venite's picture
initial
f670afc
# Copyright (C) 2021 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# This work is made available under the Nvidia Source Code License-NC.
# To view a copy of this license, check out LICENSE.md
import torch
from torch import nn
from imaginaire.generators.funit import (MLP, ContentEncoder, Decoder,
StyleEncoder)
class Generator(nn.Module):
r"""COCO-FUNIT Generator.
"""
def __init__(self, gen_cfg, data_cfg):
r"""COCO-FUNIT Generator constructor.
Args:
gen_cfg (obj): Generator definition part of the yaml config file.
data_cfg (obj): Data definition part of the yaml config file.
"""
super().__init__()
self.generator = COCOFUNITTranslator(**vars(gen_cfg))
def forward(self, data):
r"""In the FUNIT's forward pass, it generates a content embedding and
a style code from the content image, and a style code from the style
image. By mixing the content code and the style code from the content
image, we reconstruct the input image. By mixing the content code and
the style code from the style image, we have a translation output.
Args:
data (dict): Training data at the current iteration.
"""
content_a = self.generator.content_encoder(data['images_content'])
style_a = self.generator.style_encoder(data['images_content'])
style_b = self.generator.style_encoder(data['images_style'])
images_trans = self.generator.decode(content_a, style_b)
images_recon = self.generator.decode(content_a, style_a)
net_G_output = dict(images_trans=images_trans,
images_recon=images_recon)
return net_G_output
def inference(self, data, keep_original_size=True):
r"""COCO-FUNIT inference.
Args:
data (dict): Training data at the current iteration.
- images_content (tensor): Content images.
- images_style (tensor): Style images.
a2b (bool): If ``True``, translates images from domain A to B,
otherwise from B to A.
keep_original_size (bool): If ``True``, output image is resized
to the input content image size.
"""
content_a = self.generator.content_encoder(data['images_content'])
style_b = self.generator.style_encoder(data['images_style'])
output_images = self.generator.decode(content_a, style_b)
if keep_original_size:
height = data['original_h_w'][0][0]
width = data['original_h_w'][0][1]
# print('( H, W) = ( %d, %d)' % (height, width))
output_images = torch.nn.functional.interpolate(
output_images, size=[height, width])
file_names = data['key']['images_content'][0]
return output_images, file_names
class COCOFUNITTranslator(nn.Module):
r"""COCO-FUNIT Generator architecture.
Args:
num_filters (int): Base filter numbers.
num_filters_mlp (int): Base filter number in the MLP module.
style_dims (int): Dimension of the style code.
usb_dims (int): Dimension of the universal style bias code.
num_res_blocks (int): Number of residual blocks at the end of the
content encoder.
num_mlp_blocks (int): Number of layers in the MLP module.
num_downsamples_content (int): Number of times we reduce
resolution by 2x2 for the content image.
num_downsamples_style (int): Number of times we reduce
resolution by 2x2 for the style image.
num_image_channels (int): Number of input image channels.
weight_norm_type (str): Type of weight normalization.
``'none'``, ``'spectral'``, or ``'weight'``.
"""
def __init__(self,
num_filters=64,
num_filters_mlp=256,
style_dims=64,
usb_dims=1024,
num_res_blocks=2,
num_mlp_blocks=3,
num_downsamples_style=4,
num_downsamples_content=2,
num_image_channels=3,
weight_norm_type='',
**kwargs):
super().__init__()
self.style_encoder = StyleEncoder(num_downsamples_style,
num_image_channels,
num_filters,
style_dims,
'reflect',
'none',
weight_norm_type,
'relu')
self.content_encoder = ContentEncoder(num_downsamples_content,
num_res_blocks,
num_image_channels,
num_filters,
'reflect',
'instance',
weight_norm_type,
'relu')
self.decoder = Decoder(self.content_encoder.output_dim,
num_filters_mlp,
num_image_channels,
num_downsamples_content,
'reflect',
weight_norm_type,
'relu')
self.usb = torch.nn.Parameter(torch.randn(1, usb_dims))
self.mlp = MLP(style_dims,
num_filters_mlp,
num_filters_mlp,
num_mlp_blocks,
'none',
'relu')
num_content_mlp_blocks = 2
num_style_mlp_blocks = 2
self.mlp_content = MLP(self.content_encoder.output_dim,
style_dims,
num_filters_mlp,
num_content_mlp_blocks,
'none',
'relu')
self.mlp_style = MLP(style_dims + usb_dims,
style_dims,
num_filters_mlp,
num_style_mlp_blocks,
'none',
'relu')
def forward(self, images):
r"""Reconstruct the input image by combining the computer content and
style code.
Args:
images (tensor): Input image tensor.
"""
# reconstruct an image
content, style = self.encode(images)
images_recon = self.decode(content, style)
return images_recon
def encode(self, images):
r"""Encoder images to get their content and style codes.
Args:
images (tensor): Input image tensor.
"""
style = self.style_encoder(images)
content = self.content_encoder(images)
return content, style
def decode(self, content, style):
r"""Generate images by combining their content and style codes.
Args:
content (tensor): Content code tensor.
style (tensor): Style code tensor.
"""
content_style_code = content.mean(3).mean(2)
content_style_code = self.mlp_content(content_style_code)
batch_size = style.size(0)
usb = self.usb.repeat(batch_size, 1)
style = style.view(batch_size, -1)
style_in = self.mlp_style(torch.cat([style, usb], 1))
coco_style = style_in * content_style_code
coco_style = self.mlp(coco_style)
images = self.decoder(content, coco_style)
return images