File size: 10,254 Bytes
6529956
 
 
 
 
 
 
 
 
 
 
 
be92e89
 
 
6529956
be92e89
 
6529956
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3357f2e
 
 
 
 
 
 
 
 
 
be92e89
3357f2e
 
be92e89
 
 
6529956
 
 
 
 
 
 
 
 
 
 
 
be92e89
6529956
 
 
 
 
be92e89
 
6529956
be92e89
 
 
6529956
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be92e89
6529956
be92e89
 
 
 
 
 
6529956
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import torch
from sklearn.metrics import accuracy_score, f1_score, roc_auc_score, precision_score, recall_score, matthews_corrcoef
from models import ModernBertForSentiment # Assuming models.py is in the same directory
from tqdm import tqdm # Add this import for the progress bar


def evaluate(model, dataloader, device):
    model.eval()
    all_preds = []
    all_labels = []
    all_probs_for_auc = [] 
    total_loss = 0
    num_batches = len(dataloader)
    processed_batches = 0

    with torch.no_grad():
        for batch in dataloader: # dataloader here should not be pre-wrapped with tqdm by the caller if we yield progress
            processed_batches += 1
            # Move batch to device, ensure all model inputs are covered
            input_ids = batch['input_ids'].to(device)
            attention_mask = batch['attention_mask'].to(device)
            labels = batch['labels'].to(device)
            lengths = batch.get('lengths') # Get lengths from batch
            if lengths is None:
                # Fallback or error if lengths are expected but not found
                # For now, let's raise an error if using weighted loss that needs it
                # Or, if your model can run without it for some pooling strategies, handle accordingly
                # However, the error clearly states it's needed when labels are specified.
                pass # Or handle error: raise ValueError("'lengths' not found in batch, but required by model")
            else:
                lengths = lengths.to(device) # Move to device if found

            # Pass all necessary parts of the batch to the model
            model_inputs = {
                'input_ids': input_ids,
                'attention_mask': attention_mask,
                'labels': labels
            }
            if lengths is not None:
                model_inputs['lengths'] = lengths
            
            outputs = model(**model_inputs)
            loss = outputs.loss
            logits = outputs.logits

            total_loss += loss.item()
            
            if logits.shape[1] > 1: 
                preds = torch.argmax(logits, dim=1)
            else: 
                preds = (torch.sigmoid(logits) > 0.5).long() 
            all_preds.extend(preds.cpu().numpy())
            
            all_labels.extend(labels.cpu().numpy()) 

            # Populate probabilities for AUC calculation
            if logits.shape[1] > 1: 
                # Multi-class or multi-label, assuming positive class is at index 1 for binary-like AUC
                probs_for_auc = torch.softmax(logits, dim=1)[:, 1] 
            else: 
                # Binary classification with a single logit output
                probs_for_auc = torch.sigmoid(logits).squeeze() 
            all_probs_for_auc.extend(probs_for_auc.cpu().numpy())

            # Yield progress update
            progress_update_frequency = max(1, num_batches // 20) # Ensure at least 1 to avoid modulo zero
            if processed_batches % progress_update_frequency == 0 or processed_batches == num_batches: # Update roughly 20 times + final
                yield f"Processed {processed_batches}/{num_batches} batches ({processed_batches/num_batches*100:.2f}%)"
            
    avg_loss = total_loss / num_batches
    accuracy = accuracy_score(all_labels, all_preds)
    f1 = f1_score(all_labels, all_preds, average='weighted', zero_division=0)
    precision = precision_score(all_labels, all_preds, average='weighted', zero_division=0)
    recall = recall_score(all_labels, all_preds, average='weighted', zero_division=0)
    mcc = matthews_corrcoef(all_labels, all_preds)

    try:
        roc_auc = roc_auc_score(all_labels, all_probs_for_auc)
    except ValueError as e:
        print(f"Could not calculate AUC-ROC: {e}. Labels: {list(set(all_labels))[:10]}. Probs example: {all_probs_for_auc[:5]}. Setting to 0.0")
        roc_auc = 0.0

    results = {
        'accuracy': accuracy,
        'f1': f1,
        'roc_auc': roc_auc,
        'precision': precision,
        'recall': recall,
        'mcc': mcc,
        'average_loss': avg_loss
    }
    yield f"Processed {processed_batches}/{num_batches} batches (100.00%)" # Ensure final progress update
    yield "Evaluation complete. Compiling results..."
    yield results

if __name__ == "__main__":
    import argparse
    from torch.utils.data import DataLoader
    from datasets import load_dataset
    from inference import SentimentInference # Assuming inference.py is in the same directory
    import yaml
    from transformers import AutoTokenizer, AutoConfig
    from models import ModernBertForSentiment # Assuming models.py is in the same directory or PYTHONPATH

