Spaces:
Runtime error
Runtime error
import streamlit as st | |
import torch | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
import re | |
import time | |
# Model constants | |
CODET5_MODEL = "Salesforce/codet5-base-multi-sum" | |
class CodeT5Summarizer: | |
def __init__(self, device=None): | |
"""Initialize CodeT5 summarization model.""" | |
self.device = device if device else ('cuda' if torch.cuda.is_available() else 'cpu') | |
# Initialize model and tokenizer | |
with st.spinner("Loading CodeT5 model... this may take a minute..."): | |
self.tokenizer = AutoTokenizer.from_pretrained(CODET5_MODEL) | |
self.model = AutoModelForSeq2SeqLM.from_pretrained(CODET5_MODEL).to(self.device) | |
def preprocess_code(self, code): | |
"""Clean and preprocess the Python code.""" | |
# Remove empty lines | |
code = re.sub(r'\n\s*\n', '\n', code) | |
# Remove excessive comments (keeping docstrings) | |
code_lines = [] | |
in_docstring = False | |
docstring_delimiter = None | |
for line in code.split('\n'): | |
# Check for docstring delimiters | |
if '"""' in line or "'''" in line: | |
delimiter = '"""' if '"""' in line else "'''" | |
if not in_docstring: | |
in_docstring = True | |
docstring_delimiter = delimiter | |
elif docstring_delimiter == delimiter: | |
in_docstring = False | |
docstring_delimiter = None | |
# Keep docstrings and non-comment lines | |
if in_docstring or not line.strip().startswith('#'): | |
code_lines.append(line) | |
processed_code = '\n'.join(code_lines) | |
# Normalize whitespace | |
processed_code = re.sub(r' +', ' ', processed_code) | |
return processed_code | |
def extract_functions(self, code): | |
"""Extract individual functions for summarization""" | |
# Simple regex to find function definitions | |
function_pattern = r'def\s+([a-zA-Z_][a-zA-Z0-9_]*)\s*\(.*?\).*?:' | |
function_matches = re.finditer(function_pattern, code, re.DOTALL) | |
functions = [] | |
for match in function_matches: | |
start_pos = match.start() | |
# Find the function body | |
function_name = match.group(1) | |
lines = code[start_pos:].split('\n') | |
# Skip the function definition line | |
body_start = 1 | |
while body_start < len(lines) and not lines[body_start].strip(): | |
body_start += 1 | |
if body_start < len(lines): | |
# Get the indentation of the function body | |
body_indent = len(lines[body_start]) - len(lines[body_start].lstrip()) | |
# Gather all lines with at least this indentation | |
function_body = [lines[0]] # The function definition | |
i = 1 | |
while i < len(lines): | |
line = lines[i] | |
if line.strip() and (len(line) - len(line.lstrip())) < body_indent and not line.strip().startswith('#'): | |
break | |
function_body.append(line) | |
i += 1 | |
function_code = '\n'.join(function_body) | |
functions.append((function_name, function_code)) | |
# Simple regex to find class methods | |
class_pattern = r'class\s+([a-zA-Z_][a-zA-Z0-9_]*)' | |
class_matches = re.finditer(class_pattern, code, re.DOTALL) | |
for match in class_matches: | |
class_name = match.group(1) | |
start_pos = match.start() | |
# Find class methods using the function pattern | |
class_code = code[start_pos:] | |
method_matches = re.finditer(function_pattern, class_code, re.DOTALL) | |
for method_match in method_matches: | |
method_name = method_match.group(1) | |
# Skip if this is not a method (i.e., it's a function outside the class) | |
if method_match.start() > 200: # Simple heuristic to check if method is within class scope | |
break | |
# Get the full method code | |
method_start = method_match.start() | |
method_lines = class_code[method_start:].split('\n') | |
# Skip the method definition line | |
body_start = 1 | |
while body_start < len(method_lines) and not method_lines[body_start].strip(): | |
body_start += 1 | |
if body_start < len(method_lines): | |
# Get the indentation of the method body | |
body_indent = len(method_lines[body_start]) - len(method_lines[body_start].lstrip()) | |
