File size: 49,515 Bytes
d4d998a
 
 
 
 
 
 
 
 
 
b1cb07d
 
d4d998a
2de7cd0
99b2934
7012feb
d4d998a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a17bcda
d4d998a
b1cb07d
29a8d4f
 
 
d4d998a
 
 
 
 
 
 
 
76284d6
d4d998a
b1cb07d
d4d998a
 
 
76284d6
 
 
d4d998a
 
 
 
 
3c01baa
 
 
 
d4d998a
 
 
3c01baa
d4d998a
 
 
 
 
fbcfbe8
c83a8c6
 
 
76284d6
fbcfbe8
 
 
44bf9b9
fbcfbe8
 
76284d6
 
fbcfbe8
99b2934
76284d6
bd718b1
76284d6
bd718b1
 
 
76284d6
 
fbcfbe8
76284d6
 
 
fbcfbe8
 
76284d6
 
bd718b1
76284d6
 
9d836ae
 
76284d6
 
3f5ebe5
 
 
76284d6
 
 
 
99b2934
3f5ebe5
 
2774aab
76284d6
 
 
 
 
 
2774aab
 
76284d6
 
2774aab
 
76284d6
 
2774aab
 
 
 
 
 
 
76284d6
 
 
 
fbcfbe8
d4d998a
76284d6
7012feb
 
 
76284d6
7012feb
 
 
 
 
 
 
76284d6
29a8d4f
 
 
 
 
 
 
 
 
 
 
 
76284d6
 
 
 
 
29a8d4f
 
 
 
 
 
 
76284d6
29a8d4f
 
da0fc16
29a8d4f
 
 
 
 
da0fc16
 
 
29a8d4f
da0fc16
76284d6
 
 
29a8d4f
da0fc16
 
 
29a8d4f
da0fc16
29a8d4f
 
da0fc16
29a8d4f
76284d6
29a8d4f
d4d998a
29a8d4f
d4d998a
 
 
 
 
 
3c01baa
e0634f4
 
 
 
 
4928594
 
 
 
a7d6037
 
 
 
29a8d4f
 
 
76284d6
 
 
29a8d4f
 
 
 
 
 
 
 
76284d6
 
 
29a8d4f
 
 
 
 
 
 
 
 
 
 
 
76284d6
 
 
 
 
 
 
29a8d4f
9a237d2
29a8d4f
 
 
 
 
 
 
 
 
76284d6
29a8d4f
 
 
 
76284d6
29a8d4f
 
 
 
76284d6
 
 
 
29a8d4f
 
 
76284d6
54daf32
76284d6
29a8d4f
 
7ccabe3
 
 
9ae09c0
2de7cd0
 
 
 
 
6f09c54
76284d6
 
 
61ccc5a
76284d6
 
 
 
 
 
 
67f06f8
 
 
 
 
76284d6
e478b36
76284d6
4bcb70a
29a8d4f
61ccc5a
 
d4d998a
29a8d4f
0ba1062
29a8d4f
76284d6
d4d998a
 
 
76284d6
 
 
29a8d4f
 
 
 
 
 
 
 
 
76284d6
 
 
 
29a8d4f
 
 
 
76284d6
 
 
29a8d4f
 
 
76284d6
 
 
29a8d4f
 
 
76284d6
 
 
29a8d4f
 
 
 
 
 
 
 
 
76284d6
29a8d4f
 
 
76284d6
 
 
29a8d4f
 
 
 
23cb587
29a8d4f
 
 
 
23cb587
76284d6
 
 
 
 
 
 
 
 
 
 
 
 
29a8d4f
 
 
 
 
76284d6
 
 
29a8d4f
 
 
 
 
da0fc16
29a8d4f
 
da0fc16
 
7ccabe3
76284d6
 
 
 
 
 
 
 
 
 
 
 
 
7ccabe3
76284d6
 
 
 
 
29a8d4f
7ccabe3
76284d6
 
 
29a8d4f
da0fc16
 
29a8d4f
 
 
 
 
76284d6
 
 
 
 
29a8d4f
 
 
 
 
 
 
76284d6
 
 
29a8d4f
 
d4d998a
 
 
 
 
 
 
a17bcda
3c01baa
b1cb07d
76284d6
d4d998a
 
 
 
 
 
3c01baa
d4d998a
 
3c01baa
d4d998a
 
3c01baa
a17bcda
 
 
d4d998a
 
3c01baa
d4d998a
 
 
 
 
 
 
3c01baa
a17bcda
b1cb07d
76284d6
d4d998a
3c01baa
d4d998a
3c01baa
 
d4d998a
 
 
76284d6
 
 
3c01baa
d4d998a
 
 
3c01baa
d4d998a
 
 
3c01baa
d4d998a
9a237d2
d4d998a
 
9a237d2
 
 
76284d6
 
 
 
9a237d2
29a8d4f
 
9a237d2
d4d998a
 
29a8d4f
3c01baa
 
 
 
 
 
29a8d4f
 
76284d6
 
 
 
29a8d4f
 
 
 
d4d998a
 
76284d6
 
 
b1cb07d
 
 
61ccc5a
b1cb07d
 
 
 
 
 
 
e0634f4
 
 
 
76284d6
b1cb07d
 
e0634f4
b1cb07d
76284d6
b1cb07d
 
 
76284d6
667baef
 
b1cb07d
76284d6
 
 
 
 
 
 
 
 
b1cb07d
76284d6
 
 
b1cb07d
76284d6
 
b1cb07d
 
76284d6
b1cb07d
 
 
76284d6
 
 
b1cb07d
 
76284d6
 
 
 
b1cb07d
 
 
 
 
 
 
 
76284d6
 
 
b1cb07d
 
3c01baa
 
b1cb07d
 
 
 
 
 
 
e0634f4
3c01baa
 
b1cb07d
 
 
 
 
 
76284d6
 
 
3c01baa
 
b1cb07d
cb42fcf
3c01baa
caa4d36
76284d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
caa4d36
 
