voxmenthe commited on
Commit
be92e89
·
1 Parent(s): af23076

add progress bar to gradio space

Browse files
Files changed (2) hide show
  1. app.py +22 -15
  2. evaluation.py +24 -15
app.py CHANGED
@@ -102,22 +102,29 @@ def run_full_evaluation_gradio():
102
  test_dataloader_full = DataLoader(tokenized_imdb_test_full, batch_size=batch_size)
103
  yield "Dataset tokenized and DataLoader prepared. Starting model evaluation on the test set..."
104
 
105
- # The 'evaluate' function from evaluation.py expects the dataloader to be potentially wrapped by tqdm
106
- # based on how it was called in evaluation.py's main block.
107
- # We will wrap it with tqdm here for consistency if evaluate function expects it.
108
- # Note: tqdm progress here will go to console, not Gradio UI directly.
109
- tqdm_dataloader = tqdm(test_dataloader_full, desc="Evaluating in App")
110
-
111
- results = evaluate(model, tqdm_dataloader, device)
112
-
113
- results_str = "--- Full Evaluation Results ---\n"
114
- for key, value in results.items():
115
- if isinstance(value, float):
116
- results_str += f"{key.capitalize()}: {value:.4f}\n"
 
 
 
 
117
  else:
118
- results_str += f"{key.capitalize()}: {value}\n"
119
- results_str += "\nEvaluation finished."
120
- yield results_str
 
 
 
121
 
122
  except Exception as e:
123
  import traceback
 
102
  test_dataloader_full = DataLoader(tokenized_imdb_test_full, batch_size=batch_size)
103
  yield "Dataset tokenized and DataLoader prepared. Starting model evaluation on the test set..."
104
 
105
+ # The 'evaluate' function from evaluation.py is now a generator.
106
+ # Iterate through its yielded updates and results.
107
+ final_results_str = ""
108
+ for update in evaluate(model, test_dataloader_full, device):
109
+ if isinstance(update, dict):
110
+ # This is the final results dictionary
111
+ results_str = "--- Full Evaluation Results ---\n"
112
+ for key, value in update.items():
113
+ if isinstance(value, float):
114
+ results_str += f"{key.capitalize()}: {value:.4f}\n"
115
+ else:
116
+ results_str += f"{key.capitalize()}: {value}\n"
117
+ results_str += "\nEvaluation finished."
118
+ final_results_str = results_str # Store to yield last
119
+ yield results_str # Optionally yield intermediate dict if needed, or just final string
120
+ break # Stop after getting the results dict
121
  else:
122
+ # This is a progress string
123
+ yield update
124
+
125
+ # Ensure the final formatted results string is yielded if not already (e.g., if loop broke early)
126
+ # However, the logic above should yield it before breaking.
127
+ # If evaluate could end without yielding a dict, this might be needed.
128
 
129
  except Exception as e:
130
  import traceback
evaluation.py CHANGED
@@ -10,9 +10,14 @@ def evaluate(model, dataloader, device):
10
  all_labels = []
11
  all_probs_for_auc = []
12
  total_loss = 0
 
 
 
 
13
 
14
  with torch.no_grad():
15
- for batch in dataloader:
 
16
  # Move batch to device, ensure all model inputs are covered
17
  input_ids = batch['input_ids'].to(device)
18
  attention_mask = batch['attention_mask'].to(device)
@@ -49,15 +54,11 @@ def evaluate(model, dataloader, device):
49
  all_preds.extend(preds.cpu().numpy())
50
 
