Spaces:
Runtime error
Runtime error
Commit
·
bcb80f2
1
Parent(s):
adf8249
readme update
Browse files- README.md +20 -6
- app.py +345 -121
- code_analyzer.py → code_analyzer2.py +20 -19
- requirements.txt +3 -8
README.md
CHANGED
@@ -9,12 +9,26 @@ app_file: app.py
|
|
9 |
pinned: false
|
10 |
---
|
11 |
|
12 |
-
# Code
|
13 |
|
14 |
-
|
15 |
|
16 |
## Features
|
17 |
-
-
|
18 |
-
-
|
19 |
-
-
|
20 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
pinned: false
|
10 |
---
|
11 |
|
12 |
+
# Python Code Summarizer
|
13 |
|
14 |
+
This Streamlit app utilizes the CodeT5 model to generate summaries of Python code files, leveraging the Hugging Face Transformers library.
|
15 |
|
16 |
## Features
|
17 |
+
- Upload Python files or paste code directly
|
18 |
+
- Generate file-level summaries
|
19 |
+
- Generate function-level summaries
|
20 |
+
- Generate class-level summaries
|
21 |
+
|
22 |
+
## Usage
|
23 |
+
1. Upload a Python file or paste your code
|
24 |
+
2. Select the types of summaries you want to generate
|
25 |
+
3. Click "Summarize Code"
|
26 |
+
4. View the generated summaries
|
27 |
+
|
28 |
+
## Model Information
|
29 |
+
This app employs CodeT5, a pretrained model available on Hugging Face, developed by Salesforce Research for code understanding and generation tasks. It is trained on a vast corpus of code and documentation.
|
30 |
+
|
31 |
+
## Limitations
|
32 |
+
- Summaries may not always be accurate
|
33 |
+
- Long files may be truncated due to model context limits
|
34 |
+
- Complex code structures might not be properly understood
|
app.py
CHANGED
@@ -1,136 +1,360 @@
|
|
1 |
import streamlit as st
|
2 |
-
import
|
3 |
-
import
|
4 |
-
import
|
5 |
-
|
6 |
-
import plotly.express as px
|
7 |
-
import pandas as pd
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
page_icon="🔍",
|
12 |
-
layout="wide"
|
13 |
-
)
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
fig = px.bar(df, x='Metric', y='Value', title='Code Metrics')
|
25 |
-
return fig
|
26 |
-
|
27 |
-
def display_tech_stack(tech_stack):
|
28 |
-
"""Display technology stack in an organized way"""
|
29 |
-
st.subheader("🛠️ Technology Stack")
|
30 |
-
cols = st.columns(3)
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
accept_multiple_files=True,
|
70 |
-
type=['py', 'java', 'js', 'jsx', 'ts', 'tsx']
|
71 |
-
)
|
72 |
-
|
73 |
-
# Questions input
|
74 |
-
st.subheader("📝 Analysis Questions")
|
75 |
-
default_questions = """What is the project's abstract?
|
76 |
-
What is the system architecture?
|
77 |
-
What are the software requirements?
|
78 |
-
What are the hardware requirements?"""
|
79 |
-
|
80 |
-
questions = st.text_area(
|
81 |
-
"Enter your questions (one per line)",
|
82 |
-
value=default_questions,
|
83 |
-
height=150
|
84 |
-
)
|
85 |
-
|
86 |
-
analyze_button = st.button("🔍 Analyze Code")
|
87 |
-
|
88 |
-
if analyze_button and uploaded_files:
|
89 |
-
with st.spinner("Analyzing your code..."):
|
90 |
-
# Save uploaded files
|
91 |
-
temp_dir = save_uploaded_files(uploaded_files)
|
92 |
|
93 |
-
#
|
94 |
-
|
95 |
-
|
96 |
-
f.write(questions)
|
97 |
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
results = analyzer.analyze_project(temp_dir, questions_file)
|
102 |
|
103 |
-
#
|
104 |
-
|
|
|
105 |
|
106 |
-
|
107 |
-
|
108 |
-
|
|
|
|
|
109 |
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
st.subheader("📊 Code Metrics")
|
114 |
-
metrics_chart = create_metrics_chart(results["metrics"])
|
115 |
-
st.plotly_chart(metrics_chart, use_container_width=True)
|
116 |
|
117 |
-
#
|
118 |
-
|
119 |
-
|
120 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
|
|
|
|
|
|
|
|
|
128 |
except Exception as e:
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
import torch
|
3 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
4 |
+
import re
|
5 |
+
import time
|
|
|
|
|
6 |
|
7 |
+
# Model constants
|
8 |
+
CODET5_MODEL = "Salesforce/codet5-base-multi-sum"
|
|
|
|
|
|
|
9 |
|
10 |
+
class CodeT5Summarizer:
|
11 |
+
def __init__(self, device=None):
|
12 |
+
"""Initialize CodeT5 summarization model."""
