File size: 8,178 Bytes
d8cf478
 
 
00d49a3
d8cf478
 
 
 
 
 
 
efabdf9
d8cf478
 
 
 
577dd09
d8cf478
dc11fb3
d8cf478
 
 
 
 
577dd09
 
 
 
 
 
 
 
d8cf478
 
 
dc11fb3
 
330cbe3
 
 
 
 
 
 
 
 
 
 
 
 
dc11fb3
 
 
 
d8cf478
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
efabdf9
 
 
d8cf478
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
efabdf9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6154c13
 
 
 
 
 
 
 
 
 
 
 
 
 
db08a72
 
6154c13
 
 
 
 
 
3498a52
 
 
00d49a3
3498a52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00d49a3
3498a52
 
 
 
00d49a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3498a52
 
 
00d49a3
 
3498a52
 
00d49a3
 
 
 
 
 
 
 
3498a52
00d49a3
3498a52
00d49a3
3498a52
 
00d49a3
3498a52
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import gradio as gr
import pandas as pd
import plotly.express as px
from tabs.market_plots import color_mapping

trader_metric_choices = [
    "mech calls",
    "bet amount",
    "earnings",
    "net earnings",
    "ROI",
    "nr_trades",
]
default_trader_metric = "ROI"


def get_metrics_text(daily: bool = False) -> gr.Markdown:
    metric_text = """ 
        ## Metrics at the graph
        These metrics are computed weekly. The statistical measures are:
        * min, max, 25th(q1), 50th(median) and 75th(q2) percentiles
        * the upper and lower fences to delimit possible outliers
        * the average values as the dotted lines
        """
    if daily:
        metric_text = """ 
            ## Metrics at the graph
            These metrics are computed daily. The statistical measures are:
            * min, max, 25th(q1), 50th(median) and 75th(q2) percentiles
            * the upper and lower fences to delimit possible outliers
            * the average values as the dotted lines
            """
    return gr.Markdown(metric_text)


def get_interpretation_text() -> gr.Markdown:
    interpretation_text = """
        ## Meaning of KL-divergence values
            * Y = 0.05129
                * Market accuracy off by 5%
            * Y = 0.1053
                * Market accuracy off by 10%
            * Y = 0.2876
                * Market accuracy off by 25%
            * Y = 0.5108
                * Market accuracy off by 40%
            * Y = 1.2040
                * Market accuracy off by 70%
            * Y = 2.3026
                * Market accuracy off by 90%
    """
    return gr.Markdown(interpretation_text)


def plot_trader_metrics_by_market_creator(
    metric_name: str, traders_df: pd.DataFrame
) -> gr.Plot:
    """Plots the weekly trader metrics."""

    if metric_name == "mech calls":
        metric_name = "mech_calls"
        column_name = "nr_mech_calls"
        yaxis_title = "Total nr of mech calls per trader"
    elif metric_name == "ROI":
        column_name = "roi"
        yaxis_title = "Total ROI (net profit/cost)"
    elif metric_name == "bet amount":
        metric_name = "bet_amount"
        column_name = metric_name
        yaxis_title = "Total bet amount per trader (xDAI)"
    elif metric_name == "net earnings":
        metric_name = "net_earnings"
        column_name = metric_name
        yaxis_title = "Total net profit per trader (xDAI)"
    elif metric_name == "nr_trades":
        column_name = metric_name
        yaxis_title = "Total nr of trades per trader"
    else:  # earnings
        column_name = metric_name
        yaxis_title = "Total gross profit per trader (xDAI)"

    traders_filtered = traders_df[["month_year_week", "market_creator", column_name]]

    fig = px.box(
        traders_filtered,
        x="month_year_week",
        y=column_name,
        color="market_creator",
        color_discrete_sequence=["purple", "goldenrod", "darkgreen"],
        category_orders={"market_creator": ["pearl", "quickstart", "all"]},
    )
    fig.update_traces(boxmean=True)
    fig.update_layout(
        xaxis_title="Week",
        yaxis_title=yaxis_title,
        legend=dict(yanchor="top", y=0.5),
    )
    fig.update_xaxes(tickformat="%b %d\n%Y")

    return gr.Plot(
        value=fig,
    )


def plot_trader_daily_metrics_by_market_creator(
    metric_name: str, traders_df: pd.DataFrame
) -> gr.Plot:
    """Plots the daily trader metrics."""

