File size: 10,580 Bytes
d8cf478
 
 
 
 
 
 
 
 
efabdf9
6154c13
d8cf478
 
 
efabdf9
d8cf478
 
52d1750
6154c13
dc11fb3
d8cf478
 
efabdf9
3f72b8c
 
 
52d1750
d8cf478
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52d1750
d8cf478
 
 
 
 
 
 
 
 
 
 
52d1750
 
 
 
 
 
 
 
d8cf478
 
52d1750
d8cf478
 
 
 
52d1750
d8cf478
 
 
 
 
 
 
 
 
 
 
 
 
 
efabdf9
 
 
 
 
 
d8cf478
 
 
 
 
 
 
 
52d1750
 
 
 
 
d8cf478
 
52d1750
efabdf9
 
d8cf478
 
 
 
 
efabdf9
d41146f
 
efabdf9
 
 
 
 
 
 
 
 
6154c13
 
 
d8cf478
 
 
 
 
 
 
efabdf9
d8cf478
efabdf9
d8cf478
 
efabdf9
d8cf478
 
 
 
 
 
 
 
 
 
 
52d1750
d8cf478
 
 
 
 
 
 
 
 
 
 
 
efabdf9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8cf478
52d1750
 
 
dc11fb3
52d1750
 
 
12536a4
52d1750
 
12536a4
dc11fb3
330cbe3
 
 
 
dc11fb3
6154c13
 
 
dc11fb3
 
6154c13
330cbe3
6154c13
d8cf478
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
from datetime import datetime, timedelta
import gradio as gr
import pandas as pd
import duckdb
import logging


from scripts.metrics import (
    compute_weekly_metrics_by_market_creator,
    compute_daily_metrics_by_market_creator,
    compute_winning_metrics_by_trader,
)
from tabs.trader_plots import (
    plot_trader_metrics_by_market_creator,
    plot_trader_daily_metrics_by_market_creator,
    default_trader_metric,
    trader_metric_choices,
    get_metrics_text,
    plot_winning_metric_per_trader,
    get_interpretation_text,
)

from scripts.utils import get_traders_family
from tabs.market_plots import (
    plot_kl_div_per_market,
)


def get_logger():
    logger = logging.getLogger(__name__)
    logger.setLevel(logging.DEBUG)
    # stream handler and formatter
    stream_handler = logging.StreamHandler()
    stream_handler.setLevel(logging.DEBUG)
    formatter = logging.Formatter(
        "%(asctime)s - %(name)s - %(levelname)s - %(message)s"
    )
    stream_handler.setFormatter(formatter)
    logger.addHandler(stream_handler)
    return logger


logger = get_logger()


def get_all_data():
    """
    Get parquet files from weekly stats and new generated
    """
    logger.info("Getting traders data")
    con = duckdb.connect(":memory:")
    # Query to fetch data from all_trades_profitability.parquet
    query1 = f"""
    SELECT *
    FROM read_parquet('./data/all_trades_profitability.parquet')
    """
    df1 = con.execute(query1).fetchdf()
    logger.info("Got all data from all_trades_profitability.parquet")

    # Query to fetch data from closed_markets_div.parquet
    query2 = f"""
    SELECT *
    FROM read_parquet('./data/closed_markets_div.parquet')
    """
    df2 = con.execute(query2).fetchdf()
    logger.info("Got all data from closed_markets_div.parquet")

    con.close()

    return df1, df2


def prepare_data():

    all_trades, closed_markets = get_all_data()

    all_trades["creation_date"] = all_trades["creation_timestamp"].dt.date

    # adding multi-bet variables
    volume_trades_per_trader_and_market = (
        all_trades.groupby(["trader_address", "title"])["roi"].count().reset_index()
    )
    volume_trades_per_trader_and_market.rename(
        columns={"roi": "nr_trades_per_market"}, inplace=True
    )

    trader_agents_data = pd.merge(
        all_trades, volume_trades_per_trader_and_market, on=["trader_address", "title"]
    )

    # adding the trader family column
    # trader_agents_data["trader_family"] = trader_agents_data.apply(
    #     lambda x: get_traders_family(x), axis=1
    # )
    # print(trader_agents_data.trader_family.value_counts())

    trader_agents_data = trader_agents_data.sort_values(
        by="creation_timestamp", ascending=True
    )

    trader_agents_data["month_year_week"] = (
        trader_agents_data["creation_timestamp"].dt.to_period("W").dt.strftime("%b-%d")
    )

    closed_markets["month_year_week"] = (
        closed_markets["opening_datetime"].dt.to_period("W").dt.strftime("%b-%d")
    )
    return trader_agents_data, closed_markets


trader_agents_data, closed_markets = prepare_data()
# print("trader agents data before computing metrics")
# print(trader_agents_data.head())
demo = gr.Blocks()
# get weekly metrics by market creator: qs, pearl or all.
weekly_metrics_by_market_creator = compute_weekly_metrics_by_market_creator(
    trader_agents_data
)
daily_metrics_by_market_creator = compute_daily_metrics_by_market_creator(
    trader_agents_data
)
weekly_agent_metrics_by_market_creator = compute_weekly_metrics_by_market_creator(
    trader_agents_data, trader_filter="agent"
)
weekly_non_agent_metrics_by_market_creator = compute_weekly_metrics_by_market_creator(
    trader_agents_data, trader_filter="non_agent"
)
# print("weekly metrics by market creator")
# print(weekly_metrics_by_market_creator.head())