|
13 |
+
self.device = device if device else ('cuda' if torch.cuda.is_available() else 'cpu')
|
14 |
+
|
15 |
+
# Initialize model and tokenizer
|
16 |
+
with st.spinner("Loading CodeT5 model... this may take a minute..."):
|
17 |
+
self.tokenizer = AutoTokenizer.from_pretrained(CODET5_MODEL)
|
18 |
+
self.model = AutoModelForSeq2SeqLM.from_pretrained(CODET5_MODEL).to(self.device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
+
def preprocess_code(self, code):
|
21 |
+
"""Clean and preprocess the Python code."""
|
22 |
+
# Remove empty lines
|
23 |
+
code = re.sub(r'\n\s*\n', '\n', code)
|
24 |
+
|
25 |
+
# Remove excessive comments (keeping docstrings)
|
26 |
+
code_lines = []
|
27 |
+
in_docstring = False
|
28 |
+
docstring_delimiter = None
|
29 |
+
|
30 |
+
for line in code.split('\n'):
|
31 |
+
# Check for docstring delimiters
|
32 |
+
if '"""' in line or "'''" in line:
|
33 |
+
delimiter = '"""' if '"""' in line else "'''"
|
34 |
+
if not in_docstring:
|
35 |
+
in_docstring = True
|
36 |
+
docstring_delimiter = delimiter
|
37 |
+
elif docstring_delimiter == delimiter:
|
38 |
+
in_docstring = False
|
39 |
+
docstring_delimiter = None
|
40 |
|
41 |
+
# Keep docstrings and non-comment lines
|
42 |
+
if in_docstring or not line.strip().startswith('#'):
|
43 |
+
code_lines.append(line)
|
44 |
+
|
45 |
+
processed_code = '\n'.join(code_lines)
|
46 |
+
|
47 |
+
# Normalize whitespace
|
48 |
+
processed_code = re.sub(r' +', ' ', processed_code)
|
49 |
+
|
50 |
+
return processed_code
|
51 |
+
|
52 |
+
def extract_functions(self, code):
|
53 |
+
"""Extract individual functions for summarization"""
|
54 |
+
# Simple regex to find function definitions
|
55 |
+
function_pattern = r'def\s+([a-zA-Z_][a-zA-Z0-9_]*)\s*\(.*?\).*?:'
|
56 |
+
function_matches = re.finditer(function_pattern, code, re.DOTALL)
|
57 |
+
|
58 |
+
functions = []
|
59 |
+
for match in function_matches:
|
60 |
+
start_pos = match.start()
|
61 |
+
# Find the function body
|
62 |
+
function_name = match.group(1)
|
63 |
+
lines = code[start_pos:].split('\n')
|
64 |
|
65 |
+
# Skip the function definition line
|
66 |
+
body_start = 1
|
67 |
+
while body_start < len(lines) and not lines[body_start].strip():
|
68 |
+
body_start += 1
|
69 |
+
|
70 |
+
if body_start < len(lines):
|
71 |
+
# Get the indentation of the function body
|
72 |
+
body_indent = len(lines[body_start]) - len(lines[body_start].lstrip())
|
73 |
+
|
74 |
+
# Gather all lines with at least this indentation
|
75 |
+
function_body = [lines[0]] # The function definition
|
76 |
+
i = 1
|
77 |
+
while i < len(lines):
|
78 |
+
line = lines[i]
|
79 |
+
if line.strip() and (len(line) - len(line.lstrip())) < body_indent and not line.strip().startswith('#'):
|
80 |
+
break
|
81 |
+
function_body.append(line)
|
82 |
+
i += 1
|
83 |
+
|
84 |
+
function_code = '\n'.join(function_body)
|
85 |
+
functions.append((function_name, function_code))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
+
# Simple regex to find class methods
|
88 |
+
class_pattern = r'class\s+([a-zA-Z_][a-zA-Z0-9_]*)'
|
89 |
+
class_matches = re.finditer(class_pattern, code, re.DOTALL)
|
|
|
90 |
|
91 |
+
for match in class_matches:
|
92 |
+
class_name = match.group(1)
|
93 |
+
start_pos = match.start()
|
|
|
94 |
|
95 |
+
# Find class methods using the function pattern
|
96 |
+
class_code = code[start_pos:]
|
97 |
+
method_matches = re.finditer(function_pattern, class_code, re.DOTALL)
|
98 |
|
99 |
+
for method_match in method_matches:
|
100 |
+
method_name = method_match.group(1)
|
101 |
+
# Skip if this is not a method (i.e., it's a function outside the class)
|
102 |
+
if method_match.start() > 200: # Simple heuristic to check if method is within class scope
|
103 |
+
break
|
104 |
|
105 |
+
# Get the full method code
|
106 |
+
method_start = method_match.start()
|
107 |
+
method_lines = class_code[method_start:].split('\n')
|
|
|
|
|
|
|
108 |
|
109 |
+
# Skip the method definition line
|
110 |
+
body_start = 1
|
111 |
+
while body_start < len(method_lines) and not method_lines[body_start].strip():
|
112 |
+
body_start += 1
|
113 |
+
|
114 |
+
if body_start < len(method_lines):
|
115 |
+
# Get the indentation of the method body
|
116 |
+
body_indent = len(method_lines[body_start]) - len(method_lines[body_start].lstrip())
|
117 |
+
|
118 |
+
# Gather all lines with at least this indentation
|
119 |
+
method_body = [method_lines[0]] # The method definition
|
120 |
+
i = 1
|
121 |
+
while i < len(method_lines):
|
122 |
+
line = method_lines[i]
|
123 |
+
if line.strip() and (len(line) - len(line.lstrip())) < body_indent and not line.strip().startswith('#'):
|
124 |
+
break
|
125 |
+
method_body.append(line)
|
126 |
+
i += 1
|
127 |
+
|
128 |
+
method_code = '\n'.join(method_body)
|
129 |
+
functions.append((f"{class_name}.{method_name}", method_code))
|
130 |
+
|
131 |
+
return functions
|
132 |
+
|
133 |
+
def extract_classes(self, code):
|
134 |
+
"""Extract class definitions for summarization"""
|
135 |
+
class_pattern = r'class\s+([a-zA-Z_][a-zA-Z0-9_]*)'
|
136 |
+
class_matches = re.finditer(class_pattern, code, re.DOTALL)
|
137 |
+
|
138 |
+
classes = []
|
139 |
+
for match in class_matches:
|
140 |
+
class_name = match.group(1)
|
141 |
+
start_pos = match.start()
|
142 |
|
143 |
+
# Extract class body
|
144 |
+
class_lines = code[start_pos:].split('\n')
|
145 |
+
|
146 |
+
# Skip the class definition line
|
147 |
+
body_start = 1
|
148 |
+
while body_start < len(class_lines) and not class_lines[body_start].strip():
|
149 |
+
body_start += 1
|
150 |
+
|
151 |
+
if body_start < len(class_lines):
|
152 |
+
# Get the indentation of the class body
|
153 |
+
body_indent = len(class_lines[body_start]) - len(class_lines[body_start].lstrip())
|
154 |
+
|
155 |
+
# Gather all lines with at least this indentation
|
156 |
+
class_body = [class_lines[0]] # The class definition
|
157 |
+
i = 1
|
158 |
+
while i < len(class_lines):
|
159 |
+
line = class_lines[i]
|
160 |
+
if line.strip() and (len(line) - len(line.lstrip())) < body_indent:
|
161 |
+
break
|
162 |
+
class_body.append(line)
|
163 |
+
i += 1
|
164 |
+
|
165 |
+
class_code = '\n'.join(class_body)
|
166 |
+
classes.append((class_name, class_code))
|
167 |
+
|
168 |
+
return classes
|
169 |
+
|
170 |
+
def summarize(self, code, max_length=50):
|
171 |
+
"""Generate summary using CodeT5."""