    if metric_name == "mech calls":
        metric_name = "mech_calls"
        column_name = "nr_mech_calls"
        yaxis_title = "Total nr of mech calls per trader"
    elif metric_name == "ROI":
        column_name = "roi"
        yaxis_title = "Total ROI (net profit/cost)"
    elif metric_name == "bet amount":
        metric_name = "bet_amount"
        column_name = metric_name
        yaxis_title = "Total bet amount per trader (xDAI)"
    elif metric_name == "net earnings":
        metric_name = "net_earnings"
        column_name = metric_name
        yaxis_title = "Total net profit per trader (xDAI)"
    elif metric_name == "nr_trades":
        column_name = metric_name
        yaxis_title = "Total nr of trades per trader"
    else:  # earnings
        column_name = metric_name
        yaxis_title = "Total gross profit per trader (xDAI)"

    traders_filtered = traders_df[["creation_date", "market_creator", column_name]]

    fig = px.box(
        traders_filtered,
        x="creation_date",
        y=column_name,
        color="market_creator",
        color_discrete_sequence=["purple", "goldenrod", "darkgreen"],
        category_orders={"market_creator": ["pearl", "quickstart", "all"]},
    )
    fig.update_traces(boxmean=True)
    fig.update_layout(
        xaxis_title="Day",
        yaxis_title=yaxis_title,
        legend=dict(yanchor="top", y=0.5),
    )
    fig.update_xaxes(tickformat="%b %d\n%Y")

    return gr.Plot(
        value=fig,
    )


def plot_winning_metric_per_trader(traders_winning_df: pd.DataFrame) -> gr.Plot:
    fig = px.box(
        traders_winning_df,
        x="month_year_week",
        y="winning_perc",
        color="market_creator",
        color_discrete_sequence=["purple", "goldenrod", "darkgreen"],
        category_orders={"market_creator": ["pearl", "quickstart", "all"]},
    )
    fig.update_traces(boxmean=True)
    fig.update_layout(
        xaxis_title="Week",
        yaxis_title="Weekly winning percentage %",
        legend=dict(yanchor="top", y=0.5),
        width=1000,  # Adjusted for better fit on laptop screens
        height=600,  # Adjusted for better fit on laptop screens
    )
    fig.update_xaxes(tickformat="%b %d\n%Y")

    return gr.Plot(
        value=fig,
    )


def plot_total_bet_amount(
    trades_df: pd.DataFrame, market_filter: str = "all"
) -> gr.Plot:
    """Plots the trade metrics."""
    traders_all = trades_df.copy(deep=True)
    traders_all["market_creator"] = "all"

    # merging both dataframes
    final_traders = pd.concat([traders_all, trades_df], ignore_index=True)
    final_traders = final_traders.sort_values(by="creation_date", ascending=True)
    # Create binary staking category
    final_traders["trader_type"] = final_traders["staking"].apply(
        lambda x: "non_agent" if x == "non_agent" else "agent"
    )

    total_bet_amount = (
        final_traders.groupby(
            ["month_year_week", "market_creator", "trader_type"], sort=False
        )["collateral_amount"]
        .sum()
        .reset_index(name="total_bet_amount")
    )
    total_bet_amount["trader_market"] = total_bet_amount.apply(
        lambda x: (x["trader_type"], x["market_creator"]), axis=1
    )
    color_discrete_sequence = ["purple", "goldenrod", "darkgreen"]
    if market_filter == "pearl":
        color_discrete_sequence = ["darkviolet", "goldenrod", "green"]
        total_bet_amount = total_bet_amount.loc[
            total_bet_amount["market_creator"] == "pearl"
        ]
    elif market_filter == "quickstart":
        total_bet_amount = total_bet_amount.loc[
            total_bet_amount["market_creator"] == "quickstart"
        ]
    else:
        total_bet_amount = total_bet_amount.loc[
            total_bet_amount["market_creator"] == "all"
        ]

    fig = px.bar(
        total_bet_amount,
        x="month_year_week",
        y="total_bet_amount",
        color="trader_market",
        color_discrete_sequence=color_mapping,
        category_orders={
            "market_creator": ["pearl", "quickstart", "all"],
            "trader_market": [
                ("agent", "pearl"),
                ("non_agent", "pearl"),
                ("agent", "quickstart"),
                ("non_agent", "quickstart"),
                ("agent", "all"),
                ("non_agent", "all"),
            ],
        },
        barmode="group",
    )

    fig.update_layout(
        xaxis_title="Week",
        yaxis_title="Weekly total bet amount per trader type",
        legend=dict(yanchor="top", y=0.5),
    )
    # for axis in fig.layout:
    #     if axis.startswith("xaxis"):
    #         fig.layout[axis].update(title="Week")
    fig.update_xaxes(tickformat="%b %d")
    return gr.Plot(
        value=fig,
    )