 
 
b1cb07d
 
6a9b306
5ce0e8b
b1cb07d
 
 
5ce0e8b
b1cb07d
6a9b306
13a36f3
b1cb07d
 
 
 
d4d998a
b1cb07d
c805163
76284d6
d4d998a
b1cb07d
29a8d4f
 
37c2f94
29a8d4f
07c1c30
76284d6
29a8d4f
 
76284d6
a7d6037
76284d6
37c2f94
29a8d4f
 
07c1c30
76284d6
29a8d4f
 
 
37c2f94
29a8d4f
 
07c1c30
4928594
76284d6
29a8d4f
07c1c30
76284d6
 
 
29a8d4f
b1cb07d
 
 
caa4d36
b1cb07d
 
caa4d36
b1cb07d
caa4d36
 
 
76284d6
 
 
b1cb07d
 
29a8d4f
76284d6
 
 
 
 
 
29a8d4f
 
 
76284d6
 
 
29a8d4f
b1cb07d
76284d6
 
 
9f9bc24
 
 
 
 
 
76284d6
 
 
9f9bc24
b1cb07d
9f9bc24
76284d6
 
 
 
 
 
 
 
 
 
 
 
29a8d4f
 
 
76284d6
 
 
 
 
 
 
 
 
 
 
29a8d4f
 
 
 
 
76284d6
 
 
 
 
 
 
 
 
 
 
29a8d4f
 
 
 
 
76284d6
 
 
 
 
 
 
 
 
 
 
29a8d4f
 
 
 
 
 
 
 
 
 
 
da0fc16
29a8d4f
da0fc16
952236c
da0fc16
76284d6
 
 
da0fc16
7ccabe3
76284d6
 
 
 
 
 
 
 
 
29a8d4f
 
 
da0fc16
 
76284d6
 
 
 
 
 
29a8d4f
da0fc16
 
76284d6
 
 
da0fc16
 
76284d6
 
 
 
 
 
 
da0fc16
 
7ccabe3
76284d6
 
 
da0fc16
 
 
29a8d4f
 
da0fc16
 
76284d6
 
 
29a8d4f
 
 
 
 
 
76284d6
29a8d4f
76284d6
 
 
 
29a8d4f
 
 
 
 
76284d6
 
 
 
 
b1cb07d
13a36f3
6a9b306
b1cb07d
 
 
 
 
 
c805163
76284d6
b1cb07d
76284d6
6938bdc
 
 
 
 
e0634f4
 
 
 
6938bdc
 
 
 
b1cb07d
76284d6
b1cb07d
 
caa4d36
76284d6
 
 
b1cb07d
caa4d36
b1cb07d
caa4d36
76284d6
b1cb07d
 
76284d6
 
 
 
 
 
 
b1cb07d
21c13eb
76284d6
b1cb07d
 
 
 
 
76284d6
 
 
6938bdc
 
76284d6
 
 
e0634f4
76284d6
6938bdc
 
e0634f4
 
6938bdc
76284d6
e0634f4
76284d6
 
 
e0634f4
76284d6
 
6938bdc
e0634f4
6938bdc
76284d6
6938bdc
76284d6
 
 
 
6938bdc
 
 
e0634f4
667baef
 
6938bdc
76284d6
 
 
 
 
 
 
 
 
6938bdc
76284d6
 
 
6938bdc
76284d6
 
6938bdc
 
76284d6
6938bdc
 
 
76284d6
 
 
6938bdc
 
76284d6
 
 
 
6938bdc
 
 
 
 
 
 
 
76284d6
 
 
6938bdc
 
 
 
76284d6
 
 
 
 
 
b1cb07d
76284d6
 
 
 
 
 
 
 
 
 
d4d998a
3c01baa
6938bdc
b1cb07d
6938bdc
b1cb07d
76284d6
d4d998a
3c01baa
b5d5c8b
 
b1cb07d
6a9b306
b1cb07d
 
 
a17bcda
 
b1cb07d
 
 
 
 
 
 
c805163
76284d6
b1cb07d
 
 
 
 
a17bcda
 
 
 
 
 
 
76284d6
 
 
b1cb07d
76284d6
e0634f4
76284d6
50b05c6
76284d6
b1cb07d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76284d6
 
 
b1cb07d
 
 
 
 
 
 
 
 
 
 
 
76284d6
 
 
b1cb07d
 
 
76284d6
b1cb07d
 
 
 
 
 
 
 
 
 
 
 
 
 
a17bcda
b1cb07d
 
76284d6
b1cb07d
76284d6
b1cb07d
3c01baa
 
 
 
 
76284d6
 
 
 
 
 
 
 
 
 
 
 
3c01baa
d4d998a
9a237d2
d4d998a
76284d6
d4d998a
 
 
 
dee5ec0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
"""
GuardBench Leaderboard Application
"""

import os
import json
import tempfile
import logging
import gradio as gr
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from apscheduler.schedulers.background import BackgroundScheduler
import numpy as np
from gradio.themes.utils import fonts, colors
from dataclasses import fields, dataclass

from src.about import (
    CITATION_BUTTON_LABEL,
    CITATION_BUTTON_TEXT,
    EVALUATION_QUEUE_TEXT,
    INTRODUCTION_TEXT,
    LLM_BENCHMARKS_TEXT,
    TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
    GUARDBENCH_COLUMN,
    DISPLAY_COLS,
    METRIC_COLS,
    HIDDEN_COLS,
    NEVER_HIDDEN_COLS,
    CATEGORIES,
    TEST_TYPES,
    ModelType,
    Mode,
    Precision,
    WeightType,
    GuardModelType,
    get_all_column_choices,
    get_default_visible_columns,
)
from src.display.formatting import styled_message, styled_error, styled_warning
from src.envs import (
    ADMIN_USERNAME,
    ADMIN_PASSWORD,
    RESULTS_DATASET_ID,
    SUBMITTER_TOKEN,
    TOKEN,
    DATA_PATH,
)
from src.populate import get_leaderboard_df, get_category_leaderboard_df
from src.submission.submit import process_submission

# Configure logging
logging.basicConfig(
    level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
)
logger = logging.getLogger(__name__)