weekly_winning_metrics = compute_winning_metrics_by_trader(
    trader_agents_data=trader_agents_data
)
with demo:
    gr.HTML("<h1>Trader agents monitoring dashboard </h1>")
    gr.Markdown(
        "This app shows the weekly performance of the trader agents in Olas Predict."
    )

    with gr.Tabs():
        with gr.TabItem("🔥 Weekly metrics"):
            with gr.Row():
                gr.Markdown("# Weekly metrics of all traders")
            with gr.Row():
                trader_details_selector = gr.Dropdown(
                    label="Select a weekly trader metric",
                    choices=trader_metric_choices,
                    value=default_trader_metric,
                )

            with gr.Row():
                with gr.Column(scale=3):
                    trader_markets_plot = plot_trader_metrics_by_market_creator(
                        metric_name=default_trader_metric,
                        traders_df=weekly_metrics_by_market_creator,
                    )
                with gr.Column(scale=1):
                    trade_details_text = get_metrics_text()

            def update_trader_details(trader_detail):
                return plot_trader_metrics_by_market_creator(
                    metric_name=trader_detail,
                    traders_df=weekly_metrics_by_market_creator,
                )

            trader_details_selector.change(
                update_trader_details,
                inputs=trader_details_selector,
                outputs=trader_markets_plot,
            )
            # Agentic traders graph
            with gr.Row():
                gr.Markdown("# Weekly metrics of trader Agents")
            with gr.Row():
                trader_a_details_selector = gr.Dropdown(
                    label="Select a weekly trader metric",
                    choices=trader_metric_choices,
                    value=default_trader_metric,
                )

            with gr.Row():
                with gr.Column(scale=3):
                    a_trader_markets_plot = plot_trader_metrics_by_market_creator(
                        metric_name=default_trader_metric,
                        traders_df=weekly_agent_metrics_by_market_creator,
                    )
                with gr.Column(scale=1):
                    trade_details_text = get_metrics_text()

            def update_a_trader_details(trader_detail):
                return plot_trader_metrics_by_market_creator(
                    metric_name=trader_detail,
                    traders_df=weekly_agent_metrics_by_market_creator,
                )

            trader_a_details_selector.change(
                update_a_trader_details,
                inputs=trader_a_details_selector,
                outputs=a_trader_markets_plot,
            )

            # Non-agentic traders graph
            with gr.Row():
                gr.Markdown("# Weekly metrics of Non-agent traders")
            with gr.Row():
                trader_na_details_selector = gr.Dropdown(
                    label="Select a weekly trader metric",
                    choices=trader_metric_choices,
                    value=default_trader_metric,
                )

            with gr.Row():
                with gr.Column(scale=3):
                    na_trader_markets_plot = plot_trader_metrics_by_market_creator(
                        metric_name=default_trader_metric,
                        traders_df=weekly_non_agent_metrics_by_market_creator,
                    )
                with gr.Column(scale=1):
                    trade_details_text = get_metrics_text()

            def update_na_trader_details(trader_detail):
                return plot_trader_metrics_by_market_creator(
                    metric_name=trader_detail,
                    traders_df=weekly_non_agent_metrics_by_market_creator,
                )

            trader_na_details_selector.change(
                update_na_trader_details,
                inputs=trader_na_details_selector,
                outputs=na_trader_markets_plot,
            )
        with gr.TabItem("🔥 Daily metrics"):
            with gr.Row():
                gr.Markdown("# Daily metrics of last week of all traders")
            with gr.Row():
                trader_daily_details_selector = gr.Dropdown(
                    label="Select a daily trader metric",
                    choices=trader_metric_choices,
                    value=default_trader_metric,
                )

            with gr.Row():
                with gr.Column(scale=3):
                    trader_daily_markets_plot = (
                        plot_trader_daily_metrics_by_market_creator(
                            metric_name=default_trader_metric,
                            traders_df=daily_metrics_by_market_creator,
                        )
                    )
                with gr.Column(scale=1):
                    trade_details_text = get_metrics_text()

            def update_trader_daily_details(trader_detail):
                return plot_trader_daily_metrics_by_market_creator(
                    metric_name=trader_detail,
                    traders_df=daily_metrics_by_market_creator,
                )

            trader_daily_details_selector.change(
                update_trader_daily_details,
                inputs=trader_daily_details_selector,
                outputs=trader_daily_markets_plot,
            )

        with gr.TabItem("📉Closed Markets Kullback–Leibler divergence"):
            with gr.Row():
                gr.Markdown(
                    "# Weekly Market Prediction Accuracy for Closed Markets (Kullback-Leibler Divergence)"
                )
            with gr.Row():
                gr.Markdown(
                    "Aka, how much off is the market prediction’s accuracy from the real outcome of the event. Values capped at 20 for market outcomes completely opposite to the real outcome."
                )
            with gr.Row():
                trade_details_text = get_metrics_text()
            with gr.Row():
                with gr.Column(scale=3):
                    kl_div_plot = plot_kl_div_per_market(closed_markets=closed_markets)
                with gr.Column(scale=1):
                    interpretation = get_interpretation_text()

        with gr.TabItem("🎖️Weekly winning trades % per trader"):
            with gr.Row():
                gr.Markdown("# Winning trades percentage from weekly trades by trader")
            with gr.Row():
                metrics_text = get_metrics_text()
            with gr.Row():

                winning_metric = plot_winning_metric_per_trader(weekly_winning_metrics)

demo.queue(default_concurrency_limit=40).launch()