|
172 |
+
# Truncate input if needed
|
173 |
+
max_input_length = 512 # CodeT5 typically accepts up to 512 tokens
|
174 |
+
tokenized_code = self.tokenizer(code, truncation=True, max_length=max_input_length, return_tensors="pt").to(self.device)
|
175 |
+
|
176 |
+
with torch.no_grad():
|
177 |
+
generated_ids = self.model.generate(
|
178 |
+
tokenized_code["input_ids"],
|
179 |
+
max_length=max_length,
|
180 |
+
num_beams=4,
|
181 |
+
early_stopping=True
|
182 |
+
)
|
183 |
+
|
184 |
+
summary = self.tokenizer.decode(generated_ids[0], skip_special_tokens=True)
|
185 |
+
return summary
|
186 |
+
|
187 |
+
def summarize_code(self, code, summarize_functions=True, summarize_classes=True):
|
188 |
+
"""
|
189 |
+
Generate full file summary and optionally function/class level summaries.
|
190 |
+
Returns a dictionary with summaries.
|
191 |
+
"""
|
192 |
+
preprocessed_code = self.preprocess_code(code)
|
193 |
+
|
194 |
+
results = {
|
195 |
+
"file_summary": None,
|
196 |
+
"function_summaries": {},
|
197 |
+
"class_summaries": {}
|
198 |
+
}
|
199 |
|
200 |
+
# Generate file-level summary
|
201 |
+
try:
|
202 |
+
file_summary = self.summarize(preprocessed_code)
|
203 |
+
results["file_summary"] = file_summary
|
204 |
except Exception as e:
|
205 |
+
results["file_summary"] = f"Error generating file summary: {str(e)}"
|
206 |
+
|
207 |
+
# Generate function-level summaries if requested
|
208 |
+
if summarize_functions:
|
209 |
+
functions = self.extract_functions(preprocessed_code)
|
210 |
+
|
211 |
+
for function_name, function_code in functions:
|
212 |
+
try:
|
213 |
+
summary = self.summarize(function_code)
|
214 |
+
results["function_summaries"][function_name] = summary
|
215 |
+
except Exception as e:
|
216 |
+
results["function_summaries"][function_name] = f"Error: {str(e)}"
|
217 |
+
|
218 |
+
# Generate class-level summaries if requested
|
219 |
+
if summarize_classes:
|
220 |
+
classes = self.extract_classes(preprocessed_code)
|
221 |
+
|
222 |
+
for class_name, class_code in classes:
|
223 |
+
try:
|
224 |
+
summary = self.summarize(class_code)
|
225 |
+
results["class_summaries"][class_name] = summary
|
226 |
+
except Exception as e:
|
227 |
+
results["class_summaries"][class_name] = f"Error: {str(e)}"
|
228 |
+
|
229 |
+
return results
|
230 |
+
|
231 |
+
def main():
|
232 |
+
st.set_page_config(
|
233 |
+
page_title="Python Code Summarizer",
|
234 |
+
page_icon="📝",
|
235 |
+
layout="wide"
|
236 |
+
)
|
237 |
+
|
238 |
+
st.title("📝 Python Code Summarizer using CodeT5")
|
239 |
+
st.markdown("""
|
240 |
+
Upload a Python file or paste code directly to generate summaries.
|
241 |
+
This app uses CodeT5, a pretrained model for code understanding and generation.