# Ensure data directory exists
os.makedirs(DATA_PATH, exist_ok=True)

# Available benchmark versions
BENCHMARK_VERSIONS = ["v0"]
CURRENT_VERSION = "v0"

# Initialize leaderboard data
try:
    logger.info("Initializing leaderboard data...")
    LEADERBOARD_DF = get_leaderboard_df(version=CURRENT_VERSION)
    logger.info(f"Loaded leaderboard with {len(LEADERBOARD_DF)} entries")
except Exception as e:
    logger.error(f"Error loading leaderboard data: {e}")
    LEADERBOARD_DF = pd.DataFrame()

custom_theme = gr.themes.Default(
    primary_hue=colors.slate,
    secondary_hue=colors.slate,
    neutral_hue=colors.neutral,
    font=(fonts.GoogleFont("Inter"), "sans-serif"),
).set(
    # font_size="16px",
    body_background_fill="#0f0f10",
    body_background_fill_dark="#0f0f10",
    body_text_color="#f4f4f5",
    body_text_color_subdued="#a1a1aa",
    block_background_fill="#1e1e1e",  # Cooler Grey
    block_border_color="#333333",  # Cooler Grey
    block_shadow="none",
    # Swapped primary and secondary button styles
    button_primary_background_fill="#121212",  # Changed to specific color for Refresh button
    button_primary_text_color="#f4f4f5",
    button_primary_border_color="#333333",  # Keep border grey or change to #121212?
    button_secondary_background_fill="#f4f4f5",
    button_secondary_text_color="#0f0f10",
    button_secondary_border_color="#f4f4f5",
    input_background_fill="#1e1e1e",  # Cooler Grey
    input_border_color="#333333",  # Cooler Grey
    input_placeholder_color="#71717a",
    table_border_color="#333333",  # Cooler Grey
    table_even_background_fill="#2d2d2d",  # Cooler Grey (Slightly lighter)
    table_odd_background_fill="#1e1e1e",  # Cooler Grey
    table_text_color="#f4f4f5",
    link_text_color="#ffffff",
    border_color_primary="#333333",  # Cooler Grey
    background_fill_secondary="#333333",  # Cooler Grey
    color_accent="#f4f4f5",
    border_color_accent="#333333",  # Cooler Grey
    button_primary_background_fill_hover="#424242",  # Cooler Grey
    block_title_text_color="#f4f4f5",
    accordion_text_color="#f4f4f5",
    panel_background_fill="#1e1e1e",  # Cooler Grey
    panel_border_color="#333333",  # Cooler Grey
    # Explicitly setting primary/secondary/accent colors/borders
    background_fill_primary="#0f0f10",
    background_fill_primary_dark="#0f0f10",
    background_fill_secondary_dark="#333333",  # Cooler Grey
    border_color_primary_dark="#333333",  # Cooler Grey
    border_color_accent_dark="#333333",  # Cooler Grey
    border_color_accent_subdued="#424242",  # Cooler Grey
    border_color_accent_subdued_dark="#424242",  # Cooler Grey
    color_accent_soft="#a1a1aa",
    color_accent_soft_dark="#a1a1aa",
    # Explicitly setting input hover/focus states
    input_background_fill_dark="#1e1e1e",  # Cooler Grey
    input_background_fill_focus="#424242",  # Cooler Grey
    input_background_fill_focus_dark="#424242",  # Cooler Grey
    input_background_fill_hover="#2d2d2d",  # Cooler Grey
    input_background_fill_hover_dark="#2d2d2d",  # Cooler Grey
    input_border_color_dark="#333333",  # Cooler Grey
    input_border_color_focus="#f4f4f5",
    input_border_color_focus_dark="#f4f4f5",
    input_border_color_hover="#424242",  # Cooler Grey
    input_border_color_hover_dark="#424242",  # Cooler Grey
    input_placeholder_color_dark="#71717a",
    # Explicitly set dark variants for table backgrounds
    table_even_background_fill_dark="#2d2d2d",  # Cooler Grey
    table_odd_background_fill_dark="#1e1e1e",  # Cooler Grey
    # Explicitly set dark text variants
    body_text_color_dark="#f4f4f5",
    body_text_color_subdued_dark="#a1a1aa",
    block_title_text_color_dark="#f4f4f5",
    accordion_text_color_dark="#f4f4f5",
    table_text_color_dark="#f4f4f5",
    # Explicitly set dark panel/block variants
    panel_background_fill_dark="#1e1e1e",  # Cooler Grey
    panel_border_color_dark="#333333",  # Cooler Grey
    block_background_fill_dark="#1e1e1e",  # Cooler Grey
    block_border_color_dark="#333333",  # Cooler Grey
)


@dataclass
class ColumnInfo:
    """Information about a column in the leaderboard."""

    name: str
    display_name: str
    type: str = "text"
    hidden: bool = False
    never_hidden: bool = False
    displayed_by_default: bool = True


def update_column_choices(df):
    """Update column choices based on what's actually in the dataframe"""
    if df is None or df.empty:
        return get_all_column_choices()

    # Get columns that actually exist in the dataframe
    existing_columns = list(df.columns)

    # Get all possible columns with their display names
    all_columns = get_all_column_choices()

    # Filter to only include columns that exist in the dataframe
    valid_columns = [
        (col_name, display_name)
        for col_name, display_name in all_columns
        if col_name in existing_columns
    ]

    # Return default if there are no valid columns
    if not valid_columns:
        return get_all_column_choices()

    return valid_columns


# Update the column_selector initialization
def get_initial_columns():
    """Get initial columns to show in the dropdown"""
    try:
        # Get available columns in the main dataframe
        available_cols = list(LEADERBOARD_DF.columns)
        logger.info(f"Available columns in LEADERBOARD_DF: {available_cols}")

        # If dataframe is empty, use default visible columns
        if not available_cols:
            return get_default_visible_columns()

        # Get default visible columns that actually exist in the dataframe
        valid_defaults = [
            col for col in get_default_visible_columns() if col in available_cols
        ]

        # If none of the defaults exist, return all available columns
        if not valid_defaults:
            return available_cols

        return valid_defaults
    except Exception as e:
        logger.error(f"Error getting initial columns: {e}")
        return get_default_visible_columns()


def init_leaderboard(dataframe, visible_columns=None):
    """
    Initialize a standard Gradio Dataframe component for the leaderboard.
    """
    if dataframe is None or dataframe.empty:
        # Create an empty dataframe with the right columns
        columns = [getattr(GUARDBENCH_COLUMN, col).name for col in DISPLAY_COLS]
        dataframe = pd.DataFrame(columns=columns)
        logger.warning("Initializing empty leaderboard")