# Gather all lines with at least this indentation | |
method_body = [method_lines[0]] # The method definition | |
i = 1 | |
while i < len(method_lines): | |
line = method_lines[i] | |
if line.strip() and (len(line) - len(line.lstrip())) < body_indent and not line.strip().startswith('#'): | |
break | |
method_body.append(line) | |
i += 1 | |
method_code = '\n'.join(method_body) | |
functions.append((f"{class_name}.{method_name}", method_code)) | |
return functions | |
def extract_classes(self, code): | |
"""Extract class definitions for summarization""" | |
class_pattern = r'class\s+([a-zA-Z_][a-zA-Z0-9_]*)' | |
class_matches = re.finditer(class_pattern, code, re.DOTALL) | |
classes = [] | |
for match in class_matches: | |
class_name = match.group(1) | |
start_pos = match.start() | |
# Extract class body | |
class_lines = code[start_pos:].split('\n') | |
# Skip the class definition line | |
body_start = 1 | |
while body_start < len(class_lines) and not class_lines[body_start].strip(): | |
body_start += 1 | |
if body_start < len(class_lines): | |
# Get the indentation of the class body | |
body_indent = len(class_lines[body_start]) - len(class_lines[body_start].lstrip()) | |
# Gather all lines with at least this indentation | |
class_body = [class_lines[0]] # The class definition | |
i = 1 | |
while i < len(class_lines): | |
line = class_lines[i] | |
if line.strip() and (len(line) - len(line.lstrip())) < body_indent: | |
break | |
class_body.append(line) | |
i += 1 | |
class_code = '\n'.join(class_body) | |
classes.append((class_name, class_code)) | |
return classes | |
def summarize(self, code, max_length=50): | |
"""Generate summary using CodeT5.""" | |
# Truncate input if needed | |
max_input_length = 512 # CodeT5 typically accepts up to 512 tokens | |
tokenized_code = self.tokenizer(code, truncation=True, max_length=max_input_length, return_tensors="pt").to(self.device) | |
with torch.no_grad(): | |
generated_ids = self.model.generate( | |
tokenized_code["input_ids"], | |
max_length=max_length, | |
num_beams=4, | |
early_stopping=True | |
) | |
summary = self.tokenizer.decode(generated_ids[0], skip_special_tokens=True) | |
return summary | |
def summarize_code(self, code, summarize_functions=True, summarize_classes=True): | |
""" | |
Generate full file summary and optionally function/class level summaries. | |
Returns a dictionary with summaries. | |
""" | |
preprocessed_code = self.preprocess_code(code) | |
results = { | |
"file_summary": None, | |
"function_summaries": {}, | |
"class_summaries": {} | |
} | |
# Generate file-level summary | |
try: | |
file_summary = self.summarize(preprocessed_code) | |
results["file_summary"] = file_summary | |
except Exception as e: | |
results["file_summary"] = f"Error generating file summary: {str(e)}" | |
# Generate function-level summaries if requested | |
if summarize_functions: | |
functions = self.extract_functions(preprocessed_code) | |
for function_name, function_code in functions: | |
try: | |
summary = self.summarize(function_code) | |
results["function_summaries"][function_name] = summary | |
except Exception as e: | |
results["function_summaries"][function_name] = f"Error: {str(e)}" | |
# Generate class-level summaries if requested | |
if summarize_classes: | |
classes = self.extract_classes(preprocessed_code) | |
for class_name, class_code in classes: | |
try: | |
summary = self.summarize(class_code) | |
results["class_summaries"][class_name] = summary | |
except Exception as e: | |
results["class_summaries"][class_name] = f"Error: {str(e)}" | |
return results | |
def main(): | |
st.set_page_config( | |
page_title="Python Code Summarizer", | |
page_icon="π", | |
layout="wide" | |
) | |
st.title("π Python Code Summarizer using CodeT5") | |
st.markdown(""" | |
Upload a Python file or paste code directly to generate summaries. | |
This app uses CodeT5, a pretrained model for code understanding and generation. | |
""") | |