|
242 |
+
""")
|
243 |
+
|
244 |
+
# Initialize session state
|
245 |
+
if 'summarizer' not in st.session_state:
|
246 |
+
st.session_state.summarizer = None
|
247 |
+
|
248 |
+
# Load model if not already loaded
|
249 |
+
if st.session_state.summarizer is None:
|
250 |
+
st.session_state.summarizer = CodeT5Summarizer()
|
251 |
+
|
252 |
+
# Create tabs for different input methods
|
253 |
+
tab1, tab2 = st.tabs(["Upload Python File", "Paste Code"])
|
254 |
+
|
255 |
+
with tab1:
|
256 |
+
uploaded_file = st.file_uploader("Choose a Python file", type=['py'])
|
257 |
+
if uploaded_file is not None:
|
258 |
+
code = uploaded_file.getvalue().decode('utf-8')
|
259 |
+
with st.expander("View Uploaded Code", expanded=False):
|
260 |
+
st.code(code, language='python')
|
261 |
+
|
262 |
+
# Add summarization options
|
263 |
+
st.subheader("Summarization Options")
|
264 |
+
col1, col2 = st.columns(2)
|
265 |
+
with col1:
|
266 |
+
summarize_functions = st.checkbox("Generate function summaries", value=True)
|
267 |
+
with col2:
|
268 |
+
summarize_classes = st.checkbox("Generate class summaries", value=True)
|
269 |
+
|
270 |
+
if st.button("Summarize Code", key="summarize_file"):
|
271 |
+
with st.spinner("Generating summaries..."):
|
272 |
+
start_time = time.time()
|
273 |
+
summaries = st.session_state.summarizer.summarize_code(
|
274 |
+
code,
|
275 |
+
summarize_functions=summarize_functions,
|
276 |
+
summarize_classes=summarize_classes
|
277 |
+
)
|
278 |
+
end_time = time.time()
|
279 |
+
|
280 |
+
# Display summaries
|
281 |
+
st.success(f"Summarization completed in {end_time - start_time:.2f} seconds!")
|
282 |
+
|
283 |
+
# File summary
|
284 |
+
st.subheader("File Summary")
|
285 |
+
st.write(summaries["file_summary"])
|
286 |
+
|
287 |
+
# Function summaries
|
288 |
+
if summarize_functions and summaries["function_summaries"]:
|
289 |
+
st.subheader("Function Summaries")
|
290 |
+
for func_name, summary in summaries["function_summaries"].items():
|
291 |
+
with st.expander(f"Function: {func_name}"):
|
292 |
+
st.write(summary)
|
293 |
+
|
294 |
+
# Class summaries
|
295 |
+
if summarize_classes and summaries["class_summaries"]:
|
296 |
+
st.subheader("Class Summaries")
|
297 |
+
for class_name, summary in summaries["class_summaries"].items():
|
298 |
+
with st.expander(f"Class: {class_name}"):
|
299 |
+
st.write(summary)
|
300 |
+
|
301 |
+
with tab2:
|
302 |
+
code = st.text_area("Paste Python code here", height=300)
|
303 |
+
if code:
|
304 |
+
# Add summarization options
|
305 |
+
st.subheader("Summarization Options")
|
306 |
+
col1, col2 = st.columns(2)
|
307 |
+
with col1:
|
308 |
+
summarize_functions = st.checkbox("Generate function summaries", value=True, key="func_paste")
|
309 |
+
with col2:
|
310 |
+
summarize_classes = st.checkbox("Generate class summaries", value=True, key="class_paste")
|
311 |
+
|
312 |
+
if st.button("Summarize Code", key="summarize_paste"):
|
313 |
+
with st.spinner("Generating summaries..."):
|
314 |
+
start_time = time.time()
|
315 |
+
summaries = st.session_state.summarizer.summarize_code(
|
316 |
+
code,
|
317 |
+
summarize_functions=summarize_functions,
|
318 |
+
summarize_classes=summarize_classes
|
319 |
+
)
|
320 |
+
end_time = time.time()
|
321 |
+
|
322 |
+
# Display summaries
|
323 |
+
st.success(f"Summarization completed in {end_time - start_time:.2f} seconds!")