    # Lowercase model_name for display
    if "model_name" in dataframe.columns:
        dataframe = dataframe.copy()
        dataframe["model_name"] = dataframe["model_name"].str.lower()

    if "model_type" in dataframe.columns:
        dataframe = dataframe.copy()
        dataframe["model_type"] = dataframe["model_type"].str.replace(" : ", "-")

    if "guard_model_type" in dataframe.columns:
        dataframe = dataframe.copy()
        dataframe["guard_model_type"] = dataframe["guard_model_type"].str.replace("wc_guard", "whitecircle_guard")

    # print("\n\n", "dataframe", dataframe, "--------------------------------\n\n")

    # Determine which columns to display
    display_column_names = [
        getattr(GUARDBENCH_COLUMN, col).name for col in DISPLAY_COLS
    ]
    hidden_column_names = [getattr(GUARDBENCH_COLUMN, col).name for col in HIDDEN_COLS]

    # Columns that should always be shown
    always_visible = [getattr(GUARDBENCH_COLUMN, col).name for col in NEVER_HIDDEN_COLS]

    # Use provided visible columns if specified, otherwise use default
    if visible_columns is None:
        # Determine which columns to show initially
        visible_columns = [
            col for col in display_column_names if col not in hidden_column_names
        ]

    # Always include the never-hidden columns
    for col in always_visible:
        if col not in visible_columns and col in dataframe.columns:
            visible_columns.append(col)

    # Make sure we only include columns that actually exist in the dataframe
    visible_columns = [col for col in visible_columns if col in dataframe.columns]

    # Map GuardBench column types to Gradio's expected datatype strings
    # Valid Gradio datatypes are: 'str', 'number', 'bool', 'date', 'markdown', 'html', 'image'
    type_mapping = {
        "text": "str",
        "number": "number",
        "bool": "bool",
        "date": "date",
        "markdown": "markdown",
        "html": "html",
        "image": "image",
    }

    # Create a list of datatypes in the format Gradio expects
    datatypes = []
    for col in visible_columns:
        # Find the corresponding GUARDBENCH_COLUMN entry
        col_type = None
        for display_col in DISPLAY_COLS:
            if getattr(GUARDBENCH_COLUMN, display_col).name == col:
                orig_type = getattr(GUARDBENCH_COLUMN, display_col).type
                # Map to Gradio's expected types
                col_type = type_mapping.get(orig_type, "str")
                break

        # Default to 'str' if type not found or not mappable
        if col_type is None:
            col_type = "str"

        datatypes.append(col_type)

    # Create a dummy column for search functionality if it doesn't exist
    if "search_dummy" not in dataframe.columns:
        dataframe["search_dummy"] = dataframe.apply(
            lambda row: " ".join(str(val) for val in row.values if pd.notna(val)),
            axis=1,
        )

    # Select only the visible columns for display
    visible_columns.remove("model_name")

    visible_columns = ["model_name"] + visible_columns
    display_df = dataframe[visible_columns].copy()

    # print(f"--- DataFrame inside init_leaderboard (before rounding) ---")
    # print(display_df[['model_name', 'macro_accuracy', 'macro_recall', 'total_evals_count']].head() if all(c in display_df.columns for c in ['model_name', 'macro_accuracy', 'macro_recall', 'total_evals_count']) else "Relevant columns not present")
    # print(f"-------------------------------------------------------------")

    # Round numeric columns to 3 decimal places for display
    numeric_cols = display_df.select_dtypes(include=np.number).columns
    for col in numeric_cols:
        # Avoid rounding integer columns like counts
        if not pd.api.types.is_integer_dtype(display_df[col]):
            # Format floats to exactly 3 decimal places, preserving trailing zeros
            display_df[col] = display_df[col].apply(
                lambda x: f"{x:.3f}" if pd.notna(x) else None
            )

    column_info_map = {
        f.name: getattr(GUARDBENCH_COLUMN, f.name) for f in fields(GUARDBENCH_COLUMN)
    }
    column_mapping = {
        col: column_info_map.get(col, ColumnInfo(col, col)).display_name
        for col in visible_columns
    }

    # Rename columns in the DataFrame
    display_df.rename(columns=column_mapping, inplace=True)

    # Apply styling - note: styling might need adjustment if it relies on column names
    styler = display_df.style.set_properties(**{"text-align": "right"}).set_properties(
        subset=["Model"], **{"width": "200px"}
    )

    return gr.Dataframe(
        value=styler,
        datatype=datatypes,
        interactive=False,
        wrap=True,
        height=2500,
        elem_id="leaderboard-table",
        row_count=len(display_df),
    )


def search_filter_leaderboard(
    df, search_query="", model_types=None, version=CURRENT_VERSION
):
    """
    Filter the leaderboard based on search query and model types.
    """
    if df is None or df.empty:
        return df

    filtered_df = df.copy()

    # Add search dummy column if it doesn't exist
    if "search_dummy" not in filtered_df.columns:
        filtered_df["search_dummy"] = filtered_df.apply(
            lambda row: " ".join(str(val) for val in row.values if pd.notna(val)),
            axis=1,
        )

    # Apply model type filter
    if model_types and len(model_types) > 0:
        filtered_df = filtered_df[
            filtered_df[GUARDBENCH_COLUMN.model_type.name].isin(model_types)
        ]

    # Apply search query
    if search_query:
        search_terms = [
            term.strip() for term in search_query.split(";") if term.strip()
        ]
        if search_terms:
            combined_mask = None
            for term in search_terms:
                mask = filtered_df["search_dummy"].str.contains(
                    term, case=False, na=False
                )
                if combined_mask is None:
                    combined_mask = mask
                else:
                    combined_mask = combined_mask | mask

            if combined_mask is not None:
                filtered_df = filtered_df[combined_mask]

    # Drop the search dummy column before returning
    visible_columns = [col for col in filtered_df.columns if col != "search_dummy"]
    return filtered_df[visible_columns]


def refresh_data_with_filters(
    version=CURRENT_VERSION, search_query="", model_types=None, selected_columns=None
):
    """
    Refresh the leaderboard data and update all components with filtering.
    Ensures we handle cases where dataframes might have limited columns.
    """
    global LEADERBOARD_DF
    try:
        logger.info(f"Performing refresh of leaderboard data with filters...")
        # Get new data
        main_df = get_leaderboard_df(version=version)
        LEADERBOARD_DF = main_df
        category_dfs = [
            get_category_leaderboard_df(category, version=version)
            for category in CATEGORIES
        ]
        selected_columns = [
            x.lower()
            .replace(" ", "_")
            .replace("(", "")
            .replace(")", "")
            .replace("_recall", "_recall_binary")
            .replace("_precision", "_precision_binary")
            for x in selected_columns
        ]

