cyberosa
commited on
Commit
·
efabdf9
1
Parent(s):
de472db
adding new weekly and daily graphs
Browse files- app.py +117 -19
- scripts/metrics.py +104 -79
- scripts/utils.py +10 -0
- tabs/trader_plots.py +54 -0
app.py
CHANGED
@@ -7,19 +7,20 @@ import logging
|
|
7 |
|
8 |
from scripts.metrics import (
|
9 |
compute_weekly_metrics_by_market_creator,
|
10 |
-
|
11 |
compute_winning_metrics_by_trader,
|
12 |
)
|
13 |
from tabs.trader_plots import (
|
14 |
plot_trader_metrics_by_market_creator,
|
|
|
15 |
default_trader_metric,
|
16 |
trader_metric_choices,
|
17 |
get_metrics_text,
|
18 |
plot_winning_metric_per_trader,
|
19 |
get_interpretation_text,
|
20 |
-
plot_median_roi_by_creation_date,
|
21 |
)
|
22 |
|
|
|
23 |
from tabs.market_plots import (
|
24 |
plot_kl_div_per_market,
|
25 |
)
|
@@ -86,8 +87,12 @@ def prepare_data():
|
|
86 |
trader_agents_data = pd.merge(
|
87 |
all_trades, volume_trades_per_trader_and_market, on=["trader_address", "title"]
|
88 |
)
|
89 |
-
|
90 |
-
|
|
|
|
|
|
|
|
|
91 |
|
92 |
trader_agents_data = trader_agents_data.sort_values(
|
93 |
by="creation_timestamp", ascending=True
|
@@ -104,19 +109,25 @@ def prepare_data():
|
|
104 |
|
105 |
|
106 |
trader_agents_data, closed_markets = prepare_data()
|
107 |
-
print("trader agents data before computing metrics")
|
108 |
-
print(trader_agents_data.head())
|
109 |
demo = gr.Blocks()
|
110 |
# get weekly metrics by market creator: qs, pearl or all.
|
111 |
weekly_metrics_by_market_creator = compute_weekly_metrics_by_market_creator(
|
112 |
trader_agents_data
|
113 |
)
|
114 |
-
|
115 |
-
print(weekly_metrics_by_market_creator.head())
|
116 |
-
# get weekly metrics by trader type: multibet, singlebet or all.
|
117 |
-
weekly_metrics_by_trader_type = compute_weekly_metrics_by_trader_type(
|
118 |
trader_agents_data
|
119 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
weekly_winning_metrics = compute_winning_metrics_by_trader(
|
121 |
trader_agents_data=trader_agents_data
|
122 |
)
|
@@ -127,12 +138,12 @@ with demo:
|
|
127 |
)
|
128 |
|
129 |
with gr.Tabs():
|
130 |
-
with gr.TabItem("🔥
|
131 |
with gr.Row():
|
132 |
-
gr.Markdown("# Weekly metrics of
|
133 |
with gr.Row():
|
134 |
trader_details_selector = gr.Dropdown(
|
135 |
-
label="Select a trader metric",
|
136 |
choices=trader_metric_choices,
|
137 |
value=default_trader_metric,
|
138 |
)
|
@@ -157,12 +168,99 @@ with demo:
|
|
157 |
inputs=trader_details_selector,
|
158 |
outputs=trader_markets_plot,
|
159 |
)
|
160 |
-
#
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
|
167 |
with gr.TabItem("📉Closed Markets Kullback–Leibler divergence"):
|
168 |
with gr.Row():
|
|
|
7 |
|
8 |
from scripts.metrics import (
|
9 |
compute_weekly_metrics_by_market_creator,
|
10 |
+
compute_daily_metrics_by_market_creator,
|
11 |
compute_winning_metrics_by_trader,
|
12 |
)
|
13 |
from tabs.trader_plots import (
|
14 |
plot_trader_metrics_by_market_creator,
|
15 |
+
plot_trader_daily_metrics_by_market_creator,
|
16 |
default_trader_metric,
|
17 |
trader_metric_choices,
|
18 |
get_metrics_text,
|
19 |
plot_winning_metric_per_trader,
|
20 |
get_interpretation_text,
|
|
|
21 |
)
|
22 |
|
23 |
+
from scripts.utils import get_traders_family
|
24 |
from tabs.market_plots import (
|
25 |
plot_kl_div_per_market,
|
26 |
)
|
|
|
87 |
trader_agents_data = pd.merge(
|
88 |
all_trades, volume_trades_per_trader_and_market, on=["trader_address", "title"]
|
89 |
)
|
90 |
+
|
91 |
+
# adding the trader family column
|
92 |
+
# trader_agents_data["trader_family"] = trader_agents_data.apply(
|
93 |
+
# lambda x: get_traders_family(x), axis=1
|
94 |
+
# )
|
95 |
+
# print(trader_agents_data.trader_family.value_counts())
|
96 |
|
97 |
trader_agents_data = trader_agents_data.sort_values(
|
98 |
by="creation_timestamp", ascending=True
|
|
|
109 |
|
110 |
|
111 |
trader_agents_data, closed_markets = prepare_data()
|
112 |
+
# print("trader agents data before computing metrics")
|
113 |
+
# print(trader_agents_data.head())
|
114 |
demo = gr.Blocks()
