueIndex = jointIndex * 7 + channelIndex
limit = {
"type": "LimitMinMaxJointValue",
"str": fullname,
"valueIndex": valueIndex,
"limits": [minVal, maxVal],
"weight": weightVal,
}
limits.append(limit)
else:
if parameterIndex is None:
logger.info(f"Unknown parameterIndex : {fullname}\n {line} {paramNames} ")
continue
limit = {
"type": "LimitMinMaxParameter",
"str": fullname,
"parameterIndex": parameterIndex,
"limits": [minVal, maxVal],
"weight": weightVal,
}
limits.append(limit)
# continue the remaining file
continue
# check for parameterset definitions and ignore
if line.find("parameterset") != -1:
continue
# use regex to parse definition
r = re.search("(\w+).(\w+)\s*=\s*(.*)", line)
if r is None:
continue
if len(r.groups()) != 3:
logger.info("Failed to parse parameter configuration line :\n " + line)
continue
# find joint name and parameter
jointIndex = findJointIndex(r.groups()[0])
if jointIndex is None:
logger.info(
"Unknown joint name "
+ r.groups()[0]
+ " in parameter configuration line :\n "
+ line
)
continue
# find matching channel name
channelIndex = channelNames.index(r.groups()[1])
if channelIndex is None:
logger.info(
"Unknown joint channel name "
+ r.groups()[1]
+ " in parameter configuration line :\n "
+ line
)
continue
valueIndex = jointIndex * 7 + channelIndex
# parse parameters
parameterList = r.groups()[2].split("+")
for parameterPair in parameterList:
parameterPair = parameterPair.strip()
r = re.search("\s*([+-]?[0-9]*\.?[0-9]*)\s\*\s(\w+)\s*", parameterPair)
if r is None or len(r.groups()) != 2:
logger.info(
"Malformed parameter description "
+ parameterPair
+ " in parameter configuration line :\n "
+ line
)
continue
val = float(r.groups()[0])
parameter = r.groups()[1]
# check if parameter exists
parameterIndex = findParameterIndex(parameter)
if parameterIndex is None:
# no, create new parameter entry
parameterIndex = len(paramNames)
paramNames.append(parameter)
transform_triplets.append((valueIndex, parameterIndex, val))
# set (dense) parameter_transformation matrix
transform = np.zeros((len(channelNames) * len(joint_names), len(paramNames)), dtype=np.float32)
for i, j, v in transform_triplets:
transform[i, j] = v
outputs = {
"model_param_names": paramNames,
"joint_names": joint_names,
"channel_names": channelNames,
"limits": limits,
"transform": transform,
"transform_offsets": np.zeros((1, len(channelNames) * len(joint_names)), dtype=np.float32),
}
# set number of scales automatically
if nr_scaling_params is None:
outputs.update(nr_scaling_params=len([s for s in paramNames if s.startswith("scale")]))
outputs.update(nr_position_params=len(paramNames) - outputs["nr_scaling_params"])
return outputs
def compute_normalized_pose_quat(lbs, local_pose, scale):
"""Computes a normalized representation of the pose in quaternion space.
This is a delta between the per-joint local transformation and the bind state.
Returns:
[B, NJ, 4] - normalized rotations
"""
B = local_pose.shape[0]
global_pose_zero = th.zeros((B, 6), dtype=th.float32, device=local_pose.device)
params = lbs.param_transform(th.cat([global_pose_zero, local_pose, scale], axis=-1))
params = params.reshape(B, -1, 7)
# applying rotation
# TODO: what is this?
rot_quat = Quaternion.batchMul(lbs.joint_rotation[np.newaxis], Quaternion.batchFromXYZ(params[:, :, 3:6]))
# removing the bind state
bind_rot_quat = Quaternion.batchInvert(lbs.bind_state[:, :, 3:7])
return Quaternion.batchMul(rot_quat, bind_rot_quat)
def compute_root_transform_cuda(lbs_fn, poses, verts=None):
# NOTE: verts is not really necessary,
# NOTE: should be used in conjuncation with LBSCuda
B = poses.shape[0]