        # Log the actual columns we have
        logger.info(f"Main dataframe columns: {list(main_df.columns)}")

        # Apply filters to each dataframe
        filtered_main_df = search_filter_leaderboard(
            main_df, search_query, model_types, version
        )
        filtered_category_dfs = [
            search_filter_leaderboard(df, search_query, model_types, version)
            for df in category_dfs
        ]

        # Get available columns from the dataframe
        available_columns = list(filtered_main_df.columns)

        # Filter selected columns to only those available in the data
        if selected_columns:
            # Convert display names to internal names first
            internal_selected_columns = [
                x.lower()
                .replace(" ", "_")
                .replace("(", "")
                .replace(")", "")
                .replace("_recall", "_recall_binary")
                .replace("_precision", "_precision_binary")
                for x in selected_columns
            ]
            valid_selected_columns = [
                col for col in internal_selected_columns if col in available_columns
            ]
            if not valid_selected_columns and "model_name" in available_columns:
                # Fallback if conversion/filtering leads to empty selection
                valid_selected_columns = ["model_name"] + [
                    col
                    for col in get_default_visible_columns()
                    if col in available_columns
                ]
        else:
            # If no columns were selected in the dropdown, use default visible columns that exist
            valid_selected_columns = [
                col for col in get_default_visible_columns() if col in available_columns
            ]

        # Initialize dataframes for display with valid selected columns
        main_dataframe = init_leaderboard(filtered_main_df, valid_selected_columns)

        # For category dataframes, get columns that actually exist in each one
        category_dataframes = []
        for df in filtered_category_dfs:
            df_columns = list(df.columns)
            df_valid_columns = [
                col for col in valid_selected_columns if col in df_columns
            ]
            if not df_valid_columns and "model_name" in df_columns:
                df_valid_columns = ["model_name"] + get_default_visible_columns()
            category_dataframes.append(init_leaderboard(df, df_valid_columns))

        return main_dataframe, *category_dataframes

    except Exception as e:
        logger.error(f"Error in refresh with filters: {e}")
        # Return the current leaderboards on error
        return leaderboard, *[
            tab.children[0] for tab in category_tabs.children[1 : len(CATEGORIES) + 1]
        ]


def submit_results(
    model_name: str,
    base_model: str,
    revision: str,
    precision: str,
    weight_type: str,
    model_type: str,
    mode: str,
    submission_file: tempfile._TemporaryFileWrapper,
    version: str,
    guard_model_type: GuardModelType,
):
    """
    Handle submission of results with model metadata.
    """
    if submission_file is None:
        return styled_error("No submission file provided")

    if not model_name:
        return styled_error("Model name is required")

    if not model_type:
        return styled_error("Please select a model type")

    if not mode:
        return styled_error("Please select an inference mode")

    file_path = submission_file.name
    logger.info(f"Received submission for model {model_name}: {file_path}")

    # Add metadata to the submission
    metadata = {
        "model_name": model_name,
        "base_model": base_model,
        "revision": revision if revision else "main",
        "precision": precision,
        "weight_type": weight_type,
        "model_type": model_type,
        "mode": mode,
        "version": version,
        "guard_model_type": guard_model_type,
    }

    # Process the submission
    result = process_submission(file_path, metadata, version=version)

    # Refresh the leaderboard data
    global LEADERBOARD_DF
    try:
        logger.info(
            f"Refreshing leaderboard data after submission for version {version}..."
        )
        LEADERBOARD_DF = get_leaderboard_df(version=version)
        logger.info("Refreshed leaderboard data after submission")
    except Exception as e:
        logger.error(f"Error refreshing leaderboard data: {e}")

    return result


def refresh_data(version=CURRENT_VERSION):
    """
    Refresh the leaderboard data and update all components.
    """
    try:
        logger.info(f"Performing scheduled refresh of leaderboard data...")
        # Get new data
        main_df = get_leaderboard_df(version=version)
        category_dfs = [
            get_category_leaderboard_df(category, version=version)
            for category in CATEGORIES
        ]

        # For gr.Dataframe, we return the actual dataframes
        return main_df, *category_dfs

    except Exception as e:
        logger.error(f"Error in scheduled refresh: {e}")
        return None, *[None for _ in CATEGORIES]


def update_leaderboards(version):
    """
    Update all leaderboard components with data for the selected version.
    """
    try:
        new_df = get_leaderboard_df(version=version)
        category_dfs = [
            get_category_leaderboard_df(category, version=version)
            for category in CATEGORIES
        ]
        return new_df, *category_dfs
    except Exception as e:
        logger.error(f"Error updating leaderboards for version {version}: {e}")
        return None, *[None for _ in CATEGORIES]


def create_performance_plot(
    selected_models, category, metric="f1_binary", version=CURRENT_VERSION
):
    """
    Create a radar plot comparing model performance for selected models.
    """
    if category == "All Results":
        df = get_leaderboard_df(version=version)
    else:
        df = get_category_leaderboard_df(category, version=version)

    if df.empty:
        return go.Figure()

    # Lowercase model_name in df and selected_models
    df = df.copy()
    df["model_name"] = df["model_name"].str.lower()
    selected_models = [m.lower() for m in selected_models]
    df = df[df["model_name"].isin(selected_models)]
    metric_cols = [col for col in df.columns if metric in col]
    fig = go.Figure()
    colors = ["#8FCCCC", "#C2A4B6", "#98B4A6", "#B68F7C"]
    for idx, model in enumerate(selected_models):
        model_data = df[df["model_name"] == model]
        if not model_data.empty:
            values = model_data[metric_cols].values[0].tolist()
            values = values + [values[0]]
            categories = [col.replace(f"_{metric}", "") for col in metric_cols]
            # Replace 'jailbreaked' with 'jailbroken' in categories
            categories = [cat.replace('jailbreaked', 'jailbroken') for cat in categories]
            categories = categories + [categories[0]]
            fig.add_trace(
                go.Scatterpolar(
                    r=values,
                    theta=categories,
                    name=model,
                    line_color=colors[idx % len(colors)],
                    fill="toself",
                )
            )
    fig.update_layout(
        paper_bgcolor="#000000",
        plot_bgcolor="#000000",
        font={"color": "#ffffff"},
        title={
            "text": f"{category} - {metric.upper()} Score Comparison",
            "font": {"color": "#ffffff", "size": 24},
        },
        polar=dict(
            bgcolor="#000000",
            radialaxis=dict(
                visible=True,
                range=[0, 1],
                gridcolor="#333333",
                linecolor="#333333",
                tickfont={"color": "#ffffff"},
            ),
            angularaxis=dict(
                gridcolor="#333333",
                linecolor="#333333",
                tickfont={"color": "#ffffff"},
            ),
        ),
        height=600,
        showlegend=True,
        legend=dict(
            yanchor="top",
            y=0.99,
            xanchor="right",
            x=0.99,
            bgcolor="rgba(0,0,0,0.5)",
            font={"color": "#ffffff"},
        ),
    )
    return fig