|
115 |
# get weekly metrics by market creator: qs, pearl or all.
|
116 |
weekly_metrics_by_market_creator = compute_weekly_metrics_by_market_creator(
|
117 |
trader_agents_data
|
118 |
)
|
119 |
+
daily_metrics_by_market_creator = compute_daily_metrics_by_market_creator(
|
|
|
|
|
|
|
120 |
trader_agents_data
|
121 |
)
|
122 |
+
weekly_agent_metrics_by_market_creator = compute_weekly_metrics_by_market_creator(
|
123 |
+
trader_agents_data, trader_filter="agent"
|
124 |
+
)
|
125 |
+
weekly_non_agent_metrics_by_market_creator = compute_weekly_metrics_by_market_creator(
|
126 |
+
trader_agents_data, trader_filter="non_agent"
|
127 |
+
)
|
128 |
+
# print("weekly metrics by market creator")
|
129 |
+
# print(weekly_metrics_by_market_creator.head())
|
130 |
+
|
131 |
weekly_winning_metrics = compute_winning_metrics_by_trader(
|
132 |
trader_agents_data=trader_agents_data
|
133 |
)
|
|
|
138 |
)
|
139 |
|
140 |
with gr.Tabs():
|
141 |
+
with gr.TabItem("🔥 Weekly metrics"):
|
142 |
with gr.Row():
|
143 |
+
gr.Markdown("# Weekly metrics of all traders")
|
144 |
with gr.Row():
|
145 |
trader_details_selector = gr.Dropdown(
|
146 |
+
label="Select a weekly trader metric",
|
147 |
choices=trader_metric_choices,
|
148 |
value=default_trader_metric,
|
149 |
)
|
|
|
168 |
inputs=trader_details_selector,
|
169 |
outputs=trader_markets_plot,
|
170 |
)
|
171 |
+
# Agentic traders graph
|
172 |
+
with gr.Row():
|
173 |
+
gr.Markdown("# Weekly metrics of trader Agents")
|
174 |
+
with gr.Row():
|
175 |
+
trader_a_details_selector = gr.Dropdown(
|
176 |
+
label="Select a weekly trader metric",
|
177 |
+
choices=trader_metric_choices,
|
178 |
+
value=default_trader_metric,
|
179 |
+
)
|
180 |
+
|
181 |
+
with gr.Row():
|
182 |
+
with gr.Column(scale=3):
|
183 |
+
a_trader_markets_plot = plot_trader_metrics_by_market_creator(
|
184 |
+
metric_name=default_trader_metric,
|
185 |
+
traders_df=weekly_agent_metrics_by_market_creator,
|
186 |
+
)
|
187 |
+
with gr.Column(scale=1):
|
188 |
+
trade_details_text = get_metrics_text()
|
189 |
+
|
190 |
+
def update_a_trader_details(trader_detail):
|
191 |
+
return plot_trader_metrics_by_market_creator(
|
192 |
+
metric_name=trader_detail,
|
193 |
+
traders_df=weekly_agent_metrics_by_market_creator,
|
194 |
+
)
|
195 |
+
|
196 |
+
trader_a_details_selector.change(
|
197 |
+
update_a_trader_details,
|
198 |
+
inputs=trader_a_details_selector,
|
199 |
+
outputs=a_trader_markets_plot,
|
200 |
+
)
|
201 |
+
|
202 |
+
# Non-agentic traders graph
|
203 |
+
with gr.Row():
|
204 |
+
gr.Markdown("# Weekly metrics of Non-agent traders")
|
205 |
+
with gr.Row():
|
206 |
+
trader_na_details_selector = gr.Dropdown(
|
207 |
+
label="Select a weekly trader metric",
|
208 |
+
choices=trader_metric_choices,
|
209 |
+
value=default_trader_metric,
|
210 |
+
)
|
211 |
+
|
212 |
+
with gr.Row():
|
213 |
+
with gr.Column(scale=3):
|
214 |
+