    class SentimentInference:
        def __init__(self, config_path):
            with open(config_path, 'r') as f:
                config_data = yaml.safe_load(f)
            self.config_path = config_path
            self.config_data = config_data
            # Adjust to access the correct key from the nested config structure
            self.model_hf_repo_id = config_data['model']['name_or_path'] 
            self.tokenizer_name_or_path = config_data['model'].get('tokenizer_name_or_path', self.model_hf_repo_id)
            self.local_model_weights_path = config_data['model'].get('local_model_weights_path', None) # Assuming it might be under 'model'
            self.load_from_local_pt = config_data['model'].get('load_from_local_pt', False)
            self.trust_remote_code_for_config = config_data['model'].get('trust_remote_code_for_config', True) # Default to True for custom code
            self.max_length = config_data['model']['max_length']
            self.device = torch.device("cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu")

            try:
                if self.load_from_local_pt and self.local_model_weights_path:
                    print(f"Loading model from local path: {self.local_model_weights_path}")
                    # When loading local, config might also be local or from base model if not saved with custom checkpoint
                    # For simplicity, assume config is part of the saved pretrained local model or not strictly needed if all architecture is in code
                    self.config = AutoConfig.from_pretrained(self.local_model_weights_path, trust_remote_code=self.trust_remote_code_for_config)
                    self.model = ModernBertForSentiment.from_pretrained(self.local_model_weights_path, config=self.config, trust_remote_code=True)
                else:
                    print(f"Loading base ModernBertConfig from: {self.model_hf_repo_id}")
                    self.config = AutoConfig.from_pretrained(self.model_hf_repo_id, trust_remote_code=self.trust_remote_code_for_config)
                    print(f"Instantiating and loading model weights for {self.model_hf_repo_id} using ModernBertForSentiment...")
                    self.model = ModernBertForSentiment.from_pretrained(self.model_hf_repo_id, config=self.config, trust_remote_code=True)
                    print(f"Model {self.model_hf_repo_id} loaded successfully from Hugging Face Hub using ModernBertForSentiment.")
                self.model.to(self.device)
            except Exception as e:
                print(f"Failed to load model: {e}")
                # Optionally print more detailed traceback
                import traceback
                traceback.print_exc()
                exit()

            self.tokenizer = AutoTokenizer.from_pretrained(self.tokenizer_name_or_path, trust_remote_code=self.trust_remote_code_for_config)

        def print_debug_info(self):
            print(f"Model HF Repo ID: {self.model_hf_repo_id}")
            print(f"Tokenizer Name or Path: {self.tokenizer_name_or_path}")
            print(f"Local Model Weights Path: {self.local_model_weights_path}")
            print(f"Load from Local PT: {self.load_from_local_pt}")

    parser = argparse.ArgumentParser(description="Evaluate a sentiment analysis model on the IMDB test set.")
    parser.add_argument(
        "--config_path",
        type=str,
        default="local_test_config.yaml",
        help="Path to the configuration file for SentimentInference (e.g., local_test_config.yaml or config.yaml)"
    )
    parser.add_argument(
        "--batch_size",
        type=int,
        default=16,
        help="Batch size for evaluation."
    )
    args = parser.parse_args()

    print(f"Using configuration: {args.config_path}")
    print("Loading sentiment model and tokenizer...")
    inferer = SentimentInference(config_path=args.config_path)
    model = inferer.model
    tokenizer = inferer.tokenizer
    max_length = inferer.max_length
    device = inferer.device

    print("Loading IMDB test dataset...")
    try:
        imdb_dataset_test = load_dataset("imdb", split="test")
    except Exception as e:
        print(f"Failed to load IMDB dataset: {e}")
        exit()

    print("Tokenizing dataset...")
    def tokenize_function(examples):
        tokenized_output = tokenizer(examples["text"], truncation=True, padding="max_length", max_length=max_length)
        tokenized_output["lengths"] = [sum(mask) for mask in tokenized_output["attention_mask"]]
        return tokenized_output
    
    tokenized_imdb_test = imdb_dataset_test.map(tokenize_function, batched=True)
    tokenized_imdb_test = tokenized_imdb_test.remove_columns(["text"])
    tokenized_imdb_test = tokenized_imdb_test.rename_column("label", "labels")
    tokenized_imdb_test.set_format("torch", columns=["input_ids", "attention_mask", "labels", "lengths"])

    test_dataloader = DataLoader(tokenized_imdb_test, batch_size=args.batch_size)
    
    print("Starting evaluation...")
    progress_bar = tqdm(evaluate(model, test_dataloader, device), desc="Evaluating")
    
    for update in progress_bar:
        if isinstance(update, dict):
            results = update
            break
        else:
            progress_bar.set_postfix_str(update)

    print("\n--- Evaluation Results ---")
    for key, value in results.items():
        if isinstance(value, float):
            print(f"{key.capitalize()}: {value:.4f}")
        else:
            print(f"{key.capitalize()}: {value}")