def update_model_choices(version):
    """
    Update the list of available models for the given version.
    """
    df = get_leaderboard_df(version=version)
    if df.empty:
        return []
    return sorted(df["model_name"].str.lower().unique().tolist())


def update_visualization(selected_models, selected_category, selected_metric, version):
    """
    Update the visualization based on user selections.
    """
    if not selected_models:
        return go.Figure()
    return create_performance_plot(
        selected_models, selected_category, selected_metric, version
    )


# Create Gradio app
demo = gr.Blocks(css=custom_css, theme=custom_theme)

CATEGORY_DISPLAY_MAP = {
    "Political Corruption and Legal Evasion": "Corruption & Legal Evasion",
    "Financial Fraud and Unethical Business": "Financial Fraud",
    "AI Manipulation and Jailbreaking": "AI Jailbreaking",
    "Child Exploitation and Abuse": "Child Exploitation",
    "Hate Speech, Extremism, and Discrimination": "Hate Speech",
    "Labor Exploitation and Human Trafficking": "Labor Exploitation",
    "Manipulation, Deception, and Misinformation": "Misinformation",
    "Environmental and Industrial Harm": "Environmental Harm",
    "Academic Dishonesty and Cheating": "Academic Dishonesty",
    "Self–Harm and Suicidal Ideation": "Self-Harm",
    "Animal Cruelty and Exploitation": "Animal Harm",
    "Criminal, Violent, and Terrorist Activity": "Crime & Violence",
    "Drug– and Substance–Related Activities": "Drug Use",
    "Sexual Content and Violence": "Sexual Content",
    "Weapon, Explosives, and Hazardous Materials": "Weapons & Harmful Materials",
    "Cybercrime, Hacking, and Digital Exploits": "Cybercrime",
    "Creative Content Involving Illicit Themes": "Illicit Creative",
    "Safe Prompts": "Safe Prompts",
}
# Create reverse mapping for lookups
CATEGORY_REVERSE_MAP = {v: k for k, v in CATEGORY_DISPLAY_MAP.items()}

with demo:
    gr.HTML(TITLE)
    # gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
    gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")

    with gr.Row():
        tabs = gr.Tabs(elem_classes="tab-buttons")

        with tabs:
            with gr.TabItem("Leaderboard", elem_id="guardbench-leaderboard-tab", id=0):
                with gr.Row():
                    version_selector = gr.Dropdown(
                        choices=BENCHMARK_VERSIONS,
                        label="Benchmark Version",
                        value=CURRENT_VERSION,
                        interactive=True,
                        elem_classes="version-selector",
                        scale=1,
                        visible=False,
                    )

                with gr.Row():
                    search_input = gr.Textbox(
                        placeholder="Search by models (use ; to split)",
                        label="Search",
                        elem_id="search-bar",
                        scale=2,
                    )
                    model_type_filter = gr.Dropdown(
                        choices=[
                            t.to_str("-") for t in ModelType if t != ModelType.Unknown and t != ModelType.ClosedSource
                        ],
                        label="Access Type",
                        multiselect=True,
                        value=[],
                        interactive=True,
                        scale=1,
                    )
                    column_selector = gr.Dropdown(
                        choices=get_all_column_choices(),
                        label="Columns",
                        multiselect=True,
                        value=get_initial_columns(),
                        interactive=True,
                        visible=False,
                        scale=1,
                    )
                with gr.Row():
                    refresh_button = gr.Button(
                        "Refresh", scale=0, elem_id="refresh-button"
                    )

                # Create tabs for each category
                with gr.Tabs(elem_classes="category-tabs") as category_tabs:
                    # First tab for average metrics across all categories
                    with gr.TabItem("All Results", elem_id="overall-tab"):
                        leaderboard = init_leaderboard(LEADERBOARD_DF)

                    # Create a tab for each category using display names
                    for category in CATEGORIES:
                        display_name = CATEGORY_DISPLAY_MAP.get(category, category)
                        elem_id = f"category-{display_name.lower().replace(' ', '-').replace('&', 'and')}-tab"
                        with gr.TabItem(display_name, elem_id=elem_id):
                            category_df = get_category_leaderboard_df(
                                category, version=CURRENT_VERSION
                            )
                            category_leaderboard = init_leaderboard(category_df)

                # Connect search and filter inputs to update function
                def update_with_search_filters(
                    version=CURRENT_VERSION,
                    search_query="",
                    model_types=None,
                    selected_columns=None,
                ):
                    """
                    Update the leaderboards with search and filter settings.
                    """
                    return refresh_data_with_filters(
                        version, search_query, model_types, selected_columns
                    )

                # Refresh button functionality
                def refresh_and_update(
                    version, search_query, model_types, selected_columns
                ):
                    """
                    Refresh data, update LEADERBOARD_DF, and return updated components.
                    """
                    global LEADERBOARD_DF
                    main_df = get_leaderboard_df(version=version)
                    LEADERBOARD_DF = main_df  # Update the global DataFrame
                    return refresh_data_with_filters(
                        version, search_query, model_types, selected_columns
                    )

                refresh_button.click(
                    fn=refresh_and_update,
                    inputs=[
                        version_selector,
                        search_input,
                        model_type_filter,
                        column_selector,
                    ],
                    outputs=[leaderboard]
                    + [
                        category_tabs.children[i].children[0]
                        for i in range(1, len(CATEGORIES) + 1)
                    ],
                )
                # Search input functionality
                search_input.change(
                    fn=refresh_data_with_filters,
                    inputs=[
                        version_selector,
                        search_input,
                        model_type_filter,
                        column_selector,
                    ],
                    outputs=[leaderboard]
                    + [
                        category_tabs.children[i].children[0]
                        for i in range(1, len(CATEGORIES) + 1)
                    ],
                )