na_trader_markets_plot = plot_trader_metrics_by_market_creator(
|
215 |
+
metric_name=default_trader_metric,
|
216 |
+
traders_df=weekly_non_agent_metrics_by_market_creator,
|
217 |
+
)
|
218 |
+
with gr.Column(scale=1):
|
219 |
+
trade_details_text = get_metrics_text()
|
220 |
+
|
221 |
+
def update_na_trader_details(trader_detail):
|
222 |
+
return plot_trader_metrics_by_market_creator(
|
223 |
+
metric_name=trader_detail,
|
224 |
+
traders_df=weekly_non_agent_metrics_by_market_creator,
|
225 |
+
)
|
226 |
+
|
227 |
+
trader_na_details_selector.change(
|
228 |
+
update_na_trader_details,
|
229 |
+
inputs=trader_na_details_selector,
|
230 |
+
outputs=na_trader_markets_plot,
|
231 |
+
)
|
232 |
+
with gr.TabItem("🔥 Daily metrics"):
|
233 |
+
with gr.Row():
|
234 |
+
gr.Markdown("# Daily metrics of last week of all traders")
|
235 |
+
with gr.Row():
|
236 |
+
trader_daily_details_selector = gr.Dropdown(
|
237 |
+
label="Select a daily trader metric",
|
238 |
+
choices=trader_metric_choices,
|
239 |
+
value=default_trader_metric,
|
240 |
+
)
|
241 |
+
|
242 |
+
with gr.Row():
|
243 |
+
with gr.Column(scale=3):
|
244 |
+
trader_daily_markets_plot = (
|
245 |
+
plot_trader_daily_metrics_by_market_creator(
|
246 |
+
metric_name=default_trader_metric,
|
247 |
+
traders_df=daily_metrics_by_market_creator,
|
248 |
+
)
|
249 |
+
)
|
250 |
+
with gr.Column(scale=1):
|
251 |
+
trade_details_text = get_metrics_text()
|
252 |
+
|
253 |
+
def update_trader_daily_details(trader_detail):
|
254 |
+
return plot_trader_daily_metrics_by_market_creator(
|
255 |
+
metric_name=trader_detail,
|
256 |
+
traders_df=daily_metrics_by_market_creator,
|
257 |
+
)
|
258 |
+
|
259 |
+
trader_daily_details_selector.change(
|
260 |
+
update_trader_daily_details,
|
261 |
+
inputs=trader_daily_details_selector,
|
262 |
+
outputs=trader_daily_markets_plot,
|
263 |
+
)
|
264 |
|
265 |
with gr.TabItem("📉Closed Markets Kullback–Leibler divergence"):
|
266 |
with gr.Row():
|
scripts/metrics.py
CHANGED
@@ -7,76 +7,79 @@ DEFAULT_MECH_FEE = 0.01 # xDAI
|
|
7 |
def compute_metrics(trader_address: str, trader_data: pd.DataFrame) -> dict:
|
8 |
|
9 |
if len(trader_data) == 0:
|
10 |
-
print("No data to compute metrics")
|
11 |
return {}
|
12 |
|
13 |
-
|
14 |
-
|
15 |
total_net_earnings = trader_data.net_earnings.sum()
|
16 |
total_bet_amounts = trader_data.collateral_amount.sum()
|
17 |
total_num_mech_calls = trader_data.num_mech_calls.sum()
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
|
|
22 |
total_fee_amounts = trader_data.mech_fee_amount.sum()
|
23 |
total_costs = (
|
24 |
total_bet_amounts
|
25 |
+ total_fee_amounts
|
26 |
+ (total_num_mech_calls * DEFAULT_MECH_FEE)
|
27 |
)
|
28 |
-
|
29 |
-
return
|
30 |
|
31 |
|
32 |
-
def
|
33 |
-
trader_address: str,
|
34 |
-
) ->
|
35 |
-
"""This function computes for a specific week the different metrics:
|
36 |
-
|
|
|
37 |
achieved per market and dividing both.