# NOTE: scales are zero (!)
_, _, _, state_t, state_r, state_s = lbs_fn(poses, vertices=verts)
bind_r = lbs_fn.joint_state_r_zero[np.newaxis, 1].expand(B, -1, -1)
bind_t = lbs_fn.joint_state_t_zero[np.newaxis, 1].expand(B, -1)
R_root = th.matmul(state_r[:, 1], bind_r)
t_root = (
th.matmul(state_r[:, 1], (bind_t * state_s[:, 1])[..., np.newaxis])[..., 0] + state_t[:, 1]
)
return R_root, t_root
# def compute_joints_weights(lbs_fn: LinearBlendSkinningCuda, drop_empty: bool = False) -> th.Tensor:
# device = lbs_fn.skin_indices.device
# idxs_verts = th.arange(lbs_fn.nr_vertices)[:, np.newaxis].to(device)
# weights_joints = th.zeros(
# (lbs_fn.nr_joints, lbs_fn.nr_vertices),
# dtype=th.float32,
# device=lbs_fn.skin_indices.device,
# )
# weights_joints[lbs_fn.skin_indices, idxs_verts] = lbs_fn.skin_weights
# if drop_empty:
# weights_joints = weights_joints[weights_joints.sum(axis=-1).abs() > 0]
# return weights_joints
# def compute_pose_regions(lbs_fn: LinearBlendSkinningCuda) -> np.ndarray:
# """Computes pose regions given a linear blend skinning function.
# Returns:
# np.ndarray of boolean masks of shape [nr_params, n_rvertices]
# """
# weights = compute_joints_weights(lbs_fn).cpu().numpy()
# n_pos = lbs_fn.nr_position_params
# param_masks = np.zeros((n_pos, weights.shape[-1]))
# children = {j: [] for j in range(lbs_fn.nr_joints)}
# parents = {j: None for j in range(lbs_fn.nr_joints)}
# prec = {j: [] for j in range(lbs_fn.nr_joints)}
# for j in range(lbs_fn.nr_joints):
# parent_index = int(lbs_fn.joint_parents[j])
# if parent_index == -1:
# continue
# children[parent_index].append(j)
# parents[j] = parent_index
# prec[j] = [parent_index, int(lbs_fn.joint_parents[parent_index])]
# # get parameters for each joint
# # j_to_p = get_influence_map(lbs_fn.param_transform.transform, n_pos)
# j_to_p = get_influence_map(lbs_fn.param_transform, n_pos)
# # get all the joints
# p_to_j = [[] for i in range(n_pos)]
# for j, pidx in enumerate(j_to_p):
# for p in pidx:
# if j not in p_to_j[p]:
# p_to_j[p].append(j)
# for p, jidx in enumerate(p_to_j):
# param_masks[p] = weights[jidx].sum(axis=0)
# if not np.any(param_masks[p]):
# assert len(jidx) == 1
# jidx_c = children[jidx[0]][:]
# for jc in jidx_c[:]:
# jidx_c += children[jc]
# param_masks[p] = weights[jidx_c].sum(axis=0)
# return param_masks > 0.0
def compute_pose_regions_legacy(lbs_fn) -> np.ndarray:
"""Computes pose regions given a linear blend skinning function."""