                # Model type filter functionality
                model_type_filter.change(
                    fn=refresh_data_with_filters,
                    inputs=[
                        version_selector,
                        search_input,
                        model_type_filter,
                        column_selector,
                    ],
                    outputs=[leaderboard]
                    + [
                        category_tabs.children[i].children[0]
                        for i in range(1, len(CATEGORIES) + 1)
                    ],
                )

                # Version selector functionality
                version_selector.change(
                    fn=refresh_data_with_filters,
                    inputs=[
                        version_selector,
                        search_input,
                        model_type_filter,
                        column_selector,
                    ],
                    outputs=[leaderboard]
                    + [
                        category_tabs.children[i].children[0]
                        for i in range(1, len(CATEGORIES) + 1)
                    ],
                )

                # Update the update_columns function to handle updating all tabs at once
                def update_columns(selected_columns):
                    """
                    Update all leaderboards to show the selected columns.
                    Ensures all selected columns are preserved in the update.

                    """

                    try:
                        logger.info(f"Updating columns to show: {selected_columns}")

                        # If no columns are selected, use default visible columns
                        if not selected_columns or len(selected_columns) == 0:
                            selected_columns = get_default_visible_columns()
                            logger.info(
                                f"No columns selected, using defaults: {selected_columns}"
                            )

                        # Convert display names to internal names
                        internal_selected_columns = [
                            x.lower()
                            .replace(" ", "_")
                            .replace("(", "")
                            .replace(")", "")
                            .replace("_recall", "_recall_binary")
                            .replace("_precision", "_precision_binary")
                            for x in selected_columns
                        ]

                        # Get the current data with ALL columns preserved
                        main_df = get_leaderboard_df(version=version_selector.value)

                        # Get category dataframes with ALL columns preserved
                        category_dfs = [
                            get_category_leaderboard_df(
                                category, version=version_selector.value
                            )
                            for category in CATEGORIES
                        ]

                        # Log columns for debugging
                        logger.info(f"Main dataframe columns: {list(main_df.columns)}")
                        logger.info(
                            f"Selected columns (internal): {internal_selected_columns}"
                        )

                        # IMPORTANT: Make sure model_name is always included
                        if (
                            "model_name" in main_df.columns
                            and "model_name" not in internal_selected_columns
                        ):
                            internal_selected_columns = [
                                "model_name"
                            ] + internal_selected_columns

                        # Initialize the main leaderboard with the selected columns
                        # We're passing the internal_selected_columns directly to preserve the selection
                        main_leaderboard = init_leaderboard(
                            main_df, internal_selected_columns
                        )

                        # Initialize category dataframes with the same selected columns
                        # This ensures consistency across all tabs
                        category_leaderboards = []
                        for df in category_dfs:
                            # Use the same selected columns for each category
                            # init_leaderboard will automatically handle filtering to columns that exist
                            category_leaderboards.append(
                                init_leaderboard(df, internal_selected_columns)
                            )

                        return main_leaderboard, *category_leaderboards

                    except Exception as e:
                        logger.error(f"Error updating columns: {e}")
                        import traceback

                        logger.error(traceback.format_exc())
                        return leaderboard, *[
                            tab.children[0]
                            for tab in category_tabs.children[1 : len(CATEGORIES) + 1]
                        ]

                # Connect column selector to update function
                column_selector.change(
                    fn=update_columns,
                    inputs=[column_selector],
                    outputs=[leaderboard]
                    + [
                        category_tabs.children[i].children[0]
                        for i in range(1, len(CATEGORIES) + 1)
                    ],
                )

            with gr.TabItem("Visualize", elem_id="guardbench-viz-tab", id=1):
                with gr.Row():
                    with gr.Column():
                        viz_version_selector = gr.Dropdown(
                            choices=BENCHMARK_VERSIONS,
                            label="Benchmark Version",
                            value=CURRENT_VERSION,
                            interactive=True,
                            visible=False,
                        )

                        # New: Mode selector
                        def get_model_mode_choices(version):
                            df = get_leaderboard_df(version=version)
                            if df.empty:
                                return []
                            return sorted([
                                f"{str(row['model_name']).lower()} [{row['mode']}]"
                                for _, row in df.drop_duplicates(subset=["model_name", "mode"]).iterrows()
                            ])

                        model_mode_selector = gr.Dropdown(
                            choices=get_model_mode_choices(CURRENT_VERSION),
                            label="Select Model(s) [Mode] to Compare",
                            multiselect=True,
                            interactive=True,
                        )
                    with gr.Column():
                        # Add Overall Performance to categories, use display names
                        viz_categories_display = ["All Results"] + [
                            CATEGORY_DISPLAY_MAP.get(cat, cat) for cat in CATEGORIES
                        ]
                        category_selector = gr.Dropdown(
                            choices=viz_categories_display,
                            label="Select Category",
                            value=viz_categories_display[0],
                            interactive=True,
                        )
                        metric_selector = gr.Dropdown(
                            choices=[
                                "accuracy",
                                "f1_binary",
                                "precision_binary",
                                "recall_binary",
                                "error_ratio",
                            ],
                            label="Select Metric",
                            value="accuracy",
                            interactive=True,
                        )

                plot_output = gr.Plot()