|
38 |
-
It is possible to filter by
|
39 |
-
assert "
|
40 |
-
filtered_traders_data =
|
41 |
-
|
42 |
]
|
43 |
-
|
44 |
-
if trader_type != "all": # compute only for the specific type
|
45 |
filtered_traders_data = filtered_traders_data.loc[
|
46 |
-
filtered_traders_data["
|
47 |
]
|
48 |
if len(filtered_traders_data) == 0:
|
49 |
-
|
|
|
50 |
|
51 |
-
|
|
|
52 |
|
53 |
|
54 |
-
def
|
55 |
-
trader_address: str,
|
56 |
) -> dict:
|
57 |
-
"""This function computes for a specific week the different metrics:
|
58 |
-
|
|
|
59 |
achieved per market and dividing both.
|
60 |
-
It is possible to filter by
|
61 |
-
|
62 |
-
|
63 |
-
|
|
|
64 |
]
|
65 |
-
if
|
66 |
filtered_traders_data = filtered_traders_data.loc[
|
67 |
-
filtered_traders_data["
|
68 |
]
|
69 |
if len(filtered_traders_data) == 0:
|
70 |
-
tqdm.write(f"No data. Skipping
|
71 |
return {} # No Data
|
72 |
-
|
73 |
-
# f"Volume of data for trader {trader_address} and market creator {market_creator} = {len(filtered_traders_data)}"
|
74 |
-
# )
|
75 |
metrics = compute_metrics(trader_address, filtered_traders_data)
|
76 |
return metrics
|
77 |
|
78 |
|
79 |
-
def
|
80 |
trader: str, weekly_data: pd.DataFrame, week: str
|
81 |
) -> pd.DataFrame:
|
82 |
trader_metrics = []
|
@@ -105,41 +108,38 @@ def merge_trader_metrics(
|
|
105 |
weekly_metrics_pearl["market_creator"] = "pearl"
|
106 |
trader_metrics.append(weekly_metrics_pearl)
|
107 |
result = pd.DataFrame.from_dict(trader_metrics, orient="columns")
|
108 |
-
# tqdm.write(f"Total length of all trader metrics for this week = {len(result)}")
|
109 |
return result
|
110 |
|
111 |
|
112 |
-
def
|
113 |
-
trader: str,
|
114 |
) -> pd.DataFrame:
|
115 |
trader_metrics = []
|
116 |
-
# computation as specification 1 for all types of
|
117 |
-
|
118 |
-
trader,
|
119 |
)
|
120 |
-
|
121 |
-
|
122 |
-
trader_metrics.append(
|
123 |
|
124 |
-
# computation as specification 1 for
|
125 |
-
|
126 |
-
trader,
|
127 |
)
|
128 |
-
if len(
|
129 |
-
|
130 |
-
|
131 |
-
trader_metrics.append(
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
trader, weekly_data, trader_type="singlebet"
|
136 |
)
|
137 |
-
if len(
|
138 |
-
|
139 |
-
|
140 |
-
trader_metrics.append(
|
141 |
result = pd.DataFrame.from_dict(trader_metrics, orient="columns")
|
142 |
-
# tqdm.write(f"Total length of all trader metrics for this week = {len(result)}")
|
143 |
return result
|
144 |
|
145 |
|
@@ -161,9 +161,10 @@ def win_metrics_trader_level(weekly_data):
|
|
161 |
|
162 |
|
163 |
def compute_weekly_metrics_by_market_creator(
|
164 |
-
trader_agents_data: pd.DataFrame,
|
165 |
) -> pd.DataFrame:
|
166 |
-
"""Function to compute the metrics at the trader level per week
|
|
|
167 |
contents = []
|
168 |
all_weeks = list(trader_agents_data.month_year_week.unique())
|
169 |
for week in all_weeks:
|
@@ -174,27 +175,51 @@ def compute_weekly_metrics_by_market_creator(
|
|
174 |
# traverse each trader agent
|
175 |
traders = list(weekly_data.trader_address.unique())
|
176 |
for trader in tqdm(traders, desc=f"Trader' metrics", unit="metrics"):
|
177 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
print("End computing all weekly metrics by market creator")
|
179 |
