apsys commited on
Commit
9ae09c0
·
1 Parent(s): 3f01f81

categories fix

Browse files
Files changed (2) hide show
  1. app.py +4 -0
  2. src/populate.py +4 -3
app.py CHANGED
@@ -191,6 +191,10 @@ def init_leaderboard(dataframe, visible_columns=None):
191
  visible_columns = ['model_name'] + visible_columns
192
  display_df = dataframe[visible_columns].copy()
193
 
 
 
 
 
194
  # Round numeric columns to 3 decimal places for display
195
  numeric_cols = display_df.select_dtypes(include=np.number).columns
196
  for col in numeric_cols:
 
191
  visible_columns = ['model_name'] + visible_columns
192
  display_df = dataframe[visible_columns].copy()
193
 
194
+ print(f"--- DataFrame inside init_leaderboard (before rounding) ---")
195
+ print(display_df[['model_name', 'macro_accuracy', 'macro_recall', 'total_evals_count']].head() if all(c in display_df.columns for c in ['model_name', 'macro_accuracy', 'macro_recall', 'total_evals_count']) else "Relevant columns not present")
196
+ print(f"-------------------------------------------------------------")
197
+
198
  # Round numeric columns to 3 decimal places for display
199
  numeric_cols = display_df.select_dtypes(include=np.number).columns
200
  for col in numeric_cols:
src/populate.py CHANGED
@@ -8,6 +8,7 @@ import pandas as pd
8
  import tempfile
9
  from typing import Dict, List, Optional
10
  from datetime import datetime
 
11
 
12
  from huggingface_hub import hf_hub_download, HfApi
13
  from datasets import load_dataset
@@ -201,17 +202,17 @@ def get_category_leaderboard_df(category: str, version="v0") -> pd.DataFrame:
201
  if accuracy_values:
202
  filtered_entry["macro_accuracy"] = sum(accuracy_values) / len(accuracy_values)
203
  else:
204
- filtered_entry["macro_accuracy"] = pd.NA
205
 
206
  if category_recall_values:
207
  filtered_entry["macro_recall"] = sum(category_recall_values) / len(category_recall_values)
208
  else:
209
- filtered_entry["macro_recall"] = pd.NA
210
 
211
  if total_samples > 0:
212
  filtered_entry["total_evals_count"] = total_samples
213
  else:
214
- filtered_entry["total_evals_count"] = pd.NA
215
 
216
  filtered_entries.append(filtered_entry)
217
 
 
8
  import tempfile
9
  from typing import Dict, List, Optional
10
  from datetime import datetime
11
+ import numpy as np
12
 
13
  from huggingface_hub import hf_hub_download, HfApi
14
  from datasets import load_dataset
 
202
  if accuracy_values:
203
  filtered_entry["macro_accuracy"] = sum(accuracy_values) / len(accuracy_values)
204
  else:
205
+ filtered_entry["macro_accuracy"] = np.nan
206
 
207
  if category_recall_values:
208
  filtered_entry["macro_recall"] = sum(category_recall_values) / len(category_recall_values)
209
  else:
210
+ filtered_entry["macro_recall"] = np.nan
211
 
212
  if total_samples > 0:
213
  filtered_entry["total_evals_count"] = total_samples
214
  else:
215
+ filtered_entry["total_evals_count"] = np.nan
216
 
217
  filtered_entries.append(filtered_entry)
218