                # Update visualization when any selector changes
                def update_visualization_with_mode(
                    selected_model_modes, selected_category, selected_metric, version
                ):
                    if not selected_model_modes:
                        return go.Figure()
                    df = (
                        get_leaderboard_df(version=version)
                        if selected_category == "All Results"
                        else get_category_leaderboard_df(selected_category, version=version)
                    )
                    if df.empty:
                        return go.Figure()
                    df = df.copy()
                    df["model_name"] = df["model_name"].str.lower()
                    selected_pairs = [s.rsplit(" [", 1) for s in selected_model_modes]
                    selected_pairs = [
                        (name.strip().lower(), mode.strip("] "))
                        for name, mode in selected_pairs
                    ]
                    mask = df.apply(
                        lambda row: (row["model_name"], str(row["mode"])) in selected_pairs,
                        axis=1,
                    )
                    filtered_df = df[mask]
                    metric_cols = [col for col in filtered_df.columns if selected_metric in col]
                    fig = go.Figure()
                    colors = ["#8FCCCC", "#C2A4B6", "#98B4A6", "#B68F7C"]
                    for idx, (model_name, mode) in enumerate(selected_pairs):
                        model_data = filtered_df[
                            (filtered_df["model_name"] == model_name)
                            & (filtered_df["mode"] == mode)
                        ]
                        if not model_data.empty:
                            values = model_data[metric_cols].values[0].tolist()
                            values = values + [values[0]]
                            categories = [col.replace(f"_{selected_metric}", "") for col in metric_cols]
                            # Replace 'jailbreaked' with 'jailbroken' in categories
                            categories = [cat.replace('jailbreaked', 'jailbroken') for cat in categories]
                            categories = categories + [categories[0]]
                            fig.add_trace(
                                go.Scatterpolar(
                                    r=values,
                                    theta=categories,
                                    name=f"{model_name} [{mode}]",
                                    line_color=colors[idx % len(colors)],
                                    fill="toself",
                                )
                            )
                    fig.update_layout(
                        paper_bgcolor="#000000",
                        plot_bgcolor="#000000",
                        font={"color": "#ffffff"},
                        title={
                            "text": f"{selected_category} - {selected_metric.upper()} Score Comparison",
                            "font": {"color": "#ffffff", "size": 24},
                        },
                        polar=dict(
                            bgcolor="#000000",
                            radialaxis=dict(
                                visible=True,
                                range=[0, 1],
                                gridcolor="#333333",
                                linecolor="#333333",
                                tickfont={"color": "#ffffff"},
                            ),
                            angularaxis=dict(
                                gridcolor="#333333",
                                linecolor="#333333",
                                tickfont={"color": "#ffffff"},
                            ),
                        ),
                        height=600,
                        showlegend=True,
                        legend=dict(
                            yanchor="top",
                            y=0.99,
                            xanchor="right",
                            x=0.99,
                            bgcolor="rgba(0,0,0,0.5)",
                            font={"color": "#ffffff"},
                        ),
                    )
                    return fig

                # Connect selectors to update function
                for control in [
                    viz_version_selector,
                    model_mode_selector,
                    category_selector,
                    metric_selector,
                ]:
                    control.change(
                        fn=lambda smm, sc, s_metric, v: update_visualization_with_mode(
                            smm, CATEGORY_REVERSE_MAP.get(sc, sc), s_metric, v
                        ),
                        inputs=[
                            model_mode_selector,
                            category_selector,
                            metric_selector,
                            viz_version_selector,
                        ],
                        outputs=plot_output,
                    )

                # Update model_mode_selector choices when version changes
                viz_version_selector.change(
                    fn=get_model_mode_choices,
                    inputs=[viz_version_selector],
                    outputs=[model_mode_selector],
                )

            # with gr.TabItem("About", elem_id="guardbench-about-tab", id=2):
            #     gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")

            with gr.TabItem("Submit", elem_id="guardbench-submit-tab", id=3):
                gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")

                with gr.Row():
                    # with gr.Column(scale=3):
                    #     gr.Markdown("# ✉️✨ Submit your results here!", elem_classes="markdown-text")
                    with gr.Column(scale=1):
                        # Add version selector specifically for the submission tab
                        submission_version_selector = gr.Dropdown(
                            choices=BENCHMARK_VERSIONS,
                            label="Benchmark Version",
                            value=CURRENT_VERSION,
                            interactive=True,
                            elem_classes="version-selector",
                            visible=False,
                        )

                with gr.Row():
                    with gr.Column():
                        model_name_textbox = gr.Textbox(label="Model name")
                        mode_selector = gr.Dropdown(
                            choices=[m.name for m in Mode],
                            label="Mode",
                            multiselect=False,
                            value=None,
                            interactive=True,
                        )
                        revision_name_textbox = gr.Textbox(
                            label="Revision commit", placeholder="main"
                        )
                        model_type = gr.Dropdown(
                            choices=[
                                t.to_str("-")
                                for t in ModelType
                                if t != ModelType.Unknown and t != ModelType.ClosedSource
                            ],
                            label="Model type",
                            multiselect=False,
                            value=None,
                            interactive=True,
                        )
                        guard_model_type = gr.Dropdown(
                            choices=[t.name for t in GuardModelType],
                            label="Guard model type",
                            multiselect=False,
                            value=GuardModelType.LLM_REGEXP.name,
                            interactive=True,
                        )

                    with gr.Column():
                        precision = gr.Dropdown(
                            choices=[
                                i.name for i in Precision if i != Precision.Unknown
                            ],
                            label="Precision",
                            multiselect=False,
                            value="float16",
                            interactive=True,
                        )
                        weight_type = gr.Dropdown(
                            choices=[i.name for i in WeightType],
                            label="Weights type",
                            multiselect=False,
                            value="Original",
                            interactive=True,
                        )
                        base_model_name_textbox = gr.Textbox(
                            label="Base model (for delta or adapter weights)"
                        )

                with gr.Row():
                    file_input = gr.File(
                        label="Upload JSONL Results File", file_types=[".jsonl"]
                    )

                submit_button = gr.Button("Submit Results")
                result_output = gr.Markdown()

                submit_button.click(
                    fn=submit_results,
                    inputs=[
                        model_name_textbox,
                        base_model_name_textbox,
                        revision_name_textbox,
                        precision,
                        weight_type,
                        model_type,
                        mode_selector,
                        file_input,
                        submission_version_selector,
                        guard_model_type,
                    ],
                    outputs=result_output,
                )

    # Version selector functionality
    version_selector.change(
        fn=update_leaderboards,
        inputs=[version_selector],
        outputs=[leaderboard]
        + [
            category_tabs.children[i].children[0] for i in range(1, len(CATEGORIES) + 1)
        ],
    ).then(
        lambda version: refresh_data_with_filters(version),
        inputs=[version_selector],
        outputs=[leaderboard]
        + [
            category_tabs.children[i].children[0] for i in range(1, len(CATEGORIES) + 1)
        ],
    )


# Set up the scheduler to refresh data periodically
scheduler = BackgroundScheduler()
scheduler.add_job(refresh_data, "interval", minutes=30)
scheduler.start()

# Launch the app
if __name__ == "__main__":
    demo.launch()