|
324 |
+
|
325 |
+
# File summary
|
326 |
+
st.subheader("File Summary")
|
327 |
+
st.write(summaries["file_summary"])
|
328 |
+
|
329 |
+
# Function summaries
|
330 |
+
if summarize_functions and summaries["function_summaries"]:
|
331 |
+
st.subheader("Function Summaries")
|
332 |
+
for func_name, summary in summaries["function_summaries"].items():
|
333 |
+
with st.expander(f"Function: {func_name}"):
|
334 |
+
st.write(summary)
|
335 |
+
|
336 |
+
# Class summaries
|
337 |
+
if summarize_classes and summaries["class_summaries"]:
|
338 |
+
st.subheader("Class Summaries")
|
339 |
+
for class_name, summary in summaries["class_summaries"].items():
|
340 |
+
with st.expander(f"Class: {class_name}"):
|
341 |
+
st.write(summary)
|
342 |
+
|
343 |
+
st.markdown("---")
|
344 |
+
st.markdown("### About")
|
345 |
+
st.markdown("""
|
346 |
+
This app uses the CodeT5 model to generate summaries of Python code. The model is trained on a large corpus of code and documentation.
|
347 |
+
|
348 |
+
**Features:**
|
349 |
+
- File-level summaries
|
350 |
+
- Function-level summaries
|
351 |
+
- Class-level summaries
|
352 |
+
|
353 |
+
**Limitations:**
|
354 |
+
- Summaries may not always be accurate
|
355 |
+
- Long files may be truncated
|
356 |
+
- Complex code structures might not be properly understood
|
357 |
+
""")
|
358 |
+
|
359 |
+
if __name__ == "__main__":
|
360 |
+
main()
|
code_analyzer.py → code_analyzer2.py
RENAMED
@@ -7,11 +7,12 @@ from typing import List, Dict, Set, Any
|
|
7 |
import pkg_resources
|
8 |
import importlib.util
|
9 |
from collections import defaultdict
|
|
|
10 |
|
11 |
-
class
|
12 |
def __init__(self):
|
13 |
# Using different models for different types of analysis
|
14 |
-
self.summarizer = pipeline("summarization", model="
|
15 |
|
16 |
def detect_technologies(self, code_files: Dict[str, str]) -> Dict[str, Any]:
|
17 |
"""Detect technologies used in the project"""
|
@@ -210,22 +211,22 @@ class CodeAnalyzer:
|
|
210 |
"answers": answers
|
211 |
}
|
212 |
|
213 |
-
if __name__ == "__main__":
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
|
229 |
-
|
230 |
-
|
231 |
-
|
|
|
7 |
import pkg_resources
|
8 |
import importlib.util
|
9 |
from collections import defaultdict
|
10 |
+
import huggingface_hub
|
11 |
|
12 |
+
class CodeAnalyzer2:
|
13 |
def __init__(self):
|
14 |
# Using different models for different types of analysis
|
15 |
+
self.summarizer = pipeline("summarization", model="Graverman/t5-code-summary")
|
16 |
|
17 |
def detect_technologies(self, code_files: Dict[str, str]) -> Dict[str, Any]:
|
18 |
"""Detect technologies used in the project"""
|
|
|
211 |
"answers": answers
|
212 |
}
|
213 |
|
214 |
+
# if __name__ == "__main__":
|
215 |
+
# analyzer = CodeAnalyzer()
|
216 |
+
# # Example usage
|
217 |
+
# results = analyzer.analyze_project(
|
218 |
+
# "./example_project",
|
219 |
+
# "./questions.txt"
|
220 |
+
# )
|
221 |
+
# print("\nProject Objective:", results["objective"])
|
222 |
+
# print("\nTechnology Stack:")
|
223 |
+
# for category, items in results["tech_stack"].items():
|
224 |
+
# print(f"- {category.title()}: {', '.join(items)}")
|
225 |
|
226 |
+
# print("\nCode Metrics:")
|
227 |
+
# for metric, value in results["metrics"].items():
|
228 |
+
# print(f"- {metric.replace('_', ' ').title()}: {value}")
|
229 |
|
230 |
+
# print("\nAnswers to Questions:")
|
231 |
+
# for q, a in results["answers"].items():
|
232 |
+
# print(f"\n{q}:\n{a}")
|
requirements.txt
CHANGED
@@ -1,8 +1,3 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
numpy>=1.24.0
|
5 |
-
pandas>=2.0.0
|
6 |
-
streamlit>=1.30.0
|
7 |
-
plotly>=5.18.0
|
8 |
-
altair>=5.2.0
|
|
|
1 |
+
streamlit>=1.22.0
|
2 |
+
torch>=1.13.0
|
3 |
+
transformers>=4.28.0
|
|
|
|
|
|
|
|
|
|