File size: 10,580 Bytes
d8cf478 efabdf9 6154c13 d8cf478 efabdf9 d8cf478 52d1750 6154c13 dc11fb3 d8cf478 efabdf9 3f72b8c 52d1750 d8cf478 52d1750 d8cf478 52d1750 d8cf478 52d1750 d8cf478 52d1750 d8cf478 efabdf9 d8cf478 52d1750 d8cf478 52d1750 efabdf9 d8cf478 efabdf9 d41146f efabdf9 6154c13 d8cf478 efabdf9 d8cf478 efabdf9 d8cf478 efabdf9 d8cf478 52d1750 d8cf478 efabdf9 d8cf478 52d1750 dc11fb3 52d1750 12536a4 52d1750 12536a4 dc11fb3 330cbe3 dc11fb3 6154c13 dc11fb3 6154c13 330cbe3 6154c13 d8cf478 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
from datetime import datetime, timedelta
import gradio as gr
import pandas as pd
import duckdb
import logging
from scripts.metrics import (
compute_weekly_metrics_by_market_creator,
compute_daily_metrics_by_market_creator,
compute_winning_metrics_by_trader,
)
from tabs.trader_plots import (
plot_trader_metrics_by_market_creator,
plot_trader_daily_metrics_by_market_creator,
default_trader_metric,
trader_metric_choices,
get_metrics_text,
plot_winning_metric_per_trader,
get_interpretation_text,
)
from scripts.utils import get_traders_family
from tabs.market_plots import (
plot_kl_div_per_market,
)
def get_logger():
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
# stream handler and formatter
stream_handler = logging.StreamHandler()
stream_handler.setLevel(logging.DEBUG)
formatter = logging.Formatter(
"%(asctime)s - %(name)s - %(levelname)s - %(message)s"
)
stream_handler.setFormatter(formatter)
logger.addHandler(stream_handler)
return logger
logger = get_logger()
def get_all_data():
"""
Get parquet files from weekly stats and new generated
"""
logger.info("Getting traders data")
con = duckdb.connect(":memory:")
# Query to fetch data from all_trades_profitability.parquet
query1 = f"""
SELECT *
FROM read_parquet('./data/all_trades_profitability.parquet')
"""
df1 = con.execute(query1).fetchdf()
logger.info("Got all data from all_trades_profitability.parquet")
# Query to fetch data from closed_markets_div.parquet
query2 = f"""
SELECT *
FROM read_parquet('./data/closed_markets_div.parquet')
"""
df2 = con.execute(query2).fetchdf()
logger.info("Got all data from closed_markets_div.parquet")
con.close()
return df1, df2
def prepare_data():
all_trades, closed_markets = get_all_data()
all_trades["creation_date"] = all_trades["creation_timestamp"].dt.date
# adding multi-bet variables
volume_trades_per_trader_and_market = (
all_trades.groupby(["trader_address", "title"])["roi"].count().reset_index()
)
volume_trades_per_trader_and_market.rename(
columns={"roi": "nr_trades_per_market"}, inplace=True
)
trader_agents_data = pd.merge(
all_trades, volume_trades_per_trader_and_market, on=["trader_address", "title"]
)
# adding the trader family column
# trader_agents_data["trader_family"] = trader_agents_data.apply(
# lambda x: get_traders_family(x), axis=1
# )
# print(trader_agents_data.trader_family.value_counts())
trader_agents_data = trader_agents_data.sort_values(
by="creation_timestamp", ascending=True
)
trader_agents_data["month_year_week"] = (
trader_agents_data["creation_timestamp"].dt.to_period("W").dt.strftime("%b-%d")
)
closed_markets["month_year_week"] = (
closed_markets["opening_datetime"].dt.to_period("W").dt.strftime("%b-%d")
)
return trader_agents_data, closed_markets
trader_agents_data, closed_markets = prepare_data()
# print("trader agents data before computing metrics")
# print(trader_agents_data.head())
demo = gr.Blocks()
# get weekly metrics by market creator: qs, pearl or all.
weekly_metrics_by_market_creator = compute_weekly_metrics_by_market_creator(
trader_agents_data
)
daily_metrics_by_market_creator = compute_daily_metrics_by_market_creator(
trader_agents_data
)
weekly_agent_metrics_by_market_creator = compute_weekly_metrics_by_market_creator(
trader_agents_data, trader_filter="agent"
)
weekly_non_agent_metrics_by_market_creator = compute_weekly_metrics_by_market_creator(
trader_agents_data, trader_filter="non_agent"
)
# print("weekly metrics by market creator")
# print(weekly_metrics_by_market_creator.head())
weekly_winning_metrics = compute_winning_metrics_by_trader(
trader_agents_data=trader_agents_data
)
with demo:
gr.HTML("<h1>Trader agents monitoring dashboard </h1>")
gr.Markdown(
"This app shows the weekly performance of the trader agents in Olas Predict."
