File size: 9,806 Bytes
d4d998a
 
 
 
 
 
 
 
b1cb07d
 
9ae09c0
d4d998a
b1cb07d
d4d998a
 
 
b1cb07d
 
d4d998a
 
b1cb07d
3c01baa
b1cb07d
3c01baa
b1cb07d
 
 
 
 
 
 
 
 
 
 
 
 
 
3c01baa
 
a7eca29
d4d998a
a7eca29
d4d998a
 
b1cb07d
a7eca29
b1cb07d
 
a7eca29
b1cb07d
 
 
 
 
 
 
 
d4d998a
 
a7eca29
b1cb07d
a7eca29
b1cb07d
 
 
 
a7eca29
 
 
 
 
b1cb07d
 
d4d998a
b1cb07d
 
 
 
 
 
 
 
 
 
 
 
d4d998a
b1cb07d
 
d4d998a
 
3c01baa
d4d998a
 
 
b1cb07d
 
d4d998a
b1cb07d
 
 
 
 
 
 
 
 
 
 
 
d4d998a
 
b1cb07d
d4d998a
 
3c01baa
d4d998a
 
 
b1cb07d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4d998a
 
 
 
 
b1cb07d
 
 
 
 
a17bcda
b1cb07d
 
 
 
 
 
 
d4d998a
b1cb07d
d4d998a
 
b1cb07d
 
 
 
d4d998a
 
 
b1cb07d
 
 
 
 
d4d998a
b1cb07d
 
b4647b5
 
 
d4d998a
b1cb07d
 
b4647b5
 
 
 
 
 
 
 
 
 
 
 
b1cb07d
3f01f81
 
a9dbb77
 
b1cb07d
d4d998a
 
b1cb07d
 
 
 
d4d998a
b4647b5
 
 
 
9ae09c0
b4647b5
 
 
 
9ae09c0
b4647b5
 
 
 
9ae09c0
b4647b5
d4d998a
 
 
 
 
b1cb07d
3c01baa
d4d998a
9a237d2
d4d998a
 
b1cb07d
d4d998a
 
a7eca29
d4d998a
a7eca29
d4d998a
a7eca29
b1cb07d
 
 
 
 
a7eca29
b1cb07d
d4d998a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
"""
Populate the GuardBench leaderboard from HuggingFace datasets.
"""

import json
import os
import pandas as pd
import tempfile
from typing import Dict, List, Optional
from datetime import datetime
import numpy as np

from huggingface_hub import hf_hub_download, HfApi
from datasets import load_dataset

from src.display.utils import GUARDBENCH_COLUMN, DISPLAY_COLS, CATEGORIES
from src.envs import RESULTS_DATASET_ID, TOKEN, CACHE_PATH
from src.leaderboard.processor import leaderboard_to_dataframe


def get_latest_leaderboard(version="v0") -> Optional[Dict]:
    """
    Get the latest leaderboard data from HuggingFace dataset.
    """
    try:
        # Try to download the leaderboard file
        leaderboard_path = hf_hub_download(
            repo_id=RESULTS_DATASET_ID,
            filename=f"leaderboards/leaderboard_{version}.json",
            repo_type="dataset",
            token=TOKEN
        )

        with open(leaderboard_path, 'r') as f:
            return json.load(f)
    except Exception as e:
        print(f"Error downloading leaderboard: {e}")
        return None


def get_model_entry(model_name: str, mode: str, version="v0") -> Optional[Dict]:
    """
    Get a specific model's entry from the entries folder, uniquely identified by model_name, mode, and version.
    """
    try:
        model_name_safe = model_name.replace("/", "_").replace(" ", "_")
        mode_safe = str(mode).replace("/", "_").replace(" ", "_").lower()
        entry_path = hf_hub_download(
            repo_id=RESULTS_DATASET_ID,
            filename=f"entries/entry_{model_name_safe}_{mode_safe}_{version}.json",
            repo_type="dataset",
            token=TOKEN
        )
        with open(entry_path, 'r') as f:
            return json.load(f)
    except Exception as e:
        print(f"Error downloading model entry: {e}")
        return None


def get_all_entries(version="v0", mode: str = None) -> List[Dict]:
    """
    Get all model entries from the entries folder. If mode is provided, only return entries matching that mode.
    """
    try:
        api = HfApi(token=TOKEN)
        files = api.list_repo_files(repo_id=RESULTS_DATASET_ID, repo_type="dataset")
        if mode is not None:
            mode_safe = str(mode).replace("/", "_").replace(" ", "_").lower()
            entry_files = [f for f in files if f.startswith("entries/") and f"_{mode_safe}_" in f and f.endswith(f"_{version}.json")]
        else:
            entry_files = [f for f in files if f.startswith("entries/") and f.endswith(f"_{version}.json")]
        entries = []
        for entry_file in entry_files:
            try:
                entry_path = hf_hub_download(
                    repo_id=RESULTS_DATASET_ID,
                    filename=entry_file,
                    repo_type="dataset",
                    token=TOKEN
                )
                with open(entry_path, 'r') as f:
                    entry_data = json.load(f)
                    entries.append(entry_data)
            except Exception as e:
                print(f"Error loading entry {entry_file}: {e}")
        return entries
    except Exception as e:
        print(f"Error listing entries: {e}")
        return []


def get_leaderboard_df(version="v0") -> pd.DataFrame:
    """
    Get the leaderboard data as a DataFrame.
    """
    # Get latest leaderboard data
    leaderboard_data = get_latest_leaderboard(version)

    if not leaderboard_data:
        # If no leaderboard exists, try to build it from entries
        entries = get_all_entries(version)
        if entries:
            leaderboard_data = {
                "entries": entries,
                "last_updated": datetime.now().isoformat(),
                "version": version
            }
        else:
            # Return empty DataFrame if no data available
            return pd.DataFrame(columns=DISPLAY_COLS)