return pd.concat(contents, ignore_index=True)
|
180 |
|
181 |
|
182 |
-
def
|
183 |
-
trader_agents_data: pd.DataFrame,
|
184 |
) -> pd.DataFrame:
|
185 |
-
"""Function to compute the metrics at the trader level per
|
|
|
186 |
contents = []
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
]
|
192 |
-
|
|
|
|
|
|
|
|
|
193 |
# traverse each trader agent
|
194 |
-
traders = list(
|
195 |
-
for trader in tqdm(traders, desc=f"Trader' metrics", unit="metrics"):
|
196 |
-
|
197 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
198 |
return pd.concat(contents, ignore_index=True)
|
199 |
|
200 |
|
|
|
7 |
def compute_metrics(trader_address: str, trader_data: pd.DataFrame) -> dict:
|
8 |
|
9 |
if len(trader_data) == 0:
|
10 |
+
# print("No data to compute metrics")
|
11 |
return {}
|
12 |
|
13 |
+
agg_metrics = {}
|
14 |
+
agg_metrics["trader_address"] = trader_address
|
15 |
total_net_earnings = trader_data.net_earnings.sum()
|
16 |
total_bet_amounts = trader_data.collateral_amount.sum()
|
17 |
total_num_mech_calls = trader_data.num_mech_calls.sum()
|
18 |
+
agg_metrics["net_earnings"] = total_net_earnings
|
19 |
+
agg_metrics["earnings"] = trader_data.earnings.sum()
|
20 |
+
agg_metrics["bet_amount"] = total_bet_amounts
|
21 |
+
agg_metrics["nr_mech_calls"] = total_num_mech_calls
|
22 |
+
agg_metrics["nr_trades"] = len(trader_data)
|
23 |
total_fee_amounts = trader_data.mech_fee_amount.sum()
|
24 |
total_costs = (
|
25 |
total_bet_amounts
|
26 |
+ total_fee_amounts
|
27 |
+ (total_num_mech_calls * DEFAULT_MECH_FEE)
|
28 |
)
|
29 |
+
agg_metrics["roi"] = total_net_earnings / total_costs
|
30 |
+
return agg_metrics
|
31 |
|
32 |
|
33 |
+
def compute_trader_metrics_by_market_creator(
|
34 |
+
trader_address: str, traders_data: pd.DataFrame, market_creator: str = "all"
|
35 |
+
) -> dict:
|
36 |
+
"""This function computes for a specific time window (week or day) the different metrics:
|
37 |
+
roi, net_earnings, earnings, bet_amount, nr_mech_calls and nr_trades.
|
38 |
+
The global roi of the trader agent by computing the individual net profit and the individual costs values
|
39 |
achieved per market and dividing both.
|
40 |
+
It is possible to filter by market creator: quickstart, pearl, all"""
|
41 |
+
assert "market_creator" in traders_data.columns
|
42 |
+
filtered_traders_data = traders_data.loc[
|
43 |
+
traders_data["trader_address"] == trader_address
|
44 |
]
|
45 |
+
if market_creator != "all": # compute only for the specific market creator
|
|
|
46 |
filtered_traders_data = filtered_traders_data.loc[
|
47 |
+
filtered_traders_data["market_creator"] == market_creator
|
48 |
]
|
49 |
if len(filtered_traders_data) == 0:
|
50 |
+
# tqdm.write(f"No data. Skipping market creator {market_creator}")
|
51 |
+
return {} # No Data
|
52 |
|
53 |
+
metrics = compute_metrics(trader_address, filtered_traders_data)
|
54 |
+
return metrics
|
55 |
|
56 |
|
57 |
+
def compute_trader_metrics_by_trader_family(
|
58 |
+
trader_address: str, traders_data: pd.DataFrame, trader_family: str = "all"
|
59 |
) -> dict:
|
60 |
+
"""This function computes for a specific time window (week or day) the different metrics:
|
61 |
+
roi, net_earnings, earnings, bet_amount, nr_mech_calls and nr_trades.