)
with gr.Tabs():
with gr.TabItem("🔥 Weekly metrics"):
with gr.Row():
gr.Markdown("# Weekly metrics of all traders")
with gr.Row():
trader_details_selector = gr.Dropdown(
label="Select a weekly trader metric",
choices=trader_metric_choices,
value=default_trader_metric,
)
with gr.Row():
with gr.Column(scale=3):
trader_markets_plot = plot_trader_metrics_by_market_creator(
metric_name=default_trader_metric,
traders_df=weekly_metrics_by_market_creator,
)
with gr.Column(scale=1):
trade_details_text = get_metrics_text()
def update_trader_details(trader_detail):
return plot_trader_metrics_by_market_creator(
metric_name=trader_detail,
traders_df=weekly_metrics_by_market_creator,
)
trader_details_selector.change(
update_trader_details,
inputs=trader_details_selector,
outputs=trader_markets_plot,
)
# Agentic traders graph
with gr.Row():
gr.Markdown("# Weekly metrics of trader Agents")
with gr.Row():
trader_a_details_selector = gr.Dropdown(
label="Select a weekly trader metric",
choices=trader_metric_choices,
value=default_trader_metric,
)
with gr.Row():
with gr.Column(scale=3):
a_trader_markets_plot = plot_trader_metrics_by_market_creator(
metric_name=default_trader_metric,
traders_df=weekly_agent_metrics_by_market_creator,
)
with gr.Column(scale=1):
trade_details_text = get_metrics_text()
def update_a_trader_details(trader_detail):
return plot_trader_metrics_by_market_creator(
metric_name=trader_detail,
traders_df=weekly_agent_metrics_by_market_creator,
)
trader_a_details_selector.change(
update_a_trader_details,
inputs=trader_a_details_selector,
outputs=a_trader_markets_plot,
)
# Non-agentic traders graph
with gr.Row():
gr.Markdown("# Weekly metrics of Non-agent traders")
with gr.Row():
trader_na_details_selector = gr.Dropdown(
label="Select a weekly trader metric",
choices=trader_metric_choices,
value=default_trader_metric,
)
with gr.Row():
with gr.Column(scale=3):
na_trader_markets_plot = plot_trader_metrics_by_market_creator(
metric_name=default_trader_metric,
traders_df=weekly_non_agent_metrics_by_market_creator,
)
with gr.Column(scale=1):
trade_details_text = get_metrics_text()
def update_na_trader_details(trader_detail):
return plot_trader_metrics_by_market_creator(
metric_name=trader_detail,
traders_df=weekly_non_agent_metrics_by_market_creator,
)
trader_na_details_selector.change(
update_na_trader_details,
inputs=trader_na_details_selector,
outputs=na_trader_markets_plot,
)
with gr.TabItem("🔥 Daily metrics"):
with gr.Row():
gr.Markdown("# Daily metrics of last week of all traders")
with gr.Row():
trader_daily_details_selector = gr.Dropdown(
label="Select a daily trader metric",
choices=trader_metric_choices,
value=default_trader_metric,
)
with gr.Row():
with gr.Column(scale=3):
trader_daily_markets_plot = (
plot_trader_daily_metrics_by_market_creator(
metric_name=default_trader_metric,
traders_df=daily_metrics_by_market_creator,
)
)
with gr.Column(scale=1):
trade_details_text = get_metrics_text()
def update_trader_daily_details(trader_detail):
return plot_trader_daily_metrics_by_market_creator(
metric_name=trader_detail,
traders_df=daily_metrics_by_market_creator,
)
trader_daily_details_selector.change(
update_trader_daily_details,
inputs=trader_daily_details_selector,
outputs=trader_daily_markets_plot,
)
with gr.TabItem("📉Closed Markets Kullback–Leibler divergence"):
with gr.Row():
gr.Markdown(
"# Weekly Market Prediction Accuracy for Closed Markets (Kullback-Leibler Divergence)"
)
with gr.Row():
gr.Markdown(
"Aka, how much off is the market prediction’s accuracy from the real outcome of the event. Values capped at 20 for market outcomes completely opposite to the real outcome."
)
with gr.Row():
trade_details_text = get_metrics_text()
with gr.Row():
with gr.Column(scale=3):
kl_div_plot = plot_kl_div_per_market(closed_markets=closed_markets)
with gr.Column(scale=1):
interpretation = get_interpretation_text()
with gr.TabItem("🎖️Weekly winning trades % per trader"):
with gr.Row():
gr.Markdown("# Winning trades percentage from weekly trades by trader")
with gr.Row():
metrics_text = get_metrics_text()
with gr.Row():
winning_metric = plot_winning_metric_per_trader(weekly_winning_metrics)
demo.queue(default_concurrency_limit=40).launch()
|