# Initialize session state | |
if 'summarizer' not in st.session_state: | |
st.session_state.summarizer = None | |
# Load model if not already loaded | |
if st.session_state.summarizer is None: | |
st.session_state.summarizer = CodeT5Summarizer() | |
# Create tabs for different input methods | |
tab1, tab2 = st.tabs(["Upload Python File", "Paste Code"]) | |
with tab1: | |
uploaded_file = st.file_uploader("Choose a Python file", type=['py']) | |
if uploaded_file is not None: | |
code = uploaded_file.getvalue().decode('utf-8') | |
with st.expander("View Uploaded Code", expanded=False): | |
st.code(code, language='python') | |
# Add summarization options | |
st.subheader("Summarization Options") | |
col1, col2 = st.columns(2) | |
with col1: | |
summarize_functions = st.checkbox("Generate function summaries", value=True) | |
with col2: | |
summarize_classes = st.checkbox("Generate class summaries", value=True) | |
if st.button("Summarize Code", key="summarize_file"): | |
with st.spinner("Generating summaries..."): | |
start_time = time.time() | |
summaries = st.session_state.summarizer.summarize_code( | |
code, | |
summarize_functions=summarize_functions, | |
summarize_classes=summarize_classes | |
) | |
end_time = time.time() | |
# Display summaries | |
st.success(f"Summarization completed in {end_time - start_time:.2f} seconds!") | |
# File summary | |
st.subheader("File Summary") | |
st.write(summaries["file_summary"]) | |
# Function summaries | |
if summarize_functions and summaries["function_summaries"]: | |
st.subheader("Function Summaries") | |
for func_name, summary in summaries["function_summaries"].items(): | |
with st.expander(f"Function: {func_name}"): | |
st.write(summary) | |
# Class summaries | |
if summarize_classes and summaries["class_summaries"]: | |
st.subheader("Class Summaries") | |
for class_name, summary in summaries["class_summaries"].items(): | |
with st.expander(f"Class: {class_name}"): | |
st.write(summary) | |
with tab2: | |
code = st.text_area("Paste Python code here", height=300) | |
if code: | |
# Add summarization options | |
st.subheader("Summarization Options") | |
col1, col2 = st.columns(2) | |
with col1: | |
summarize_functions = st.checkbox("Generate function summaries", value=True, key="func_paste") | |
with col2: | |
summarize_classes = st.checkbox("Generate class summaries", value=True, key="class_paste") | |
if st.button("Summarize Code", key="summarize_paste"): | |
with st.spinner("Generating summaries..."): | |
start_time = time.time() | |
summaries = st.session_state.summarizer.summarize_code( | |
code, | |
summarize_functions=summarize_functions, | |
summarize_classes=summarize_classes | |
) | |
end_time = time.time() | |
# Display summaries | |
st.success(f"Summarization completed in {end_time - start_time:.2f} seconds!") | |
# File summary | |
st.subheader("File Summary") | |
st.write(summaries["file_summary"]) | |
# Function summaries | |
if summarize_functions and summaries["function_summaries"]: | |
st.subheader("Function Summaries") | |
for func_name, summary in summaries["function_summaries"].items(): | |
with st.expander(f"Function: {func_name}"): | |
st.write(summary) | |
# Class summaries | |
if summarize_classes and summaries["class_summaries"]: | |
st.subheader("Class Summaries") | |
for class_name, summary in summaries["class_summaries"].items(): | |
with st.expander(f"Class: {class_name}"): | |
st.write(summary) | |
st.markdown("---") | |
st.markdown("### About") | |
st.markdown(""" | |
This app uses the CodeT5 model to generate summaries of Python code. The model is trained on a large corpus of code and documentation. | |
**Features:** | |
- File-level summaries | |
- Function-level summaries | |
- Class-level summaries | |
**Limitations:** | |
- Summaries may not always be accurate | |
- Long files may be truncated | |
- Complex code structures might not be properly understood | |
""") | |
if __name__ == "__main__": | |
main() |