File size: 7,847 Bytes
f670afc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
# Copyright (C) 2021 NVIDIA CORPORATION & AFFILIATES.  All rights reserved.
#
# This work is made available under the Nvidia Source Code License-NC.
# To view a copy of this license, check out LICENSE.md
import torch
from torch import nn

from imaginaire.generators.funit import (MLP, ContentEncoder, Decoder,
                                         StyleEncoder)


class Generator(nn.Module):
    r"""COCO-FUNIT Generator.
    """

    def __init__(self, gen_cfg, data_cfg):
        r"""COCO-FUNIT Generator constructor.

        Args:
            gen_cfg (obj): Generator definition part of the yaml config file.
            data_cfg (obj): Data definition part of the yaml config file.
        """
        super().__init__()
        self.generator = COCOFUNITTranslator(**vars(gen_cfg))

    def forward(self, data):
        r"""In the FUNIT's forward pass, it generates a content embedding and
        a style code from the content image, and a style code from the style
        image. By mixing the content code and the style code from the content
        image, we reconstruct the input image. By mixing the content code and
        the style code from the style image, we have a translation output.

        Args:
            data (dict): Training data at the current iteration.
        """
        content_a = self.generator.content_encoder(data['images_content'])
        style_a = self.generator.style_encoder(data['images_content'])
        style_b = self.generator.style_encoder(data['images_style'])
        images_trans = self.generator.decode(content_a, style_b)
        images_recon = self.generator.decode(content_a, style_a)

        net_G_output = dict(images_trans=images_trans,
                            images_recon=images_recon)
        return net_G_output

    def inference(self, data, keep_original_size=True):
        r"""COCO-FUNIT inference.

        Args:
            data (dict): Training data at the current iteration.
              - images_content (tensor): Content images.
              - images_style (tensor): Style images.
            a2b (bool): If ``True``, translates images from domain A to B,
                otherwise from B to A.
            keep_original_size (bool): If ``True``, output image is resized
            to the input content image size.
        """
        content_a = self.generator.content_encoder(data['images_content'])
        style_b = self.generator.style_encoder(data['images_style'])
        output_images = self.generator.decode(content_a, style_b)
        if keep_original_size:
            height = data['original_h_w'][0][0]
            width = data['original_h_w'][0][1]
            # print('( H, W) = ( %d, %d)' % (height, width))
            output_images = torch.nn.functional.interpolate(
                output_images, size=[height, width])
        file_names = data['key']['images_content'][0]
        return output_images, file_names


class COCOFUNITTranslator(nn.Module):
    r"""COCO-FUNIT Generator architecture.

    Args:
        num_filters (int): Base filter numbers.
        num_filters_mlp (int): Base filter number in the MLP module.
        style_dims (int): Dimension of the style code.
        usb_dims (int): Dimension of the universal style bias code.
        num_res_blocks (int): Number of residual blocks at the end of the
            content encoder.
        num_mlp_blocks (int): Number of layers in the MLP module.
        num_downsamples_content (int): Number of times we reduce
            resolution by 2x2 for the content image.
        num_downsamples_style (int): Number of times we reduce
            resolution by 2x2 for the style image.
        num_image_channels (int): Number of input image channels.
        weight_norm_type (str): Type of weight normalization.
            ``'none'``, ``'spectral'``, or ``'weight'``.
    """

    def __init__(self,
                 num_filters=64,
                 num_filters_mlp=256,
                 style_dims=64,
                 usb_dims=1024,
                 num_res_blocks=2,
                 num_mlp_blocks=3,
                 num_downsamples_style=4,
                 num_downsamples_content=2,
                 num_image_channels=3,
                 weight_norm_type='',
                 **kwargs):
        super().__init__()

        self.style_encoder = StyleEncoder(num_downsamples_style,
                                          num_image_channels,
                                          num_filters,
                                          style_dims,
                                          'reflect',
                                          'none',
                                          weight_norm_type,
                                          'relu')

        self.content_encoder = ContentEncoder(num_downsamples_content,
                                              num_res_blocks,
                                              num_image_channels,
                                              num_filters,
                                              'reflect',
                                              'instance',
                                              weight_norm_type,
                                              'relu')

        self.decoder = Decoder(self.content_encoder.output_dim,
                               num_filters_mlp,
                               num_image_channels,
                               num_downsamples_content,
                               'reflect',
                               weight_norm_type,
                               'relu')

        self.usb = torch.nn.Parameter(torch.randn(1, usb_dims))

        self.mlp = MLP(style_dims,
                       num_filters_mlp,
                       num_filters_mlp,
                       num_mlp_blocks,
                       'none',
                       'relu')

        num_content_mlp_blocks = 2
        num_style_mlp_blocks = 2
        self.mlp_content = MLP(self.content_encoder.output_dim,
                               style_dims,
                               num_filters_mlp,
                               num_content_mlp_blocks,
                               'none',
                               'relu')

        self.mlp_style = MLP(style_dims + usb_dims,
                             style_dims,
                             num_filters_mlp,
                             num_style_mlp_blocks,
                             'none',
                             'relu')

    def forward(self, images):
        r"""Reconstruct the input image by combining the computer content and
        style code.

        Args:
            images (tensor): Input image tensor.
        """
        # reconstruct an image
        content, style = self.encode(images)
        images_recon = self.decode(content, style)
        return images_recon

    def encode(self, images):
        r"""Encoder images to get their content and style codes.

        Args:
            images (tensor): Input image tensor.
        """
        style = self.style_encoder(images)
        content = self.content_encoder(images)
        return content, style

    def decode(self, content, style):
        r"""Generate images by combining their content and style codes.

        Args:
            content (tensor): Content code tensor.
            style (tensor): Style code tensor.
        """
        content_style_code = content.mean(3).mean(2)
        content_style_code = self.mlp_content(content_style_code)
        batch_size = style.size(0)
        usb = self.usb.repeat(batch_size, 1)
        style = style.view(batch_size, -1)
        style_in = self.mlp_style(torch.cat([style, usb], 1))
        coco_style = style_in * content_style_code
        coco_style = self.mlp(coco_style)
        images = self.decoder(content, coco_style)
        return images