weights = lbs_fn.joints_weights.cpu().numpy()
n_pos = lbs_fn.param_transform.nr_position_params
param_masks = np.zeros((n_pos, lbs_fn.joints_weights.shape[-1]))
children = {j: [] for j in range(lbs_fn.num_joints)}
parents = {j: None for j in range(lbs_fn.num_joints)}
prec = {j: [] for j in range(lbs_fn.num_joints)}
for j in range(lbs_fn.num_joints):
parent_index = int(lbs_fn.joint_parents[j, 0])
if parent_index == -1:
continue
children[parent_index].append(j)
parents[j] = parent_index
prec[j] = [parent_index, int(lbs_fn.joint_parents[parent_index, 0])]
# get parameters for each joint
j_to_p = get_influence_map(lbs_fn.param_transform.transform, n_pos)
# get all the joints
p_to_j = [[] for i in range(n_pos)]
for j, pidx in enumerate(j_to_p):
for p in pidx:
if j not in p_to_j[p]:
p_to_j[p].append(j)
for p, jidx in enumerate(p_to_j):
param_masks[p] = weights[jidx].sum(axis=0)
if not np.any(param_masks[p]):
assert len(jidx) == 1
jidx_c = children[jidx[0]][:]
for jc in jidx_c[:]:
jidx_c += children[jc]
param_masks[p] = weights[jidx_c].sum(axis=0)
return param_masks > 0.0
def compute_pose_mask_uv(lbs_fn, geo_fn, uv_size, ksize=25):
device = geo_fn.index_image.device
pose_regions = compute_pose_regions(lbs_fn)
pose_regions = (
th.as_tensor(pose_regions[6:], dtype=th.float32).permute(1, 0)[np.newaxis].to(device)
)
pose_regions_uv = geo_fn.to_uv(pose_regions)
pose_regions_uv = F.max_pool2d(pose_regions_uv, ksize, 1, padding=ksize // 2)
pose_cond_mask = (F.interpolate(pose_regions_uv, size=(uv_size, uv_size)) > 0.1).to(th.int32)
return pose_cond_mask
def parent_chain(joint_parents, idx, depth):
if depth == 0 or idx == 0:
return []
parent_idx = int(joint_parents[idx])
return [parent_idx] + parent_chain(joint_parents, parent_idx, depth - 1)
def joint_connectivity(nr_joints, joint_parents, chain_depth=2, pad_ancestors=False):
children = {j: [] for j in range(nr_joints)}
parents = {j: None for j in range(nr_joints)}
ancestors = {j: [] for j in range(nr_joints)}
for j in range(nr_joints):
parent_index = int(joint_parents[j])
ancestors[j] = parent_chain(joint_parents, j, depth=chain_depth)
if pad_ancestors:
# adding itself
ancestors[j] += [j] * (chain_depth - len(ancestors[j]))
if parent_index == -1:
continue
children[parent_index].append(j)
parents[j] = parent_index
return {
'children': children,
'parents': parents,
'ancestors': ancestors,
}
# TODO: merge this with LinearBlendSkinning?
class LBSModule(nn.Module):
def __init__(
self, lbs_model_json, lbs_config_dict, lbs_template_verts, lbs_scale, global_scaling
):
super().__init__()
self.lbs_fn = LinearBlendSkinning(lbs_model_json, lbs_config_dict)
self.register_buffer("lbs_scale", th.as_tensor(lbs_scale, dtype=th.float32))
self.register_buffer(
"lbs_template_verts", th.as_tensor(lbs_template_verts, dtype=th.float32)
)
self.register_buffer("global_scaling", th.as_tensor(global_scaling))
def pose(self, verts_unposed, motion, template: Optional[th.Tensor] = None):
scale = self.lbs_scale.expand(motion.shape[0], -1)
if template is None:
template = self.lbs_template_verts
return self.lbs_fn(motion, scale, verts_unposed + template) * self.global_scaling
def unpose(self, verts, motion):
B = motion.shape[0]
scale = self.lbs_scale.expand(B, -1)
return (
self.lbs_fn.unpose(motion, scale, verts / self.global_scaling) - self.lbs_template_verts
)
def template_pose(self, motion):
B = motion.shape[0]
scale = self.lbs_scale.expand(B, -1)
verts = self.lbs_template_verts[np.newaxis].expand(B, -1, -1)
return self.lbs_fn(motion, scale, verts) * self.global_scaling[np.newaxis]
|