    # Convert to DataFrame
    return leaderboard_to_dataframe(leaderboard_data)


def get_category_leaderboard_df(category: str, version="v0") -> pd.DataFrame:
    """
    Get the leaderboard data filtered by a specific category.
    """
    # Get latest leaderboard data
    leaderboard_data = get_latest_leaderboard(version)

    if not leaderboard_data:
        # If no leaderboard exists, try to build it from entries
        entries = get_all_entries(version)
        if entries:
            leaderboard_data = {
                "entries": entries,
                "last_updated": datetime.now().isoformat(),
                "version": version
            }
        else:
            # Return empty DataFrame if no data available
            return pd.DataFrame(columns=DISPLAY_COLS)

    # Filter entries to only include those with data for the specified category
    filtered_entries = []

    for entry in leaderboard_data.get("entries", []):
        # Copy all base fields
        filtered_entry = {
            "model_name": entry.get("model_name", "Unknown Model"),
            "model_type": entry.get("model_type", "Unknown"),
            "guard_model_type": entry.get("guard_model_type", "Unknown"),
            "mode": entry.get("mode", "Strict"),
            "submission_date": entry.get("submission_date", ""),
            "version": entry.get("version", version),
            "base_model": entry.get("base_model", ""),
            "revision": entry.get("revision", ""),
            "precision": entry.get("precision", ""),
            "weight_type": entry.get("weight_type", "")
        }

        if "per_category_metrics" in entry and category in entry["per_category_metrics"]:
            category_metrics = entry["per_category_metrics"][category]

            # Add all metrics for each test type
            for test_type, metrics in category_metrics.items():
                if isinstance(metrics, dict):
                    for metric, value in metrics.items():
                        col_name = f"{test_type}_{metric}"
                        filtered_entry[col_name] = value

                        # Also add the non-binary version for F1 scores
                        if metric == "f1_binary":
                            filtered_entry[f"{test_type}_f1"] = value

            # Calculate averages
            f1_values = []
            recall_values = []
            precision_values = []
            accuracy_values = []
            category_recall_values = []
            total_samples = 0

            for test_type in ["default_prompts", "jailbreaked_prompts", "default_answers", "jailbreaked_answers"]:
                if test_type in category_metrics and isinstance(category_metrics[test_type], dict):
                    test_metrics = category_metrics[test_type]
                    if "f1_binary" in test_metrics and pd.notna(test_metrics["f1_binary"]):
                        f1_values.append(test_metrics["f1_binary"])
                    if "recall_binary" in test_metrics and pd.notna(test_metrics["recall_binary"]):
                        recall_values.append(test_metrics["recall_binary"])
                        category_recall_values.append(test_metrics["recall_binary"])
                    if "precision_binary" in test_metrics and pd.notna(test_metrics["precision_binary"]):
                        precision_values.append(test_metrics["precision_binary"])
                    if "accuracy" in test_metrics and pd.notna(test_metrics["accuracy"]):
                        accuracy_values.append(test_metrics["accuracy"])
                    if "sample_count" in test_metrics and pd.notna(test_metrics["sample_count"]):
                        total_samples += test_metrics["sample_count"]

            # print(f"F1 values: {f1_values}")
            # print(f1_values, recall_values, precision_values, accuracy_values, total_samples)


            # Add overall averages
            if f1_values:
                filtered_entry["average_f1"] = sum(f1_values) / len(f1_values)
            if recall_values:
                filtered_entry["average_recall"] = sum(recall_values) / len(recall_values)
            if precision_values:
                filtered_entry["average_precision"] = sum(precision_values) / len(precision_values)

            # Add category-specific values to standard macro metric keys
            if accuracy_values:
                filtered_entry["macro_accuracy"] = sum(accuracy_values) / len(accuracy_values)
            else:
                filtered_entry["macro_accuracy"] = np.nan

            if category_recall_values:
                filtered_entry["macro_recall"] = sum(category_recall_values) / len(category_recall_values)
            else:
                filtered_entry["macro_recall"] = np.nan

            if total_samples > 0:
                filtered_entry["total_evals_count"] = total_samples
            else:
                filtered_entry["total_evals_count"] = np.nan

            filtered_entries.append(filtered_entry)

    # Create a new leaderboard data structure with the filtered entries
    filtered_leaderboard = {
        "entries": filtered_entries,
        "last_updated": leaderboard_data.get("last_updated", datetime.now().isoformat()),
        "version": version
    }
    # print(filtered_leaderboard)

    # Convert to DataFrame
    return leaderboard_to_dataframe(filtered_leaderboard)


def get_detailed_model_data(model_name: str, mode: str, version="v0") -> Dict:
    """
    Get detailed data for a specific model and mode.
    """
    entry = get_model_entry(model_name, mode, version)
    if entry:
        return entry
    leaderboard_data = get_latest_leaderboard(version)
    if leaderboard_data:
        for entry in leaderboard_data.get("entries", []):
            if entry.get("model_name") == model_name and str(entry.get("mode")).lower() == str(mode).lower():
                return entry
    return {}