51
  all_labels.extend(labels.cpu().numpy())
52
-
53
- if logits.shape[1] > 1:
54
- probs = torch.softmax(logits, dim=1)[:, 1]
55
- all_probs_for_auc.extend(probs.cpu().numpy())
56
- else:
57
- probs = torch.sigmoid(logits)
58
- all_probs_for_auc.extend(probs.squeeze().cpu().numpy())
59
-
60
- avg_loss = total_loss / len(dataloader)
61
  accuracy = accuracy_score(all_labels, all_preds)
62
  f1 = f1_score(all_labels, all_preds, average='weighted', zero_division=0)
63
  precision = precision_score(all_labels, all_preds, average='weighted', zero_division=0)
@@ -70,15 +71,18 @@ def evaluate(model, dataloader, device):
70
  print(f"Could not calculate AUC-ROC: {e}. Labels: {list(set(all_labels))[:10]}. Probs example: {all_probs_for_auc[:5]}. Setting to 0.0")
71
  roc_auc = 0.0
72
 
73
- return {
74
- 'loss': avg_loss,
75
  'accuracy': accuracy,
76
  'f1': f1,
77
  'roc_auc': roc_auc,
78
  'precision': precision,
79
  'recall': recall,
80
- 'mcc': mcc
 
81
  }
 
 
 
82
 
83
  if __name__ == "__main__":
84
  import argparse
@@ -177,9 +181,14 @@ if __name__ == "__main__":
177
  test_dataloader = DataLoader(tokenized_imdb_test, batch_size=args.batch_size)
178
 
179
  print("Starting evaluation...")
180
- progress_bar = tqdm(test_dataloader, desc="Evaluating")
181
 
182
- results = evaluate(model, progress_bar, device)
 
 
 
 
 
183
 
184
  print("\n--- Evaluation Results ---")
185
  for key, value in results.items():
 
10
  all_labels = []
11
  all_probs_for_auc = []
12
  total_loss = 0
13
+ num_batches = len(dataloader)
14
+ processed_batches = 0
15
+
16
+ yield "Starting evaluation..."
17
 
18
  with torch.no_grad():
19
+ for batch in dataloader: # dataloader here should not be pre-wrapped with tqdm by the caller if we yield progress
20
+ processed_batches += 1
21
  # Move batch to device, ensure all model inputs are covered
22
  input_ids = batch['input_ids'].to(device)
23
  attention_mask = batch['attention_mask'].to(device)
 
54
  all_preds.extend(preds.cpu().numpy())
55
 
56
  all_labels.extend(labels.cpu().numpy())
57
+ # Yield progress update
58
+ if processed_batches % (num_batches // 20) == 0 or processed_batches == num_batches: # Update roughly 20 times + final
59
+ yield f"Processed {processed_batches}/{num_batches} batches ({processed_batches/num_batches*100:.2f}%)"
60
+
61
+ avg_loss = total_loss / num_batches
 
 
 
 
62
  accuracy = accuracy_score(all_labels, all_preds)
63
  f1 = f1_score(all_labels, all_preds, average='weighted', zero_division=0)
64
  precision = precision_score(all_labels, all_preds, average='weighted', zero_division=0)
 
71
  print(f"Could not calculate AUC-ROC: {e}. Labels: {list(set(all_labels))[:10]}. Probs example: {all_probs_for_auc[:5]}. Setting to 0.0")
72
  roc_auc = 0.0
73
 
74
+ results = {
 
75
  'accuracy': accuracy,
76
  'f1': f1,
77
  'roc_auc': roc_auc,
78
  'precision': precision,
79
  'recall': recall,
80
+ 'mcc': mcc,
81
+ 'average_loss': avg_loss
82
  }
83
+ yield f"Processed {processed_batches}/{num_batches} batches (100.00%)" # Ensure final progress update
84
+ yield "Evaluation complete. Compiling results..."
85
+ yield results
86
 
87
  if __name__ == "__main__":
88
  import argparse
 
181
  test_dataloader = DataLoader(tokenized_imdb_test, batch_size=args.batch_size)
182
 
183
  print("Starting evaluation...")
184
+ progress_bar = tqdm(evaluate(model, test_dataloader, device), desc="Evaluating")
185
 
186
+ for update in progress_bar:
187
+ if isinstance(update, dict):
188
+ results = update
189
+ break
190
+ else:
191
+ progress_bar.set_postfix_str(update)
192
 
193
  print("\n--- Evaluation Results ---")
194
  for key, value in results.items():