Spaces:
Sleeping
language: en
tags:
- sentiment-analysis
- modernbert
- imdb
datasets:
- imdb
metrics:
- accuracy
- f1
title: IMDb Sentiment Analyzer
emoji: 🤗
colorFrom: blue
colorTo: green
sdk: gradio
sdk_version: 5.29.0
app_file: app.py
pinned: false
hf_oauth: false
disable_embedding: false
ModernBERT IMDb Sentiment Analysis Model
Model Description
Fine-tuned ModernBERT model for sentiment analysis on IMDb movie reviews. Achieves 95.75% accuracy on the test set.
Usage
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("voxmenthe/modernbert-imdb-sentiment")
tokenizer = AutoTokenizer.from_pretrained("answerdotai/ModernBERT-base")
# Input processing
inputs = tokenizer("This movie was fantastic!", return_tensors="pt")
outputs = model(**inputs)
# Get the predicted class
predicted_class_id = outputs.logits.argmax().item()
# Convert class ID to label
predicted_label = model.config.id2label[predicted_class_id]
print(f"Predicted label: {predicted_label}")
Model Card
Model Details
- Model Name: ModernBERT IMDb Sentiment Analysis
- Base Model: answerdotai/ModernBERT-base
- Task: Sentiment Analysis
- Dataset: IMDb Movie Reviews
- Training Epochs: 5
Model Performance
- Test Accuracy: 95.75%
- Test F1 Score: 95.75%
Model Architecture
- Base Model: answerdotai/ModernBERT-base
- Task-Specific Head: ClassifierHead (from
classifiers.py
) - Number of Labels: 2 (Positive, Negative)
Model Inference
- Input Format: Text (single review)
- Output Format: Predicted sentiment label (Positive or Negative)
Model Version
- Version: 1.0
- Date: 2025-05-07
Model License
- License: MIT License
Model Contact
- Contact: [email protected]
Model Citation
- Citation: voxmenthe/modernbert-imdb-sentiment
IMDb Sentiment Analyzer - Gradio App
This repository contains a Gradio application for sentiment analysis of IMDb movie reviews. It is hosted on Hugging Face Spaces at voxmenthe/imdb-sentiment-demo. It uses a fine-tuned ModernBERT model hosted on Hugging Face.
Space Link: voxmenthe/imdb-sentiment-demo Model Link: voxmenthe/modernbert-imdb-sentiment
Features
- Text Input: Analyze custom movie review text.
- Random IMDb Sample: Load a random review from the IMDb test dataset.
- Sentiment Prediction: Classifies sentiment as Positive or Negative.
- True Label Display: Shows the actual IMDb label for loaded samples.
Setup & Running Locally
Clone the repository (or your Space repository):
git clone https://huggingface.co/spaces/voxmenthe/imdb-sentiment-demo cd imdb-sentiment-demo
Install dependencies: Ensure you have Python 3.11+ installed.
pip install -r requirements.txt
Run the application:
python app.py
The application will be available at
http://127.0.0.1:7860
.
Model Information
The sentiment analysis model is a ModernBERT
architecture fine-tuned on the IMDb dataset. The specific checkpoint used is mean_epoch5_0.9575acc_0.9575f1.pt
before being uploaded to voxmenthe/modernbert-imdb-sentiment
.