|
62 |
+
The global roi of the trader agent by computing the individual net profit and the individual costs values
|
63 |
achieved per market and dividing both.
|
64 |
+
It is possible to filter by trader family: quickstart_agent, pearl_agent, non_agent, all
|
65 |
+
"""
|
66 |
+
assert "trader_family" in traders_data.columns
|
67 |
+
filtered_traders_data = traders_data.loc[
|
68 |
+
traders_data["trader_address"] == trader_address
|
69 |
]
|
70 |
+
if trader_family != "all": # compute only for the specific trader family
|
71 |
filtered_traders_data = filtered_traders_data.loc[
|
72 |
+
filtered_traders_data["trader_family"] == trader_family
|
73 |
]
|
74 |
if len(filtered_traders_data) == 0:
|
75 |
+
# tqdm.write(f"No data. Skipping trader family {trader_family}")
|
76 |
return {} # No Data
|
77 |
+
|
|
|
|
|
78 |
metrics = compute_metrics(trader_address, filtered_traders_data)
|
79 |
return metrics
|
80 |
|
81 |
|
82 |
+
def merge_trader_weekly_metrics(
|
83 |
trader: str, weekly_data: pd.DataFrame, week: str
|
84 |
) -> pd.DataFrame:
|
85 |
trader_metrics = []
|
|
|
108 |
weekly_metrics_pearl["market_creator"] = "pearl"
|
109 |
trader_metrics.append(weekly_metrics_pearl)
|
110 |
result = pd.DataFrame.from_dict(trader_metrics, orient="columns")
|
|
|
111 |
return result
|
112 |
|
113 |
|
114 |
+
def merge_trader_daily_metrics(
|
115 |
+
trader: str, daily_data: pd.DataFrame, day: str
|
116 |
) -> pd.DataFrame:
|
117 |
trader_metrics = []
|
118 |
+
# computation as specification 1 for all types of markets
|
119 |
+
daily_metrics_all = compute_trader_metrics_by_market_creator(
|
120 |
+
trader, daily_data, market_creator="all"
|
121 |
)
|
122 |
+
daily_metrics_all["creation_date"] = day
|
123 |
+
daily_metrics_all["market_creator"] = "all"
|
124 |
+
trader_metrics.append(daily_metrics_all)
|
125 |
|
126 |
+
# computation as specification 1 for quickstart markets
|
127 |
+
daily_metrics_qs = compute_trader_metrics_by_market_creator(
|
128 |
+
trader, daily_data, market_creator="quickstart"
|
129 |
)
|
130 |
+
if len(daily_metrics_qs) > 0:
|
131 |
+
daily_metrics_qs["creation_date"] = day
|
132 |
+
daily_metrics_qs["market_creator"] = "quickstart"
|
133 |
+
trader_metrics.append(daily_metrics_qs)
|
134 |
+
# computation as specification 1 for pearl markets
|
135 |
+
daily_metrics_pearl = compute_trader_metrics_by_market_creator(
|
136 |
+
trader, daily_data, market_creator="pearl"
|
|
|
137 |
)
|
138 |
+
if len(daily_metrics_pearl) > 0:
|
139 |
+
daily_metrics_pearl["creation_date"] = day
|
140 |
+
daily_metrics_pearl["market_creator"] = "pearl"
|
141 |
+
trader_metrics.append(daily_metrics_pearl)
|
142 |
result = pd.DataFrame.from_dict(trader_metrics, orient="columns")
|
|
|
143 |
return result
|
144 |
|
145 |
|
|
|
161 |
|
162 |
|
163 |
def compute_weekly_metrics_by_market_creator(
|
164 |
+
trader_agents_data: pd.DataFrame, trader_filter: str = None
|
165 |
) -> pd.DataFrame:
|
166 |
+
"""Function to compute the metrics at the trader level per week
|
167 |
+
and with different categories by market creator"""
|
168 |
contents = []
|
169 |
all_weeks = list(trader_agents_data.month_year_week.unique())
|
170 |
for week in all_weeks:
|
|
|
175 |
# traverse each trader agent
|
176 |
traders = list(weekly_data.trader_address.unique())
|
177 |
for trader in tqdm(traders, desc=f"Trader' metrics", unit="metrics"):
|
178 |
+
if trader_filter is None:
|
179 |
+
contents.append(merge_trader_weekly_metrics(trader, weekly_data, week))
|
180 |
+
elif trader_filter == "agent":
|
181 |
+
filtered_data = weekly_data.loc[weekly_data["staking"] != "non_agent"]
|
182 |
+
contents.append(
|
183 |
+
merge_trader_weekly_metrics(trader, filtered_data, week)
|
184 |
+
)
|
185 |
+
else: # non_agent traders
|
186 |
+
filtered_data = weekly_data.loc[weekly_data["staking"] == "non_agent"]
|
187 |
+
contents.append(
|
188 |
+
merge_trader_weekly_metrics(trader, filtered_data, week)
|
189 |
+
)
|
190 |
+
|
191 |
print("End computing all weekly metrics by market creator")
|
192 |
return pd.concat(contents, ignore_index=True)
|
193 |
|
194 |
|
195 |
+
def compute_daily_metrics_by_market_creator(
|
196 |
+
trader_agents_data: pd.DataFrame, trader_filter: str = None
|
197 |
) -> pd.DataFrame:
|
198 |
+
"""Function to compute the metrics at the trader level per day
|
199 |
+
and with different categories by market creator"""
|
200 |
contents = []
|
201 |
+
# trader_agents_data is already sorted by timestamp, so last item is last week
|
202 |
+
last_week = trader_agents_data.iloc[-1].month_year_week
|
203 |
+
print(f"Computing daily metrics for week ={last_week} by market creator")
|
204 |
+
last_week_data = trader_agents_data.loc[
|
205 |
+
trader_agents_data["month_year_week"] == last_week
|
206 |
+
]
|
207 |
+
all_days = list(last_week_data.creation_date.unique())
|
208 |
+
for day in all_days:
|
209 |
+
daily_data = last_week_data.loc[last_week_data["creation_date"] == day]
|
210 |
+
print(f"Computing daily metrics for {day}")
|
211 |
# traverse each trader agent
|
212 |
+
traders = list(daily_data.trader_address.unique())
|
213 |
+
for trader in tqdm(traders, desc=f"Trader' daily metrics", unit="metrics"):
|
214 |
+
if trader_filter is None:
|
215 |
+
contents.append(merge_trader_daily_metrics(trader, daily_data, day))
|
216 |
+
elif trader_filter == "agentic":
|
217 |
+
filtered_data = daily_data.loc[daily_data["staking"] != "non_agent"]
|
218 |
+
contents.append(merge_trader_daily_metrics(trader, filtered_data, day))
|
219 |
+
else: # non_agent traders
|
220 |
+
filtered_data = daily_data.loc[daily_data["staking"] == "non_agent"]
|
221 |
+
contents.append(merge_trader_daily_metrics(trader, filtered_data, day))
|
222 |
+
print("End computing all daily metrics by market creator")
|
223 |
return pd.concat(contents, ignore_index=True)
|
224 |
|
225 |
|
scripts/utils.py
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
|
3 |
+
|
4 |
+
def get_traders_family(row: pd.DataFrame) -> str:
|
5 |
+
if row.staking == "non_agent":
|
6 |
+
return "non_agent"
|
7 |
+
elif row.market_creator == "pearl":
|
8 |
+
return "pearl_agent"
|
9 |
+
# quickstart
|
10 |
+
return "quickstart_agent"
|
tabs/trader_plots.py
CHANGED
@@ -8,6 +8,7 @@ trader_metric_choices = [
|
|
8 |
"earnings",
|
9 |
"net earnings",
|
10 |
"ROI",
|
|
|
11 |
]
|
12 |
default_trader_metric = "ROI"
|
13 |
|
