|
|
|
|
|
import os |
|
from collections.abc import Iterator |
|
from threading import Thread |
|
|
|
import gradio as gr |
|
import spaces |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, pipeline |
|
|
|
DESCRIPTION = "# chat-1" |
|
|
|
if not torch.cuda.is_available(): |
|
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>" |
|
|
|
MAX_MAX_NEW_TOKENS = 2048 |
|
DEFAULT_MAX_NEW_TOKENS = 1024 |
|
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "32768")) |
|
|
|
|
|
if torch.cuda.is_available(): |
|
model_id = "vericava/llm-jp-3-1.8b-instruct-lora-vericava7-llama" |
|
my_pipeline=pipeline( |
|
model=model_id, |
|
) |
|
my_pipeline.tokenizer.chat_template = "{{bos_token}}{% for message in messages %}{% if message['role'] == 'user' %}{{ '\\n\\n### 前の投稿:\\n' + message['content'] + '' }}{% elif message['role'] == 'system' %}{{ '以下は、SNS上の投稿です。あなたはSNSの投稿生成botとして、次に続く投稿を考えなさい。説明はせず、投稿の内容のみを鉤括弧をつけずに答えよ。' }}{% elif message['role'] == 'assistant' %}{{ '\\n\\n### 次の投稿:\\n' + message['content'] + eos_token }}{% endif %}{% if loop.last and add_generation_prompt %}{{ '\\n\\n### 次の投稿:\\n' }}{% endif %}{% endfor %}" |
|
|
|
@spaces.GPU |
|
@torch.inference_mode() |
|
def generate( |
|
message: str, |
|
chat_history: list[tuple[str, str]], |
|
max_new_tokens: int = 1024, |
|
temperature: float = 0.7, |
|
top_p: float = 0.95, |
|
top_k: int = 50, |
|
repetition_penalty: float = 1.0, |
|
) -> Iterator[str]: |
|
messages = [ |
|
{"role": "system", "content": "あなたはSNSの投稿生成botで、次に続く投稿を考えてください。"}, |
|
{"role": "user", "content": message}, |
|
] |
|
|
|
output = my_pipeline( |
|
messages, |
|
)[-1]["generated_text"][-1]["content"] |
|
yield output |
|
|
|
demo = gr.ChatInterface( |
|
fn=generate, |
|
type="tuples", |
|
additional_inputs_accordion=gr.Accordion(label="詳細設定", open=False), |
|
additional_inputs=[ |
|
gr.Slider( |
|
label="Max new tokens", |
|
minimum=1, |
|
maximum=MAX_MAX_NEW_TOKENS, |
|
step=1, |
|
value=DEFAULT_MAX_NEW_TOKENS, |
|
), |
|
gr.Slider( |
|
label="Temperature", |
|
minimum=0.1, |
|
maximum=4.0, |
|
step=0.1, |
|
value=0.7, |
|
), |
|
gr.Slider( |
|
label="Top-p (nucleus sampling)", |
|
minimum=0.05, |
|
maximum=1.0, |
|
step=0.05, |
|
value=0.95, |
|
), |
|
gr.Slider( |
|
label="Top-k", |
|
minimum=1, |
|
maximum=1000, |
|
step=1, |
|
value=50, |
|
), |
|
gr.Slider( |
|
label="Repetition penalty", |
|
minimum=1.0, |
|
maximum=2.0, |
|
step=0.05, |
|
value=1.0, |
|
), |
|
], |
|
stop_btn=None, |
|
examples=[ |
|
["サマリーを作る男の人,サマリーマン。"], |
|
["やばい場所にクリティカルな配線ができてしまったので掲示した。"], |
|
["にゃん"], |
|
["Wikipedia の情報は入っているのかもしれない"], |
|
], |
|
description=DESCRIPTION, |
|
css_paths="style.css", |
|
fill_height=True, |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|