#!/usr/bin/env python import os from collections.abc import Iterator from threading import Thread import gradio as gr import spaces import torch from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, pipeline DESCRIPTION = "# chat-1" if not torch.cuda.is_available(): DESCRIPTION += "\n

Running on CPU 🥶 This demo does not work on CPU.

" MAX_MAX_NEW_TOKENS = 2048 DEFAULT_MAX_NEW_TOKENS = 1024 MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "32768")) if torch.cuda.is_available(): model_id = "vericava/llm-jp-3-1.8b-instruct-lora-vericava7-llama" my_pipeline=pipeline( model=model_id, ) my_pipeline.tokenizer.chat_template = "{{bos_token}}{% for message in messages %}{% if message['role'] == 'user' %}{{ '\\n\\n### 前の投稿:\\n' + message['content'] + '' }}{% elif message['role'] == 'system' %}{{ '以下は、SNS上の投稿です。あなたはSNSの投稿生成botとして、次に続く投稿を考えなさい。説明はせず、投稿の内容のみを鉤括弧をつけずに答えよ。' }}{% elif message['role'] == 'assistant' %}{{ '\\n\\n### 次の投稿:\\n' + message['content'] + eos_token }}{% endif %}{% if loop.last and add_generation_prompt %}{{ '\\n\\n### 次の投稿:\\n' }}{% endif %}{% endfor %}" @spaces.GPU @torch.inference_mode() def generate( message: str, chat_history: list[tuple[str, str]], max_new_tokens: int = 1024, temperature: float = 0.7, top_p: float = 0.95, top_k: int = 50, repetition_penalty: float = 1.0, ) -> Iterator[str]: messages = [ {"role": "system", "content": "あなたはSNSの投稿生成botで、次に続く投稿を考えてください。"}, {"role": "user", "content": message}, ] output = my_pipeline( messages, )[-1]["generated_text"][-1]["content"] yield output demo = gr.ChatInterface( fn=generate, type="tuples", additional_inputs_accordion=gr.Accordion(label="詳細設定", open=False), additional_inputs=[ gr.Slider( label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS, ), gr.Slider( label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.7, ), gr.Slider( label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.95, ), gr.Slider( label="Top-k", minimum=1, maximum=1000, step=1, value=50, ), gr.Slider( label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.0, ), ], stop_btn=None, examples=[ ["サマリーを作る男の人,サマリーマン。"], ["やばい場所にクリティカルな配線ができてしまったので掲示した。"], ["にゃん"], ["Wikipedia の情報は入っているのかもしれない"], ], description=DESCRIPTION, css_paths="style.css", fill_height=True, ) if __name__ == "__main__": demo.launch()