@@ -63,6 +64,9 @@ def plot_trader_metrics_by_market_creator(
|
|
63 |
metric_name = "net_earnings"
|
64 |
column_name = metric_name
|
65 |
yaxis_title = "Total net profit per trader (xDAI)"
|
|
|
|
|
|
|
66 |
else: # earnings
|
67 |
column_name = metric_name
|
68 |
yaxis_title = "Total gross profit per trader (xDAI)"
|
@@ -90,6 +94,56 @@ def plot_trader_metrics_by_market_creator(
|
|
90 |
)
|
91 |
|
92 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
def plot_median_roi_by_creation_date(traders_df: pd.DataFrame) -> gr.Plot:
|
94 |
traders_df["creation_date"] = traders_df["creation_timestamp"].dt.date
|
95 |
|
|
|
8 |
"earnings",
|
9 |
"net earnings",
|
10 |
"ROI",
|
11 |
+
"nr_trades",
|
12 |
]
|
13 |
default_trader_metric = "ROI"
|
14 |
|
|
|
64 |
metric_name = "net_earnings"
|
65 |
column_name = metric_name
|
66 |
yaxis_title = "Total net profit per trader (xDAI)"
|
67 |
+
elif metric_name == "nr_trades":
|
68 |
+
column_name = metric_name
|
69 |
+
yaxis_title = "Total nr of trades per trader"
|
70 |
else: # earnings
|
71 |
column_name = metric_name
|
72 |
yaxis_title = "Total gross profit per trader (xDAI)"
|
|
|
94 |
)
|
95 |
|
96 |
|
97 |
+
def plot_trader_daily_metrics_by_market_creator(
|
98 |
+
metric_name: str, traders_df: pd.DataFrame
|
99 |
+
) -> gr.Plot:
|
100 |
+
"""Plots the daily trader metrics."""
|
101 |
+
|
102 |
+
if metric_name == "mech calls":
|
103 |
+
metric_name = "mech_calls"
|
104 |
+
column_name = "nr_mech_calls"
|
105 |
+
yaxis_title = "Total nr of mech calls per trader"
|
106 |
+
elif metric_name == "ROI":
|
107 |
+
column_name = "roi"
|
108 |
+
yaxis_title = "Total ROI (net profit/cost)"
|
109 |
+
elif metric_name == "bet amount":
|
110 |
+
metric_name = "bet_amount"
|
111 |
+
column_name = metric_name
|
112 |
+
yaxis_title = "Total bet amount per trader (xDAI)"
|
113 |
+
elif metric_name == "net earnings":
|
114 |
+
metric_name = "net_earnings"
|
115 |
+
column_name = metric_name
|
116 |
+
yaxis_title = "Total net profit per trader (xDAI)"
|
117 |
+
elif metric_name == "nr_trades":
|
118 |
+
column_name = metric_name
|
119 |
+
yaxis_title = "Total nr of trades per trader"
|
120 |
+
else: # earnings
|
121 |
+
column_name = metric_name
|
122 |
+
yaxis_title = "Total gross profit per trader (xDAI)"
|
123 |
+
|
124 |
+
traders_filtered = traders_df[["creation_date", "market_creator", column_name]]
|
125 |
+
|
126 |
+
fig = px.box(
|
127 |
+
traders_filtered,
|
128 |
+
x="creation_date",
|
129 |
+
y=column_name,
|
130 |
+
color="market_creator",
|
131 |
+
color_discrete_sequence=["purple", "goldenrod", "darkgreen"],
|
132 |
+
category_orders={"market_creator": ["pearl", "quickstart", "all"]},
|
133 |
+
)
|
134 |
+
fig.update_traces(boxmean=True)
|
135 |
+
fig.update_layout(
|
136 |
+
xaxis_title="Day",
|
137 |
+
yaxis_title=yaxis_title,
|
138 |
+
legend=dict(yanchor="top", y=0.5),
|
139 |
+
)
|
140 |
+
fig.update_xaxes(tickformat="%b %d\n%Y")
|
141 |
+
|
142 |
+
return gr.Plot(
|
143 |
+
value=fig,
|
144 |
+
)
|
145 |
+
|
146 |
+
|
147 |
def plot_median_roi_by_creation_date(traders_df: pd.DataFrame) -> gr.Plot:
|
148 |
traders_df["creation_date"] = traders_df["creation_timestamp"].dt.date
|
149 |
|